Plural Metal Or Metal And Ammonium Containing Patents (Class 423/306)
  • Patent number: 6960328
    Abstract: A zirconium phosphate compound having a Zr:P ratio of from about 1.80-2.0 to 1, which compound's H-form exhibits a single peak at ?13.7±0.5 ppm in the 31P NMR spectra. The compound is useful as a catalyst, catalyst support and ion exchange media having a high affinity for cobalt and nickel ions.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: November 1, 2005
    Assignee: Magnesium Elektron, Inc.
    Inventors: Anatoly I. Bortun, Clive J. Butler
  • Patent number: 6960331
    Abstract: The invention provides a novel method for making lithium mixed metal materials in electrochemical cells. The lithium mixed metal materials comprise lithium and at least one other metal besides lithium. The invention involves the reaction of a metal compound, a phosphate compound, with a reducing agent to reduce the metal and form a metal phosphate. The invention also includes methods of making lithium metal oxides involving reaction of a lithium compound, a metal oxide with a reducing agent.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: November 1, 2005
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey Swoyer
  • Patent number: 6949233
    Abstract: A method for preparing a positive active material for a rechargeable lithium battery is provided. In this method, a lithium source, a metal source, and a doping liquid including a doping element are mixed and the mixture is heat-treated.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: September 27, 2005
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Ho-Jin Kweon, Jun-Won Suh, Geun-Bae Kim
  • Patent number: 6949238
    Abstract: Novel zeolites are produced by combining a polar solute, a silicon or phosphorous source, and a structure directing agent. Surfactants and a hydrophobic solvent are added to the previously mixed three species and shaken to disperse the surfactants. The reverse microemulsion is stirred overnight, at about room temperature and then iced for five to ten minutes. A metal source is added vigorously shaken for about two minutes. The mixture is then aged for about two hours at about room temperature. A mineralizer is added and the resultant mixture aged for about two hours at about room temperature. The mixture is heated to about 180° C., for a suitable time period. The final novel product is then isolated.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: September 27, 2005
    Assignee: The Regents of the University of California
    Inventors: William Tumas, Kevin C. Ott, T. Mark McCleskey, Matthew Z. Yates, Eva R. Birnbaum
  • Patent number: 6942843
    Abstract: The present invention relates to the process of preparation and characterization of novel sodium superionic conductor (NASICON) type niobium aluminium phosphate of formula Cu0.5NbAlP3O12 (CNP), HNbAlP3O12(HNP) and to study its Electron Spin Resonance (ESR) and Photo Acoustic (PA) spectra.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: September 13, 2005
    Assignee: Council of Scientific and Industrial Research
    Inventors: M. Vithal, B. Srinivasulu, K. Koteswara Rao, Chandra Mohan Rao
  • Patent number: 6926882
    Abstract: There is provided macrostructures of porous inorganic material which can have controlled size, shape, and/or porosity and a process for preparing the macrostructures. The macrostructures comprise a three-dimension network of particles of porous inorganic materials. The process for preparing the macrostructures involves forming an admixture containing a porous organic ion exchanger and a synthesis mixture capable of forming a porous inorganic material and then converting the synthesis mixture to a solid porous inorganic material. After formation of the composite material, the porous organic ion exchanger can be removed from the composite material to obtain the macrostructures, either before or after the porous inorganic material is hydrothermally treated with a structure directing agent to convert at least a portion of such porous inorganic material to a crystalline molecular sieve composition. The resulting macrostructure is composed of particles of the crystalline molecular sieve composition.
    Type: Grant
    Filed: January 5, 2001
    Date of Patent: August 9, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Per Johan Sterte, Lubomira Borislavova Tosheva
  • Patent number: 6927187
    Abstract: The invention is directed to a method of synthesising silicoaluminophosphate molecular sieves and in particular those of framework type CHA and AEL. The method uses synthesis templates that comprise one or more tertiary dialkylbutylamines, wherein the alkyl groups are not butyl. The use of such templates. especially N,N-dimethylbutylamine, results in SAPO-11 of a desirable platelet morphology.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: August 9, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Matu J. Shah, John F. Brody
  • Patent number: 6913855
    Abstract: A method for making an active material comprises the steps of forming a slurry, spray drying the slurry to form a powdered precursor composition, and heating the powdered precursor composition at a temperature and for a time sufficient to form a reaction product. The slurry has a liquid phase and a solid phase, and contains at least an alkali metal compound and a transition metal compound. Preferably the liquid phase contains dissolved alkali metal compound, and the solid phase contains an insoluble transition metal compound, an insoluble carbonaceous material compound, or both. Electrodes and batteries are provided that contain the active materials.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: July 5, 2005
    Assignee: Valence Technology, Inc.
    Inventors: Johnnie Stoker, James Hodge
  • Patent number: 6914030
    Abstract: The invention is directed to a method of synthesizing silicoaluminophosphate molecular sieves using synthesis templates that contain at least one dimethylamino moiety, selected from one or more of N,N-dimethylethanolamine, N,N-dimethylpropanolamine, N,N-dimethylbutanolamine, N,N-dimethylheptanolamine, N,N-dimethylhexanolamine, N,N-dimethylethylenediamine, N,N-dimethylbutylenediamine, N,N-dimethylheptylenediamine, N,N-dimethylhexylenediamine 1-dimethylamino-2-propanol, N,N-dimethylethylamine, N,N-dimethylpropylamine, N,N-dimethylpentylamine, N,N-dimethylhexylamine and N,N-dimethylheptylamine. The use of dimethylamino moiety containing templates results in good quality SAPO molecular sieves of CHA framework type.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: July 5, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Guang Cao, Matu J. Shah
  • Patent number: 6893494
    Abstract: The invention provides a stable metal zirconium phosphates having formula (I), in which X is a metal or a combination of metals selected from Co, Mn, Ni, Cu, Cd, Fe, Cr, Al, Sn, V, Zn, Sc, Na, Mg, Ca and Si; and n has a molar value in the range of 1.25 to 22. These metal zirconium phosphates are prepared by sol-gel process.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: May 17, 2005
    Assignee: Carborundum Universal Limited
    Inventor: Ravichandran Joghee
  • Patent number: 6890500
    Abstract: The invention is directed to open-framework and microporous solids well suited for use in catalysis and ion exchange. The microporous solids are constructed by using a salt template which can be readily removed without destroying the framework of the micropore. Various microporous solids can be formed having different geometric structures depending upon the templating salt used and the concentration. Examples of two compounds include Na2Cs[Mn3(P2O7)2]Cl and K2.02Cs2.90[Cu3(P2O7)2]Cl2.92. Both compounds have 3-D (Mn, Cu)—P—O frameworks.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: May 10, 2005
    Assignee: Clemson University
    Inventors: Shiou-Jyh Hwu, Qun Huang, Mutlu Ulutagay
  • Patent number: 6852139
    Abstract: A process of producing a thin film electrolyte is provided wherein a volatile lithium-containing precursor and a volatile phosphate-containing precursor are mixed into a plasma generated from a plasma source. The mixture is then deposited upon a substrate. The process is conducted with the use of a system (11) having a plasma source (13) having a primary plenum (16) and a secondary plenum (23). The primary plenum is in fluid communication with a source of nitrogen gas (47) and a source of hydrogen gas (51). The secondary plenum is in fluid communication with a first bubbler (31) and a second bubbler (38).
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: February 8, 2005
    Assignee: Excellatron Solid State, LLC
    Inventors: Ji-Guang Zhang, Lamartine Meda, Eleston Maxie
  • Patent number: 6849275
    Abstract: A method for controlling the formation of a hydroxyapatite bone filler from dry calcium phosphate precursors in an aqueous solution uses coated sodium phosphate powder. The sodium phosphate powder is coated with a water soluble cellulose. Until the cellulose dissolves in the aqueous solution setting of the calcium phosphate cements proceeds slowly but when the exposed sodium phosphate particles start to solubilize in the aqueous solution the setting rate increases.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: February 1, 2005
    Assignee: Howmedica Osteonics Corp.
    Inventor: Paul Higham
  • Patent number: 6846493
    Abstract: The present invention is directed to a synthetic biomaterial compound based on stabilized calcium phosphates and more particularly to the molecular, structural and physical characterization of this compound. The compound comprises calcium, oxygen and phosphorous, wherein at least one of the elements is substituted with an element having an ionic radius of approximately 0.1 to 1.1 ?. The knowledge of the specific molecular and chemical properties of the compound allows for the development of several uses of the compound in various bone-related clinical conditions.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: January 25, 2005
    Assignee: Millenium Biologix Inc.
    Inventors: Sydney M. Pugh, Timothy J. N. Smith, Michael Sayer, Sarah Dorthea Langstaff
  • Publication number: 20040262571
    Abstract: Active materials for rechargeable batteries have a general formula
    Type: Application
    Filed: May 17, 2004
    Publication date: December 30, 2004
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey Swoyer
  • Patent number: 6835320
    Abstract: A composite metal polybasic salt containing a trivalent metal, zinc metal and a divalent metal as metal components and having a novel crystal structure, and a method of preparing the same. The invention further deals with a composite metal polybasic salt which has anion-exchanging property, which by itself is useful as an anion-exchanger, capable of introducing anions suited for the use upon anion-exchange, and finds a wide range of applications, and a method of preparing the same. The composite metal polybasic salt has a particular chemical composition and X-ray diffraction peaks, exhibiting peaks at 2&thgr;=2 to 15°, 2&thgr;=19.5 to 24° and 2&thgr;=33 to 50°, and a single peak at 2&thgr;=60 to 64° in the X-ray diffraction (Cu-&agr;).
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: December 28, 2004
    Assignee: Mizusawa Industrial Chemicals, Ltd.
    Inventors: Yoshinobu Komatsu, Hitoshi Ishida, Hiroshi Igarashi, Masami Kondo, Madoka Minagawa, Tetsu Sato, Teiji Sato
  • Patent number: 6835363
    Abstract: The invention is directed to a method of synthesizing aluminophosphate and silicoaluminophosphate molecular sieves and in particular to the synthesis of aluminophosphate and silicoaluminophosphate molecular sieves using the synthesis templates that contain two dimethylamino moieties in combination with hydrogen fluoride. The use of this template in combination with hydrogen fluoride results in good quality SAPO molecular sieves of CHA framework type with low levels of silicon that are produced in relatively short crystallization times.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: December 28, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Karl G. Strohmaier
  • Publication number: 20040258600
    Abstract: A crystallized solid of metallophosphate type, referred to by the designation IM-8 can be partially substituted by an element X and optionally by an element Y. The metallophosphate is of a chemical composition, expressed on an anhydrous basis is defined by the formula Rs(GgPpXxYy)O2 in which G represents one or more trivalent elements, R represents one or more organic compounds, X represents one or more divalent elements, and Y represents one or more tetravalent elements, and in which s≦0.2, g≦0.5, p≦0.5, x≦0.4 and y≦0.3 with g+p+x+y=1. The crystallized solid is useful as an adsorbent.
    Type: Application
    Filed: April 26, 2004
    Publication date: December 23, 2004
    Inventors: Ludovic Josien, Angelique Simon-Masseron, Joel Patarin, Loic Rouleau
  • Patent number: 6833127
    Abstract: A structure directing agent is removed from a microporous solid at a temperature below the temperature that would cause the structure directing agent to decompose by cleaving the structure directing agent within the pores of the microporous solid, at a temperature below the temperature that would cause the structure directing agent to decompose, into two or more fragments and removing the fragments from the pores of the microporous solid at a temperature below the temperature that would cause the structure directing agent or its fragments to decompose.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: December 21, 2004
    Assignees: California Institute of Technology, Chevron U.S.A. Inc.
    Inventors: Mark E. Davis, Hyunjoo Lee, Stacey I. Zones
  • Publication number: 20040241072
    Abstract: Small particle size silicoaluminophosphate molecular sieves are obtained by providing the source of the silicon in the form of a basic organic solution.
    Type: Application
    Filed: July 1, 2004
    Publication date: December 2, 2004
    Inventors: Machteld Mertens, Karl G. Strohmaier
  • Patent number: 6815122
    Abstract: Electrode active materials comprising lithium or other alkali metals, a transition metal, and a phosphate or similar moiety, of the formula: Aa+xMbP1−xSixO4 wherein (a) A is selected from the group consisting of Li, Na, K, and mixtures thereof, and 0<a<1.0 and 0≦x≦1; (b) M comprises one or more metals, comprising at least one metal which is capable of undergoing oxidation to a higher valence state, where 0<b≦2; and wherein M, a, b, and x are selected so as to maintain electroneutrality of the compound. In a preferred embodiment, M comprises at least one transition metal selected from Groups 4 to 11 of the Periodic Table. In another preferred embodiment, M comprises M′cM″d, where M′ is at least one transition metal from Groups 4 to 11 of the Periodic Table; and M″ is at least one element from Groups 2, 3, 12, 13, or 14 of the Periodic Table, and c+d=b. Preferably, 0.1≦a≦0.8.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: November 9, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Patent number: 6814764
    Abstract: A method for producing a cathode active material having superior cell characteristics through single-phase synthesis of a composite material composed of a compound represented by the general formula LixFe1-yMyPO4 and a carbon material positively and a method for producing a non-aqueous electrolyte cell employing the so produced cathode active material. To this end, the cathode active material is prepared by a step of mixing the starting materials for synthesis of the compound represented by the general formula LixFe1-yMyPO4, a step of milling a mixture obtained by the mixing step, a step of compressing the mixture obtained by the mixing step to a preset density and a step of sintering the mixture obtained by the compressing step. A carbon material is added in any one of the above steps prior to the sintering step. The density of the mixture in the compressing step is set to not less than 1.71 g/cm3 and not larger than 2.45 g/cm3.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: November 9, 2004
    Assignee: Sony Corporation
    Inventors: Mamoru Hosoya, Yuzuru Fukushima, Hideki Sakai, Junji Kuyama
  • Patent number: 6811924
    Abstract: A LiFePO4 carbon composite material is to be synthesized in a single phase satisfactorily to achieve superior cell characteristics. In preparing a cathode active material, a starting material for synthesis of a compound represented by the general formula LixFePO4, where 0<x≦1, is mixed, milled and sintered and a carbon material is added to the resulting mass at an optional time point in the course of mixing, milling and sintering. Li3PO4, Fe3(PO4)2 or its hydrates Fe3(PO4)2.nH2O, where n denotes the number of hydrates, are used as the starting material for synthesis of LixFePO4. The particle size distribution of particles of the starting material for synthesis following the milling with the particle size not less than 3 &mgr;m is set to 2.2% or less in terms of the volumetric integration frequency.
    Type: Grant
    Filed: September 24, 2001
    Date of Patent: November 2, 2004
    Assignee: Sony Corporation
    Inventors: Mamoru Hosoya, Kimio Takahashi, Yuzuru Fukushima
  • Publication number: 20040215044
    Abstract: Disclosed are methods and compositions of synthesis mixtures for the synthesis of aluminophosphates and silicoaluminophosphate molecular sieves, which enable the control and adjustment of the crystal particle size of aluminophosphates and silicoaluminophosphate molecular sieves. The synthesis mixture compositions used have two or more organic templates present at a molar ratio of total template to aluminum of ≦1.25; such a synthesis mixture is susceptible to control of product particle size through variation in the amount of seeds used in the synthesis.
    Type: Application
    Filed: April 28, 2003
    Publication date: October 28, 2004
    Inventors: Machteld M. Mertens, Marcel J.G. Janssen, Teng Xu
  • Publication number: 20040202935
    Abstract: The invention provides an electrochemical cell which includes a first electrode and a second electrode which is a counter electrode to said first electrode, and an electrolyte material interposed there between. The first electrode includes an active material having a high proportion of alkali metal per formula unit of material.
    Type: Application
    Filed: April 8, 2003
    Publication date: October 14, 2004
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey Swoyer
  • Patent number: 6797248
    Abstract: The present invention relates to a mesoporous molecular sieve MPL-1 and its preparation process. The anhydrous composition of this molecular sieve contains at least three elements, i.e. aluminum, phosphorus and oxygen. The molecular sieve has larger pore diameters, generally 1.3 nm-10.0 nm, a larger specific surface area and adsorption capacity. It is synthesized under the hydrothermal process with an organic compound as template. Where necessary, silicon and/or titanium may be added to synthesize the aluminosilicophosphate, aluminotitanophosphate, or aluminosilicotitanophosphate molecular sieves having a mesoporous structure, and/or metal compounds may be added to synthesize derivatives of mesoporous aluminophosphate molecular sieves containing the corresponding hetero-atoms.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: September 28, 2004
    Assignees: China Petroleum and Chemical Corporation, Fushun Research Institute of Petroleum and Petrochemicals, SINOPEC Corp.
    Inventors: Quanjie Liu, Jun Yang, Yan Peng
  • Patent number: 6797431
    Abstract: A LiFePO4 carbon composite material is to be synthesized in a single phase satisfactorily to achieve superior cell characteristics. In preparing a cathode active material, starting materials for synthesis of a compound represented by the general formula LixFePO4, where 0<x≦1, are mixed, milled and a carbon material is added to the resulting mass at an optional time point in the course of mixing, milling and sintering. Li3PO4, Fe3(PO4)2 or its hydrates Fe3(PO4)2·nH2O, where n denotes the number of hydrates, are used as the starting materials for synthesis of LixFePO4. The the temperature of a product from said sintering is set to 305° C. or less when said product from said sintering is exposed to atmosphere. The oxygen concentration in a sintering atmosphere is set to 1012 ppm in volume or less at the time point of sintering.
    Type: Grant
    Filed: September 27, 2001
    Date of Patent: September 28, 2004
    Assignee: Sony Corporation
    Inventors: Mamoru Hosoya, Kimio Takahashi, Yuzuru Fukushima
  • Patent number: 6793901
    Abstract: The invention is directed to a method for preparing microporous aluminophosphate or silicoaluminophosphate molecular sieves having the CHA framework type, the process comprising the steps of a) forming a reaction mixture comprising a source of aluminum, a source of phosphorus, optionally a source of silicon, at least one source of fluoride ions and at least one template containing one or more N,N-dimethylamino moieties, b) inducing crystallization of aluminophosphate and/or silicoaluminophosphate molecular sieve from the reaction mixture; c) recovering aluminophosphate and/or silicoaluminophosphate molecular sieve from the reaction mixture. The invention also relates to the molecular sieves obtained by this method and to molecular sieve catalyst compositions containing these molecular sieves.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: September 21, 2004
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Guang Cao, Matu J. Shah, Karl G. Strohmaier, Richard B. Hall
  • Publication number: 20040175614
    Abstract: Methods of manufacture and use of phosphates of transition metals are described as positive electrodes for secondary lithium batteries, including a process for the production of LiMPO4 with controlled size and morphology, M being FexCoyNizMnw, where 0≦x≦1,0≦y≦1, 0≦w≦1, and x+y+z+w=1. According to an exemplary embodiment, a process is described for the manufacture of LiFePO4 including the steps of providing an equimolar aqueous solution of Li1+, Fe3+ and PO43−, evaporating water from the solution to produce a solid mixture, decomposing the solid mixture at a temperature of below 500° C. to form a pure homogeneous Li and Fe phosphate precursor, and annealing the precursor at a temperature of less than 800° C. in a reducing atmosphere to produce the LiFePO4 powder.
    Type: Application
    Filed: November 21, 2003
    Publication date: September 9, 2004
    Inventors: Calin Wurm, Mathieu Morcrette, Sylvain Gwizdala, Christian Masquelier
  • Patent number: 6773694
    Abstract: A process for synthesizing a variety of molecular sieves has been developed. The process involves taking a slurry of seed crystals and adding to it nutrients (sources) of the framework elements, e.g. aluminum and silicon in order to grow the seed crystals. The rate of addition of the nutrients is controlled such that it is substantially the same as the crystal growth rate and such that there is substantially no nucleation of new crystals. The seed crystals may be the same or different than the nutrients being added, thus allowing for a layered molecular sieve. When the crystals have reached a desired size, they are isolated by conventional techniques.
    Type: Grant
    Filed: June 6, 2002
    Date of Patent: August 10, 2004
    Assignee: UOP LLC
    Inventors: David A. Lesch, Peter K. Coughlin
  • Patent number: 6774081
    Abstract: The present invention relates to a process for preparing vanadyl pyrophosphate catalyst with improved structural characteristics for the selective oxidation of butane to maleic anhydride.
    Type: Grant
    Filed: March 20, 2003
    Date of Patent: August 10, 2004
    Assignee: Council of Scientific and Industrial Research
    Inventors: Arunabha Datta, Soumen Dasgupta, Monika Agarwal
  • Patent number: 6773688
    Abstract: Small particle size silicoaluminophosphate molecular sieves are obtained by providing the source of the silicon in the form of a basic organic solution.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: August 10, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld Mertens, Karl G. Strohmaier
  • Publication number: 20040151649
    Abstract: The invention relates to binary, ternary and quaternary lithium phosphates of general formula Li(FexM1yM2z)PO4 wherein M1 represents at least one element of the group comprising Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Be, Mg, Ca, Sr, Ba, Al, Zr, and La; M2 represents at least one element of the group comprising Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Be, Mg, Ca, Sr, Ba, Al, Zr, and La; x=between 0.5 and 1, y=between 0 and 0.5, z=between 0 and 0.5, provided that x+y+z=1, or x=0, y =1 and z=0. The said lithium phosphates can be obtained according to a method whereby precursor compounds of elements Li, Fe, M1 and/or M2 are precipitated from aqueous solutions and the precipitation product is dried in an inert gas atmosphere or a reducing atmosphere at a temperature which is between room temperature and approximately 200° C. and tempered at a temperature of between 300° C. and 1000° C.
    Type: Application
    Filed: April 7, 2004
    Publication date: August 5, 2004
    Inventors: Reinhard P. Hemmer, Giesela Arnold, Christian Vogler, Margret Wohlfahrt-Mehrens
  • Patent number: 6762146
    Abstract: A novel intercalation compound is provided, in which compound monohydric alcohol is intercalated between layers of a layered compound comprising vanadium, phosphorus and oxygen as primary components, characterized in that the monohydric alcohol is aliphatic secondary monohydric alcohol, alicyclic monohydric alcohol, or aromatic monohydric alcohol. By heating the intercalation compound, a vanadium-phosphorus mixed oxide having a BET specific surface area of at least 80 m2/g can be obtained.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: July 13, 2004
    Assignee: Tonen Chemical Corporation
    Inventors: Yuichi Kamiya, Eiichiro Nishikawa
  • Publication number: 20040126300
    Abstract: The invention provides a novel method for making lithium mixed metal materials in electrochemical cells. The lithium mixed metal materials comprise lithium and at least one other metal besides lithium. The invention involves the reaction of a metal compound, a phosphate compound, with a reducing agent to reduce the metal and form a metal phosphate. The invention also includes methods of making lithium metal oxides involving reaction of a lithium compound, a metal oxide with a reducing agent.
    Type: Application
    Filed: October 9, 2003
    Publication date: July 1, 2004
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey Swoyer
  • Publication number: 20040086784
    Abstract: The invention provides an electrochemical cell which comprises a first electrode and a second electrode which is a counter electrode to said first electrode. The first electrode comprises a phosphorous compound of the nominal general formula Li3E′aE″b(PO4)3, desirably at least one E is a metal; and preferably, Li3M′M″(PO4)3. E′ and E″ are the same or different from one another, where at least one of E′ and E″ has more than one oxidation state.
    Type: Application
    Filed: October 6, 2003
    Publication date: May 6, 2004
    Inventors: Jeremy Barker, M. Yazid Saidi
  • Publication number: 20040086445
    Abstract: Method of synthesis for a material made of particles having a core and a coating and/or being connected to each other by carbon cross-linking, the core of these particles containing at least one compound of formula LixM1−yM′y(XO4)n, in which x,y and n are numbers such as 0≦x≦2, 0≦y≦0.6 and 1≦n≦1.5, M is a transition metal, M′ is an element with fixed valency, and the synthesis is carried out by reaction and bringing into equilibrium the mixture of precursors, with a reducing gaseous atmosphere, in such a way as to bring the transition metal or metals to the desired valency level, the synthesis being carried out in the presence of a source of carbon called carbon conductor, which is subjected to pyrolysis. The materials obtained have excellent electrical conductivity as well as very improved chemical activity.
    Type: Application
    Filed: June 19, 2003
    Publication date: May 6, 2004
    Inventors: Michel Armand, Michel Gauthier, Jean-Francois Magnan, Nathalie Ravet
  • Patent number: 6730281
    Abstract: A method for carrying out solid state reactions under reducing conditions is provided. Solid state reactants include at least one inorganic metal compound and a source of reducing carbon. The reaction may be carried out in a reducing atmosphere in the presence of reducing carbon. Reducing carbon may be supplied by elemental carbon, by an organic material, or by mixtures. The organic material is one that can form decomposition products containing carbon in a form capable of acting as a reductant. The reaction proceeds without significant covalent incorporation of organic material into the reaction product. In a preferred embodiment, the solid state reactants also include an alkali metal compound. The products of the method find use in lithium ion batteries as cathode active materials. Preferred active materials include lithium-transition metal phosphates and lithium-transition metal oxides.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: May 4, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer, Ming Dong
  • Publication number: 20040072069
    Abstract: A cathode active material for a lithium secondary cell used in a cellular phone is disclosed. The cathode active material for the lithium secondary cell and the method the same having a high capacity and a long lifetime, different from LiCoO2 and LiMn2O4, Li(Ni, Co)O2, and V-system oxide that has been researched as the active material for substituting LiCoO2 are provided. The cathode active material for the lithium secondary cell in the next formula 1 is obtained by heating or chemically treating diadochite [Fe2(PO4)(SO4)(OH).6H2O] that is the mineral containing PO43−, SO42−, and OH−.
    Type: Application
    Filed: December 20, 2002
    Publication date: April 15, 2004
    Inventors: Young Sik Hong, Kwang Sun Ryu, Soon Ho Chang, Yong Joon Park, Young Gi Lee, Kwang Man Kim, Nam Gyu Park, Man Gu Kang, Xiang Lan Wu
  • Patent number: 6719955
    Abstract: The invention is directed to open-framework and microporous solids well suited for use in catalysis and ion exchange. The microporous solids are constructed by using a salt template which can be readily removed without destroying the framework of the micropore. Various microporous solids can be formed having different geometric structures depending upon the templating salt used and the concentration. Examples of two compounds include Na2Cs[Mn3(P2O7)2]Cl and K2.02Cs2.90[Cu3(P2O7)2]Cl2.92. Both compounds have 3-D (Mn,Cu)—P—O frameworks.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: April 13, 2004
    Assignee: Clemson University
    Inventors: Shiou-Jyh Hwu, Qun Huang, Mutlu Ulutagay
  • Patent number: 6716407
    Abstract: Monazite or xenotime-based blanket coatings that stiffen ceramic fabrics without causing embrittlement at temperatures of at least as high as 2400° F. are provided. Methods for making the coatings are also provided. The methods comprise the synthesis of high purity, monazite and xenotime powders with the stoichiometric ratio of metal to phosphorous of about 1:1.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: April 6, 2004
    Assignee: The Boeing Company
    Inventors: Janet B. Davis, David B. Marshall, Peter Ernest David Morgan, Kris Shigeko Oka
  • Patent number: 6716372
    Abstract: The invention provides novel lithium-mixed metal materials which, upon electrochemical interaction, release lithium ions, and are capable of reversibly cycling lithium ions. The invention provides a rechargeable lithium battery which comprises an electrode formed from the novel lithium-mixed metal materials. Methods for making the novel lithium-mixed metal materials and methods for using such lithium-mixed metal materials in electrochemical cells are also provided. The lithium-mixed metal materials comprise lithium and at least one other metal besides lithium. Preferred materials are lithium-mixed metal phosphates which contain lithium and two other metals besides lithium.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: April 6, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey Swoyer
  • Publication number: 20040052726
    Abstract: A structure directing agent is removed from a microporous solid at a temperature below the temperature that would cause the structure directing agent to decompose by cleaving the structure directing agent within the pores of the microporous solid, at a temperature below the temperature that would cause the structure directing agent to decompose, into two or more fragments and removing the fragments from the pores of the microporous solid at a temperature below the temperature that would cause the structure directing agent or its fragments to decompose.
    Type: Application
    Filed: June 12, 2003
    Publication date: March 18, 2004
    Inventors: Mark E. Davis, Hyunjoo Lee, Stacey I. Zones
  • Patent number: 6706249
    Abstract: A composite metal polybasic salt containing a trivalent metal and magnesium as metal components and having a novel crystal structure, and a method of preparing the same. The invention further deals with a composite metal polybasic salt which has anion-exchanging property, which by itself is useful as an anion-exchanger, capable of introducing anions suited for the use upon anion-exchange, and finds a wide range of applications, and a method of preparing the same. The composite metal polybasic salt has a particular chemical composition and X-ray diffraction peaks, and further has a degree of orientation (Io) of not smaller than 1.5.
    Type: Grant
    Filed: March 6, 2001
    Date of Patent: March 16, 2004
    Assignee: Mizusawa Industrial Chemicals Ltd.
    Inventors: Yoshinobu Komatsu, Hitoshi Ishida, Hiroshi Igarashi, Masami Kondo, Madoka Minagawa, Tetsu Sato, Teiji Sato
  • Patent number: 6696032
    Abstract: Small particle size SAPO-34 is obtained by using a tetraalkyl orthosilicate as the silicon source.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: February 24, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld Mertens, Karl G. Strohmaier
  • Patent number: 6685905
    Abstract: In SAPO manufacture, handling of the synthesis mixture is facilitated by providing an initial aluminium-containing aqueous slurry with an H2O:Al2O3 weight ratio of 3:1 to 8:1.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: February 3, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld M. Mertens, Brita Engels
  • Patent number: 6680278
    Abstract: The invention is directed to a method of synthesising silicoaluminophosphate molecular sieves using synthesis templates that contain at least one dimethylamino moiety. The use of dimethylamino moiety containing templates results in good quality SAPO molecular sieves of CHA framework type.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: January 20, 2004
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Guang Cao, Matu J. Shah
  • Publication number: 20040005265
    Abstract: A compound comprising a composition Ax(M′1-aM″a)y(XD4)z, Ax(M′1-aM″a)y(DXD4)z, or Ax(M′1-aM″a)y(X2D7)z, and have values such that x, plus y(1-a) times a formal valence or valences of M′, plus ya times a formal valence or valence of M″, is equal to z times a formal valence of the XD4, X2D7, or DXD4 group; or a compound comprising a composition (A1-aM″a)xM′y(XD4)z, (A1-aM″a)xM′y(DXD4)z (A1-aM″a)xM′y(X2D7)z and have values such that (1-a)x plus the quantity ax times the formal valence or valences of M″ plus y times the formal valence or valences of M′ is equal to z times the formal valence of the XD4, X2D7 or DXD4 group.
    Type: Application
    Filed: December 23, 2002
    Publication date: January 8, 2004
    Applicant: Massachusetts Institute of Technology
    Inventors: Yet-Ming Chiang, Sung-Yoon Chung, Jason T. Bloking, Anna M. Andersson
  • Publication number: 20030231999
    Abstract: The invention is directed to a method for preparing microporous aluminophosphate or silicoaluminophosphate molecular sieves having the CHA framework type, the process comprising the steps of a) forming a reaction mixture comprising a source of aluminum, a source of phosphorus, optionally a source of silicon, at least one source of fluoride ions and at least one template containing one or more N,N-dimethylamino moieties, b) inducing crystallization of aluminophosphate and/or silicoaluminophosphate molecular sieve from the reaction mixture; c) recovering aluminophosphate and/or silicoaluminophosphate molecular sieve from the reaction mixture. The invention also relates to the molecular sieves obtained by this method and to molecular sieve catalyst compositions containing these molecular sieves.
    Type: Application
    Filed: June 12, 2002
    Publication date: December 18, 2003
    Inventors: Guang Cao, Matu J. Shah, Karl G. Strohmaier, Richard B. Hall
  • Patent number: 6656447
    Abstract: Applicants have developed a continuous process for synthesizing various molecular sieves. The process enables one to control both the particle size and particle size distribution. Any of the molecular sieves represented by the empirical formula on an anhydrous basis: rR2O:(SixAlyPz)O2, where R is at least one structure directing agent, “r”, “x”, “y” and “z” are the mole fractions of R, Si, Al and P respectively, can be prepared using this process. The process involves continuously adding separate streams comprising reactive sources of at least each framework element into a continuous crystallization reactor. Either interstage backmixing is introduced or the number of stages is adjusted in order to control particle size.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: December 2, 2003
    Assignee: UOP LLC
    Inventors: Medhat K. Tannous, Sonu Marchioretto, Lyle E. Monson