Utilizing Solid Sorbent, Catalyst, Or Reactant Patents (Class 423/239.1)
  • Publication number: 20120201732
    Abstract: A catalyst for removal of NOx from exhaust gas, containing cerium oxide and titanium dioxide, wherein a first portion of the cerium oxide forms at least one agglomerate of cerium oxide crystallites interdispersed in the titanium dioxide, and a second portion of the cerium oxide forms at least one island on a surface of the titanium dioxide, a method for producing the catalyst, a process for selectively reducing NOx levels in an exhaust gas using the catalyst, and an SCR canister containing the catalyst therein.
    Type: Application
    Filed: February 7, 2011
    Publication date: August 9, 2012
    Applicant: Millennium Inorganic Chemicals, Inc.
    Inventors: Steven Mark AUGUSTINE, David Monroe Chapman, Mark Barrett Watson
  • Patent number: 8236261
    Abstract: A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: August 7, 2012
    Assignee: Caterpillar Inc.
    Inventors: Christie Susan Ragle, Ronald G. Silver, Svetlana Mikhailovna Zemskova, Colleen J. Eckstein
  • Publication number: 20120189521
    Abstract: The air pollution control device includes: NH4Cl solution supply means 16 for spraying an NH4Cl solution 14 by a plurality of spray nozzles 15 into a flue gas duct 13 at the downstream of the boiler 11; a reduction-denitration device 18 including a denitration catalyst for reducing NOx in the flue gas 12 with NH3 and for oxidizing Hg under the coexistence with HCl; and a wet desulfurization device 22 for reducing the amount of Hg oxidized in the reduction-denitration device 18 by using a limestone-gypsum slurry 21. The NH4Cl solution supply means 16 supplies the NH4Cl solution 14 from the spray nozzles 15 so as to prevent the NH4Cl solution 14 from being adhered to an inner wall of the flue gas duct 13 through which the flue gas 12 is flowing.
    Type: Application
    Filed: August 5, 2010
    Publication date: July 26, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Rikuma Shijo, Nobuyasu Sakata, Kiyonori Kushioka, Moritoshi Murakami, Nobuyuki Ukai
  • Patent number: 8225597
    Abstract: A system and method for NOx reduction is described, with a catalytic unit including a first zeolite catalyst with a first NOx conversion performance in a first temperature range and a second NOx conversion performance, lower than said first NOx conversion performance, in a second temperature range. The catalytic unit also comprises a second zeolite catalyst with a third NOx conversion performance, lower than said first NOx conversion performance, in the first temperature range and a fourth NOx conversion performance, higher than said second and third NOx conversion performances in the second temperature range, said first temperature range being higher than said second temperature range. The system further includes a controller configured to adjust an amount of reducing agent added to the NOx reducing system responsive to a temperature of the catalytic unit.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: July 24, 2012
    Assignee: Ford Global Technologies, LLC
    Inventors: James W. Girard, Giovanni Cavataio, Christine Kay Lambert, Rachel Alison Snow
  • Patent number: 8227373
    Abstract: A catalyst and its use for the abatement of carbon monoxide and unburned hydrocarbons in the exit stream of a combustion device, such as an automobile and spray paint booths are disclosed.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: July 24, 2012
    Assignee: The University of Toledo
    Inventors: Abdul-Majeed Azad, Desikan Sundararajan
  • Patent number: 8226915
    Abstract: One embodiment of the invention includes a method of treating a gas stream comprising flowing the gas stream over a hydrocarbon reduction and NOx reduction catalyst first, and thereafter flowing the gas over a perovskite and NOx trap material for NOx oxidation and storage. In one embodiment, the hydrocarbon reduction and NOx reduction catalyst may include palladium. In one embodiment, the perovskite catalyst may have the general formula ABO3, AA?BO3, ABB?O3, or AA?BB?O3. The perovskite catalyst may be the only catalyst or a second non-perovskite catalyst may include at least one of palladium, platinum, rhodium, ruthenium or a catalyst system including one or more of the same or alloys thereof. In one embodiment, the NOx trap material may include at least one of alkali metals, alkaline earth metals such as barium, calcium, potassium, or sodium.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: July 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Gongshin Qi, Chang H Kim, Wei Li
  • Publication number: 20120183463
    Abstract: A process and an apparatus denox flue gases containing carbon monoxide and/or gaseous organic substances with at least one catalyst for catalytic reduction of the nitrogen oxide NOx and a heat exchanger for heating the flue gases from recovery of the residual heat of the denoxed flue gases before the catalytic reduction to a reaction temperature of 160° C. to 500° C. For the best possible denoxing of the flue gases with simultaneous minimization of the externally supplied energy needed, it is envisaged that the losses associated with the heat movement in the heat exchanger will be compensated for by providing at least one stage for regenerative post combustion of the carbon monoxide and/or of the gaseous organic substances.
    Type: Application
    Filed: June 14, 2010
    Publication date: July 19, 2012
    Applicant: SCHEUCH GMBH
    Inventor: Manfred Lisberger
  • Publication number: 20120177553
    Abstract: A system and method of reducing NOx emissions from a lean burn combustion source is provided. The system includes at least one injection lance having a elongated shaft with distal and proximal ends, a metering valve positioned at the distal end, an atomization chamber positioned between the metering valve and the distal end, a storage chamber for containing a reagent fluidly connected to the metering valve, an injection tip positioned at the proximal end for delivering the reagent, and at least one air port for supplying air to the atomization chamber. The injection lance is positioned in the combustion source, and the reagent is supplied from the storage chamber to the injection lance at an inlet pressure. The reagent is then injected into the combustion source via the injection lance, wherein a temperature of the reagent prior to the injection is maintained below a hydrolysis temperature of the reagent.
    Type: Application
    Filed: December 7, 2011
    Publication date: July 12, 2012
    Inventors: Scott H. Lindemann, Bruce E. Hartel, John N. Dale, Jeffrey Michael Broderick, James M. Valentine
  • Publication number: 20120171097
    Abstract: A catalyst for treating exhaust gases containing nitrogen monoxide, carbon monoxide and volatile organic compounds includes a plurality of layers, an upper layer of which has an active component contained uniformly therein and a lower layer of which has no active component contained therein. The catalyst is obtained through the steps of: forming the lower layer by coating the surface of substrate with a slurry of a porous inorganic compound, followed by drying; and forming the upper layer, which is to be the top surface of the catalyst, by coating the surface of the lower layer with a slurry of a porous inorganic compound that has the active component composed of one or more precious metals supported thereon, followed by drying. The oxidation power of the resulting catalyst is enhanced without increasing the amount of precious metal supported thereon.
    Type: Application
    Filed: March 13, 2012
    Publication date: July 5, 2012
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Katsumi Nochi, Masanao Yonemura, Yoshiaki Obayashi, Hitoshi Nakamura
  • Publication number: 20120171096
    Abstract: The invention provides a system for regenerative selective catalytic reduction including a catalyst chamber that contains a catalyst for reducing NOX in a gas stream passing therethrough. The system also includes a reactant injector, first and second heat exchangers, and a valve manifold adapted to direct a substantially continuous gas stream through the heat exchangers and catalyst chamber in such a manner as to flow through the catalyst chamber in the same flow direction during each cycle of the system. The invention also provides a process of regenerative selective catalytic reduction wherein the gas stream through the catalyst chamber flows in the same flow direction during each cycle of the process.
    Type: Application
    Filed: January 5, 2012
    Publication date: July 5, 2012
    Inventors: John R. Harold, James Dougherty
  • Patent number: 8211391
    Abstract: A selective catalytic reduction system and method for reducing nitrogen oxide (NOx) emissions comprising a boiler producing flue gas emissions, a particulate control device receiving flue gas emissions from the boiler, a selective catalytic reduction unit (SCR) receiving flue gas emissions from the particulate control device and reducing nitrogen oxide (NOx) emissions, and a heat exchanger located downstream of the selective catalytic reduction unit (SCR) for removing heat from the flue gas for preheating at least one of boiler feed water and combustion air for the boiler.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: July 3, 2012
    Assignee: 2E Environmental, LLC
    Inventor: Robert Ellery
  • Publication number: 20120164047
    Abstract: Low temperature activity of a vanadium-free selective catalytic reduction catalyst is provided by a mixed metal oxide support containing oxides of titanium and zirconium, the support having a promoter deposited on the surface of the mixed metal oxide support, and further having an active catalyst component deposited over the promoter on the mixed metal oxide support surface. Suitable promoters include oxides of silicon, boron, aluminum, cerium, iron, chromium, cobalt, nickel, copper, tin, silver, niobium, lanthanum, titanium, and combinations thereof. Suitable active catalyst components include oxides of manganese, iron and cerium.
    Type: Application
    Filed: February 27, 2012
    Publication date: June 28, 2012
    Inventor: Steven M. Augustine
  • Publication number: 20120159935
    Abstract: One embodiment of the invention may include a method comprising providing a product comprising a substrate comprising a perovskite catalyst, NOx stored in or on the substrate and particulate matter in or on the substrate; releasing at least some of the stored NOx and oxidizing the released NOx to form NO2, and reacting the NO2 with carbon in the particulate matter to form at least one of CO or CO2.
    Type: Application
    Filed: December 22, 2010
    Publication date: June 28, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Wei Li, David B. Brown, Chang H. Kim, Gongshin QI, Steven J. Schmieg
  • Patent number: 8202819
    Abstract: A catalyst system to be used in an automobile exhaust gas purification apparatus which exerts excellent purification capability to a nitrogen oxide, even when hydrocarbon concentration varies, by subjecting exhaust gas discharged from an automotive internal engine to contacting with a catalyst, an exhaust gas purification apparatus using the same, and an exhaust gas purification method. A catalyst system etc.
    Type: Grant
    Filed: December 12, 2007
    Date of Patent: June 19, 2012
    Assignees: Daiichi Kigenso Kagaku Kogyo Co., Ltd., N.E. Chemcat Corporation
    Inventors: Akira Kohara, Yoshiro Hirasawa, Katsuaki Katoh
  • Patent number: 8197779
    Abstract: The present invention relates to a catalyst for removing nitrogen oxides from an exhaust gas, a method for preparing the same and a method for removing nitrogen oxide in an exhaust gas using the same, and more particularly, to a catalyst for removing nitrogen oxides from the exhaust gas in which a ceramic fiber carrier is treated by hydrothermal reaction prior to washcoating to improve the hydrothermal stability of catalyst, a method for preparing the same and a method for removing nitrogen oxide in an exhaust gas using the same. The catalyst prepared according to the present invention has excellent hydrothermal stability and an activity of the catalyst remains for a long time. Further, by using this catalyst to remove nitrogen oxides in an exhaust gas, a removal ratio of the nitrogen oxides is greatly enhanced.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: June 12, 2012
    Assignee: LG Hausys, Ltd.
    Inventors: Ju-hyung Lee, In-sik Nam, Seong-moon Jung, Jong-sik Choi, Sun-joo Kim, Hyuk-jae Kwon, Young-jin Kim, Joon-hyun Baik
  • Publication number: 20120141347
    Abstract: An article for treating a gas containing nitrogen oxides having a monolith substrate loaded with a catalytic composition containing at least one catalytic component consisting of (i) at least one transition metal dispersed on a mixed oxide or composite oxide or a mixture thereof as support material consisting of cerium and zirconium; or (ii) cerium oxide and zirconium oxide as single oxides or a composite oxide thereof or a mixture of the single oxides and the composite oxide dispersed on an inert oxide support material, wherein at least one transition metal is dispersed thereon, wherein the at least one transition metal is selected from the group consisting of a metal from Group VIB, IB, IVA, VB, VIIB, and VIII and mixtures of any two or more thereof, provided that at least one selected transition metal is tungsten, wherein the catalytic composition is disposed on said monolith substrate.
    Type: Application
    Filed: January 9, 2012
    Publication date: June 7, 2012
    Applicant: JOHNSON MATTHEY PUBLIC LIMITED COMPANY
    Inventors: Jillian Elaine Collier, Sylvie Cecile Laroze, Raj Rao Rajaram, David William Prest
  • Patent number: 8192706
    Abstract: A method for purifying waste gases of an at least partially burnt solid fuel to reduce pollutants such as SOx and/or HCl and NOx. The waste gas flows into a moving bed reactor from below through a lower and upper layer of an adsorption and/or absorption agent already polluted with NOx, SOx and/or HCl. SOx and/or HCl components are adsorbed from the waste gas into the NOx loaded adsorption and/or absorption agent. Thereafter, the waste gas is mixed with an ammonium-containing compound and flows through an upper horizontal gas inflow and bulk material removal tray of the moving bed reactor into the upper layer of the adsorption and/or absorption agent already polluted with NOx and small quantities of SOx and/or HCl. During the throughflow of the upper layer, NOx components are adsorbed from the waste gas onto the adsorption/absorption agent.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: June 5, 2012
    Inventor: Horst Grochowski
  • Patent number: 8193114
    Abstract: Catalysts, catalyst systems, and methods for removing ammonia and/or carbon monoxide in flue gases are provided where ammonia is used with a selective catalytic reduction catalyst for reducing oxides of nitrogen. A dual oxidation catalyst generally comprises an alkali component, a transition metal, and a metal oxide support. This catalyst is also substantially free from precious metal components and effective for substantially simultaneously oxidizing ammonia (NH3) and carbon monoxide (CO) when placed in an exhaust gas stream. The catalyst is effective to provide low ammonia to nitrogen oxides selectivity.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: June 5, 2012
    Assignee: BASF Catalysts LLC
    Inventors: Ahmad Moini, Gerald S. Koermer, Pascaline Harrison Tran, Jacqueling S. Curran
  • Patent number: 8192708
    Abstract: The invention provides a N2O removal method for a waste gas which is capable of stably decomposing and removing N2O even if the steam concentration in the waste gas is fluctuated. N2O is reduced and removed by bringing the waste gas containing N2O into contact with a reducing agent in the presence of a N2O decomposition catalyst. The temperature of the waste gas to be brought into contact with the N2O decomposition catalyst or the addition amount of the reducing agent is controlled in accordance with the steam concentration in the waste gas in a prior stage of the N2O decomposition catalyst. Therefore, the N2O decomposition efficiency is prevented from being decreased. An iron-zeolite based catalyst may be used as the N2O decomposition catalyst and methane, propane, ammonia, etc. may be used as the reducing agent.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: June 5, 2012
    Assignee: Metawater Co., Ltd.
    Inventor: Toichiro Sasaki
  • Publication number: 20120134907
    Abstract: One embodiment of the invention includes a method of treating a gas stream comprising flowing the gas stream over a hydrocarbon reduction and NOx reduction catalyst first, and thereafter flowing the gas over a perovskite and NOx trap material for NOx oxidation and storage. In one embodiment, the hydrocarbon reduction and NOx reduction catalyst may include palladium. In one embodiment, the perovskite catalyst may have the general formula ABO3, AA?BO3, ABB?O3, or AA?BB?O3. The perovskite catalyst may be the only catalyst or a second non-perovskite catalyst may include at least one of palladium, platinum, rhodium, ruthenium or a catalyst system including one or more of the same or alloys thereof. In one embodiment, the NOx trap material may include at least one of alkali metals, alkaline earth metals such as barium, calcium, potassium, or sodium.
    Type: Application
    Filed: November 29, 2010
    Publication date: May 31, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Gongshin Qi, Chang H. Kim, Wei Li
  • Patent number: 8187544
    Abstract: Various systems, devices, NO2 absorbents, NO2 scavengers and NO2 recuperator for generating nitric oxide are disclosed herein. According to one embodiment, an apparatus for converting nitrogen dioxide to nitric oxide can include a receptacle including an inlet, an outlet, a surface-active material coated with an aqueous solution of ascorbic acid and an absorbent wherein the inlet is configured to receive a gas flow and fluidly communicate the gas flow to the outlet through the surface-active material and the absorbent such that nitrogen dioxide in the gas flow is converted to nitric oxide.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: May 29, 2012
    Assignee: Geno LLC
    Inventors: David Fine, Gregory Vasquez, David P. Rounbehler
  • Publication number: 20120128562
    Abstract: A method includes contacting a catalyst including a metal having an average particle size of approximately one nanometer or greater with SO2; and reducing the average particle size of the metal.
    Type: Application
    Filed: September 22, 2009
    Publication date: May 24, 2012
    Inventors: Maria Flytzani-Stephanopoulos, Xiaoyan She
  • Publication number: 20120129684
    Abstract: The present invention relates to the use of solids consisting of a metal-organic framework (MOF) and having the units of the following formula (I): MmOkXILp as a nitrogen-oxide catalyst. The present invention also relates to devices for enabling the implementation of said use. The nitrogen oxides in question are nitrogen monoxide and nitrogen dioxide, collectively referred to as NOx. The MOF solids of the present invention are advantageously capable of removing nitrogen oxides from a liquid or gaseous effluent, for example from water, from the exhaust gases of a vehicle, factory, workshop, laboratory, stored products, urban air vents, etc., without any reducing agent and at a low temperature. The DeNOx catalysis is a major issue for our societies. The invention can be used for reducing or even avoiding the consequences for public health of the toxic NOx gases resulting from human activity.
    Type: Application
    Filed: May 28, 2010
    Publication date: May 24, 2012
    Applicant: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
    Inventors: Alexandre Vimont, Patricia Horcajada Cortes, Young Kyu Hwang, Gerard Ferey, Marco Daturi, Jong-San Chang, Christian Serre, Ji Yoon
  • Patent number: 8182775
    Abstract: Dry-scrubbing media compositions, methods of preparing same, and methods of use are provided. The compositions contain activated alumina and potassium carbonate. Optionally, activated carbon and other impregnates, such as sulfates of group 1A metals, are included in the compositions. The compositions exhibit improved efficiency and capacity for the removal of compounds such as chlorine or sulfur dioxide from an air-stream. The compositions are particularly useful for reducing or preventing the release of toxic gaseous compounds from the areas such as petroleum storage areas, refineries, drinking water systems, sewage treatment facilities, swimming pools, hospital morgues, animal rooms, and pulp and paper production sites.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: May 22, 2012
    Assignee: Purafil, Inc.
    Inventor: William G. England
  • Patent number: 8182776
    Abstract: An integrated process for operating a fossil fuel fired power plant including: producing hydrogen gas and an aqueous solution of hydrogen peroxide via a process including: dissociating hydrogen gas and oxygen gas from water; pressurizing the hydrogen gas and the oxygen gas; and mixing, under pressure, the oxygen gas and at least about a stoichiometric portion of the hydrogen gas with an aqueous solution of a catalyst and a promoter to form the aqueous solution of hydrogen peroxide; supplying a remainder of the hydrogen gas to at least one of (a) a storage means, (b) a boiler detonation cleaning system of the fossil fuel fired power plant, and (c) an electrical generator of the fossil fuel fired power plant; and injecting the aqueous solution of hydrogen peroxide into an air pollution control system of the fossil fuel fired power plant.
    Type: Grant
    Filed: August 10, 2010
    Date of Patent: May 22, 2012
    Assignee: Electric Power Research Institute, Inc.
    Inventor: Bruce Edward Scherer
  • Patent number: 8178064
    Abstract: Provided is a process for treating nitrogen oxide-containing exhaust produced by a stationary combustion source by the catalytic reduction of nitrogen oxide in the presence of a reductant comprising hydrogen, followed by ammonia selective catalytic reduction to further reduce the nitrogen oxide level in the exhaust.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: May 15, 2012
    Assignee: BASF Corporation
    Inventor: Gerald Koermer
  • Patent number: 8178460
    Abstract: An exhaust treatment method is provided. Method of increasing activation of NOx reduction catalyst using two or more reductant is discussed. The NOx catalyst is disposed to receive both the exhaust stream and reductant stream. The sensor is disposed to sense a system parameter related to carbon loading of the catalyst and produce a signal corresponding to the system parameter. The controller is disposed to receive the signal and to control dosing of the reductant stream based at least in part on the signal. The method includes sensing a system parameter related to carbon loading of a catalyst, producing a signal corresponding to the system parameter and sending the signal to a controller; and controlling a dosing of a reductant stream based at least in part on the signal.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: May 15, 2012
    Assignee: General Electric Company
    Inventors: Daniel George Norton, Benjamin Hale Winkler, Ashish Balkrishna Mhadeshwar, Dan Hancu, Stanlee Teresa Buddle
  • Patent number: 8172925
    Abstract: A multi-functional cabin air filter includes a dust collecting filter layer for collecting fine dust; an oxidation catalyst filter layer for oxidizing nitrogen monoxide into nitrogen dioxide; and an adsorption filter layer for adsorbing nitrogen dioxide and volatile organic compounds, wherein antimicrobial nanoparticles are applied to at least one of the dust collecting filter layer, the oxidation catalyst filter layer and the adsorption filter layer. This cabin air filter has dust collecting, denitrifying, deodorizing and antimicrobial functions, and it may be utilized in various ways for air purification in a limited space such as a vehicle.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: May 8, 2012
    Assignee: Korea Institute of Science and Technology
    Inventors: Gwi-Nam Bae, Seung Bok Lee, Jong Soo Jurng, Kil Choo Moon, Jae Soo Rhee, Sang Woo Yom, Kil Hong Song
  • Patent number: 8173087
    Abstract: Provided are exhaust systems and components suitable for use in conjunction with gasoline direct injection (GDI) engines to capture particulates in addition to reducing gaseous emission such as hydrocarbons, nitrogen oxides, and carbon monoxides. Exhaust treatment systems comprising a three-way conversion (TWC) catalyst located on a particulate trap are provided. An exemplary particulate trap is a soot filter. Additional treatment components can be added downstream of the particulate trap, including NOx traps and SCR catalysts. The TWC catalyst can be coated on both the inlet side and the outlet side of the particulate trap. Alternatively, an oxidation catalyst can be deposited on a particulate trap. Methods of making and using the same are also provided.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: May 8, 2012
    Assignee: BASF Corporation
    Inventors: Junmei Wei, Knut Wassermann, Yeujin Li
  • Patent number: 8173088
    Abstract: A method for injection reductant into an exhaust gas and for evaporating and decomposing the reductant at an elevated temperature includes providing an exhaust pipe having an interior surface and disposing the pipe in fluid communication with and upstream of a catalyst. The method includes the steps of disposing an internal cone within the pipe generally parallel to the pipe, mounting an injector to the exterior of the pipe in fluid communication with the cone, injecting the reductant into the cone, and directing the exhaust gas in a passage between the interior surface of the pipe and the cone. The exhaust gas is directed within the cone. The flow of exhaust gas has an elevated temperature compared to an ambient. A further step includes creating a drag force on the injected reductant to increase travel time of the injected reductant from the injector to the catalyst.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: May 8, 2012
    Assignee: International Engine Intellectual Property Company, LLC
    Inventors: Andrei Makartchouk, Justin O'Connor, Steve P. Gravante, Emad M. Amin, S. Scott Smith
  • Publication number: 20120107207
    Abstract: A system for reducing nitrogen oxides from an exhaust fluid is provided. The system includes an exhaust source, a hydrocarbon reductant source, a first injector in fluid communication with the hydrocarbon reductant source, where the first injector receives a first hydrocarbon reductant stream from the hydrocarbon reductant source, and expels the first portion of the hydrocarbon reductant stream. The system further includes a first catalyst that receives the exhaust stream and the first hydrocarbon reductant stream, a second injector in fluid communication with the hydrocarbon reductant source, where the second injector receives a second hydrocarbon reductant stream from the hydrocarbon reductant source, and expels the second hydrocarbon reductant stream, and a second catalyst disposed to receive an effluent from the first catalyst and the second portion of the hydrocarbon reductant stream.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Benjamin Hale Winkler, Dan Hancu, Ashish Balkrishna Mhadeshwar
  • Publication number: 20120107208
    Abstract: In a circulating fluidized-bed gasification system, an ammonia-off gas 30 from an ammonia remover 25 is fed to a catalytic denitrator 15 with a flow rate regulated such that a molar ratio of the ammonia in the ammonia off-gas 30 from the ammonia recover 25 to nitrogen oxides in an exhaust gas 6 from a combustion furnace 1 is kept within a setting range, and a reminder of the ammonia off-gas 30 is fed to the combustion furnace 1.
    Type: Application
    Filed: October 14, 2010
    Publication date: May 3, 2012
    Applicant: IHI Corporation
    Inventors: Hiroaki Ohara, Koki Hamada
  • Publication number: 20120093704
    Abstract: The present invention describes the process of preparing ceramics for the absorption of ACIDIC gases, which worsen the greenhouse effect, that are released in combustion systems, or that are present in closed environments. In relation to carbon dioxide, principal target of the present invention, the process of absorption, transport, processing and transformation of the gas into other products is described. The process uses ceramic materials prepared through the solid mixture of one or more metallic oxides, with one or more binding agents and an expanding agent. The product generated can be processed and the absorbent system regenerated. The carbon dioxide obtained in the processing can be used as analytic or commercial carbonic gas, various carbamates and ammonium carbonate.
    Type: Application
    Filed: March 12, 2010
    Publication date: April 19, 2012
    Applicants: AMA SOLUÇÕES TECNOLÓGICAS (AMATECH), UNIVERSIDADE FEDERAL DE MINAS GERAIS - UFMG
    Inventors: Jadson Cláudio Belchior, Geraldo Magela De Lima, Geison Voga Pereira, Rogério De Oliveira, Wellerson Fonseca Ribeiro, Fabrício Vieira De Andrade
  • Patent number: 8153090
    Abstract: A system to control the emissions of a fluid stream in a cyclical fashion utilizing an up-flow cycle and a down-flow cycle. The system may include a first inlet and a first outlet at a first end of the system and a second inlet and a second outlet at a second end of the system, a catalyst zone between the first end and second end, two heat transfer zones, at least one heat transfer zone positioned between the catalyst zone and the first end of the system and between the catalyst zone and the second end of the system, and two heating zones, at least one heating zone positioned between the catalyst zone and each of the at least one heat transfer zones. The symmetrical arrangement permits a bi-directional fluid cycle to recover a portion of the energy supplied to the system during each cycle.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: April 10, 2012
    Assignee: OnQuest, Inc.
    Inventor: Anu Vij
  • Publication number: 20120082607
    Abstract: The present disclosure provides an AgBi catalyst over alumina suitable for performing hydrocarbon selective catalytic reduction (HC-SCR).
    Type: Application
    Filed: September 20, 2011
    Publication date: April 5, 2012
    Inventors: Howard Furbeck, Gerald Koermer, Ahmad Moini
  • Publication number: 20120082606
    Abstract: According to various embodiments, a catalyst composition includes a catalytic metal secured to a porous substrate. The substrate has pores that are templated. The substrate is a product of adding a substrate precursor to a water-in-oil microemulsion including a catalytic metal salt, a solvent, a templating agent, and water.
    Type: Application
    Filed: October 4, 2010
    Publication date: April 5, 2012
    Applicant: General Electric Company
    Inventors: Larry Neil Lewis, Robert Edgar Colbum, Ashish Balkrishna Mhadeshwar, Dan Hancu
  • Patent number: 8148295
    Abstract: Low temperature activity of a vanadium-free selective catalytic reduction catalyst is provided by a mixed metal oxide support containing oxides of titanium and zirconium, the support having a promoter deposited on the surface of the mixed metal oxide support, and further having an active catalyst component deposited over the promoter on the mixed metal oxide support surface. Suitable promoters include oxides of silicon, boron, aluminum, cerium, iron, chromium, cobalt, nickel, copper, tin, silver, niobium, lanthanum, titanium, and combinations thereof. Suitable active catalyst components include oxides of manganese, iron and cerium.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: April 3, 2012
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventor: Steven M. Augustine
  • Patent number: 8147784
    Abstract: Combined removal of both ammonia from an ammonia-containing waste gas and nitrogen oxides from a nitrogen oxide-containing waste gas in a combined ammonia/urea synthesis plant is accomplished by mixing the gases and employing one or both of selective non-catalytic reduction at a temperature of 850° C. to 1100° C. or selective catalytic reduction at a temperature of 150° C. to 550° C., in which the ammonia and the nitrogen oxides react with one another to give nitrogen and water, the ammonia-containing waste gas derived from a low-pressure and/or atmospheric absorber of the urea synthesis plant, and the nitrogen oxide-containing waste gas derived from a flue gas duct of a primary reformer of the ammonia synthesis plant, both the ammonia and the nitrogen oxides of the mixed waste gas flows being depleted simultaneously during the same process step.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: April 3, 2012
    Assignee: Thyssenkrupp Uhde GmbH
    Inventors: Ivo Mueller, Joachim Johanning
  • Patent number: 8142746
    Abstract: The present invention relates to the selective separation of carbon dioxide (“CO2”) from methane (“CH4”) in streams containing both carbon dioxide and methane utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate carbon dioxide from natural gas streams preferably for sequestration of at least a portion of the carbon dioxide present in the natural gas.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: March 27, 2012
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Patent number: 8142745
    Abstract: The present invention relates to the selective separation of carbon dioxide (“CO2”) from nitrogen (“N2”) in streams containing both carbon dioxide and nitrogen utilizing a zeolitic imidazolate framework (“ZIF”) material. Preferably, the stream to be separated is fed to the present process in a substantially gaseous phase. In preferred embodiments, the current invention is utilized in a process to separate carbon dioxide from combustion gas (e.g., flue gas) streams preferably for sequestration of at least a portion of the carbon dioxide produced in combustion processes.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: March 27, 2012
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Sebastian C. Reyes, Jose G. Santiesteban, legal representative, Zheng Ni, Charanjit S. Paur, Pavel Kortunov, John Zengel, Harry W. Deckman
  • Patent number: 8142747
    Abstract: A system for NOx reduction in combustion gases, especially from diesel engines, incorporates an oxidation catalyst to convert at least a portion of NO to NO2, a particulate filter, a source of reductant such as NH3 and an SCR catalyst. Considerable improvements in NOx conversion are observed.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: March 27, 2012
    Inventors: Anders Andreasson, Guy Richard Chandler, Claus Friedrich Goersmann, James Patrick Warren, Georg Huethwohl
  • Patent number: 8142744
    Abstract: An air pollution control system includes an emission treatment system configured to receive flue gas, to reduce at least one pollutant therefrom, and to output emission treated flue gas. A first air heater in fluid communication with the emission treatment system includes a heat exchanger for heating forced air introduced thereto above a base temperature and thereby cooling emission treated flue gas from the emission treatment system to a stack discharge temperature. A second air heater in fluid communication with the first air heater to receive heated forced air therefrom includes a heat exchanger for heating forced air introduced thereto to a preheat temperature for combustion in a boiler and thereby cooling flue gas introduced from a boiler to the second air heater to an emission treatment temperature. The second air heater is in fluid communication with the emission treatment system to introduce cooled flue gas thereto.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: March 27, 2012
    Assignee: Babcock Power Environmental Inc.
    Inventors: Richard F. Abrams, Mark R. Lewis, Jeffrey Penterson
  • Publication number: 20120070353
    Abstract: The present invention relates to a process for separating off at least one acidic gas from a gas mixture comprising at least one acidic gas, which comprises the step of contacting of the gas mixture with a porous metal-organic framework, where the framework adsorbs the at least one acidic gas and the framework comprises at least one at least bidentate organic compound coordinated to at least one metal ion, wherein the porous metal-organic framework is impregnated with an amine suitable for a gas scrub. The invention further provides such impregnated metal-organic frameworks.
    Type: Application
    Filed: March 18, 2010
    Publication date: March 22, 2012
    Applicant: BASF SE
    Inventors: Natalia Trukhan, Ulrich Müller, Johann-Peter Melder, Steven Brughmans, Torsten Katz
  • Publication number: 20120063982
    Abstract: The laughing-gas-containing gas (1) is diluted by means of a diluting gas (2). The diluting gas (2) is virtually free from water fractions in the dryer (3). After feed of the diluting gas (2) via the feed line (13), exhaust gas (8) from the catalytic decomposition (7) is added (4) to the laughing-gas-containing feed gas (12). After addition (4) of the exhaust gas (8) from the catalytic decomposition of laughing gas (7), the laughing-gas-containing feed gas (12) is compressed (5) and passed to the heat exchanger (6). In the heat exchanger (6) the laughing-gas-containing feed gas (12) is preheated by heat exchange with the exhaust gas (8). The exhaust gas (8) is cooled in the heat exchanger (6) in this process. The preheated laughing-gas-containing feed gas (12) is passed via a further optional heater (11) as a feed to the catalytic laughing gas decomposition (7). In order to avoid a concentration build-up, some of the exhaust gas (8) is passed out (9) of the process.
    Type: Application
    Filed: January 5, 2010
    Publication date: March 15, 2012
    Applicant: LINDE AKTIENGESELLSCHAFT
    Inventors: Ulrike Wenning, Hans-Jörg Zander, Anton Wellenhofer, Karl-Heinz Hofmann, Wibke Korn, Franz Beran, Nicole Schödel, Wolfgang Schmehl
  • Publication number: 20120055142
    Abstract: Described is a catalyst comprising a substrate and a catalyst coating of two or more layers: (a) a first layer comprising Pd and Rh on the substrate; and (b) a second layer comprising Pt and/or Pd on the first layer; these layers each further comprising: one or more particulate support materials; one or more oxygen storage component (OSC) materials; and one or more nitrogen oxide storage materials comprising one or more elements selected from the group of alkali and/or alkaline earth metals, wherein the total amount of alkali and alkaline earth metals ranges from 0.18 to 2.0 g/in3 calculated as the respective alkali metal oxides M2O and alkaline earth metal oxides MO. Also described is a method for the production of a catalyst, as well as a process for the treatment of a gas stream, in particular of an exhaust gas stream resulting from an internal combustion engine.
    Type: Application
    Filed: September 2, 2011
    Publication date: March 8, 2012
    Applicant: BASF SE
    Inventor: Marcus Hilgendorff
  • Publication number: 20120051992
    Abstract: A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.
    Type: Application
    Filed: October 6, 2011
    Publication date: March 1, 2012
    Applicant: Caterpillar Inc.
    Inventors: Christie Susan Ragle, Ronald G. Silver, Svetlana Mikhailovna Zemskova, Colleen J. Eckstein
  • Patent number: 8113822
    Abstract: First, to decrease an amount of emitted nitrogen oxides to zero as much as possible and also decrease an amount of emitted carbon monoxide to a permissible level. Second, to save energy on combustion at a low air ratio close to 1.0. Third, to attain a stable air ratio control in a low air ratio combustion region.
    Type: Grant
    Filed: April 13, 2007
    Date of Patent: February 14, 2012
    Assignee: Miura Co., Ltd.
    Inventors: Osamu Tanaka, Yukihiro Tokunaga, Yusuke Okamoto, Kenji Yasui
  • Patent number: 8114369
    Abstract: The invention relates to a novel catalyst having excellent activity and selectivity for reducing nitric oxides (NO/NO2) to nitrogen gas (N2) with hydrogen (H2) being used as a reducing agent under strongly oxidizing conditions (e.g., 2-10 vol % O2) (H2-SCR) in the 100-400° C. range, but in particular to the low-temperature range 100-200° C. The inventive catalyst is a combination of platinum and palladium which are in contact with solid phases of a mixed MgO and CeO2 medium.
    Type: Grant
    Filed: October 14, 2009
    Date of Patent: February 14, 2012
    Assignees: Linde Aktiengesellschaft, University of Cyprus
    Inventors: Angelos M. Efstathiou, Petros G. Savva, Costas N. Costa
  • Patent number: 8105559
    Abstract: A method of reducing nitrogen oxides (NOx) present in a lean gas stream comprising nitric oxide (NO) comprises the steps of: (i) net adsorbing NO per se from the lean gas stream in an adsorbent comprising palladium and a cerium oxide at below 200° C.; (ii) thermally net desorbing NO from the NO adsorbent in a lean gas stream at 200° C. and above; and (iii) catalytically reducing NOx on a catalyst other than the NO adsorbent with a reductant selected from the group consisting of a hydrocarbon reductant, a nitrogenous reductant, hydrogen and a mixture of any two or more thereof. A system for carrying out such a method is also disclosed.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: January 31, 2012
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Joanne Elizabeth Melville, Robert James Brisley, Orla Keane, Paul Richard Phillips, Elizabeth Hazel Mountstevens
  • Patent number: 8105560
    Abstract: A system for treating a gas stream containing nitrogen oxides (NOx) and particulates flowing in the system comprises means for injecting a source of ammonia (NH3) or urea (CO(NH2)2) into a flowing exhaust gas upstream of a precious metal-free particulate trap, a selective catalytic reduction catalyst disposed downstream of the particulate trap and a source of ammonia or urea.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: January 31, 2012
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Paul Richard Phillips, Gudmund Smedler, Martyn Vincent Twigg