Alkaline Earth Metal Containing (mg, Ca, Sr, Or Ba) Patents (Class 423/331)
  • Publication number: 20120127633
    Abstract: A metal electrolytic capacitor capable of quickly absorbing and immobilizing a belching vapor of a driving electrolyte and widely reducing leakage when an explosion-proof valve operates. An aluminum electrolytic capacitor body is configured by housing a capacitor element in a cylindrical aluminum case, a pair of leads extend from the capacitor body, an explosion-proof valve is formed on a top panel portion of the metal case, a cylindrical cap as a casing is attached from above to the capacitor body, a plurality of small openings are formed on a top panel portion (bottom portion) of the cap, and an absorbent or a mixture of an absorbent and a water molecular compound wrapped in a permeable fiber material, such as unwoven fabric and filter paper, is placed in a space between the cap and the top panel portion of the capacitor body.
    Type: Application
    Filed: June 2, 2010
    Publication date: May 24, 2012
    Inventors: Koichi Mori, Mitsuru Nozue, Minoru Yagi
  • Patent number: 8163828
    Abstract: The invention concerns a process for preparing an additive for polymers, the additive itself and the use of the additive for improving the surface properties of polymers.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: April 24, 2012
    Assignee: Sachtleben Chemie GmbH
    Inventors: Peter Ebbinghaus, Bernhard Becker, Jens Kohnert, Jörg Hocken, Ralf Schellen, Bernd-Michael Klein, Friedrich Müller, Sonja Grothe, Bernd Rohe
  • Publication number: 20120094049
    Abstract: The use of talc as a fire performance modifier in polymer compositions is disclosed, in which the talc is present in an amount less than 30 percent by weight of the total weight of the polymer composition, and also in amounts ranging from 5 to 30 percent by weight of the polymer composition. In such polymer compositions, the impact performance of the composition is not compromised, the composition, for example, being useful in manufacture of plastic and polymer based pallets for storage and for warehouse use. Talc is disclosed to act as a fire performance modifier and char agent at concentrations as low as 5 weight percent in polymer compositions by modifying the Heat Release Rate shown by, first, lowering the Peak Heat Release, and second, by shortening the time period to reach the Peak Heat Release compared to the virgin polymer resin.
    Type: Application
    Filed: October 15, 2010
    Publication date: April 19, 2012
    Inventor: James M. Killough
  • Patent number: 8142752
    Abstract: The method which is the subject of protection is characteristic by the fact that firstly is made the suspension consisting of 10 to 20 mass % of mineral talc and 80 to 90 mass % of water; resulting suspension is homogenized and thereafter is heated to the temperature 50° to 70° C. To heated suspension is then added 37% hydrochloric acid in the amount of 1 to 6 mass % under continuous stirring. After reaching pH 3 to 5 and increasing the temperature up to 85° C., to the suspension is then added concentrated sulphuric acid in the amount of 1 to 5 mass %. The suspension is further maintained at the temperature up to 90° C., then it is chilled to the ambient temperature and thereafter is separated the sediment which is finally dried at the temperature 140° to 160° C. after washing with water and reaching pH 5 to 6.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: March 27, 2012
    Inventors: Ivan Kovanda, Leo Benkovsky, Karol Pobis, Jiri Nemec, Jana Ondrasikova
  • Publication number: 20120055704
    Abstract: Embodiments of the present disclosure set forth a sintered talc powder. The sintered talc powder comprising a first X-ray diffraction peak from about 29° to about 30° and having a first intensity and a second X-ray diffraction peak from about 25° to about 27° and having a second intensity, wherein the first intensity is greater than the second intensity.
    Type: Application
    Filed: September 6, 2010
    Publication date: March 8, 2012
    Applicant: TAIWAN UNION TECHNOLOGY CORPORATION
    Inventors: Tsung Fan TSENG, Tsung Hsein LIN, Hsien Te CHEN, Hsuan Hao HSU, Chih Wei LIAO
  • Patent number: 8088349
    Abstract: Disclosed is a clean method for preparing layered double hydroxides (LDHs), in which hydroxides of different metals are used as starting materials for production of LDHs by atom-economical reactions. The atom efficiency of the reaction is 100% in each case because all the atoms of the reactants are converted into the target product since only M2+(OH)2, M3+(OH)3, and CO2 or HnAn? are used, without any NaOH or other materials. Since there is no by-product, filtration or washing process is unnecessary. The consequent reduction in water consumption is also beneficial to the environment.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: January 3, 2012
    Assignee: Beijing University of Chemical Technology
    Inventors: Xue Duan, Dianqing Li, Zhi Lv, Yanjun Lin, Xiangyu Xu
  • Patent number: 8084384
    Abstract: This invention is directed to a synthesis process for preparing magnesium aluminosilicate clays and to the products of said process. Briefly, a silicon component, an aluminum component, and a magnesium component are combined, under aqueous conditions and at an acidic pH, to form a first reaction mixture and subsequently the pH of the first reaction mixture is adjusted to greater than 7.5 to form a second reaction mixture. The second reaction mixture is allowed to react under conditions sufficient to form the magnesium aluminosilicate clay of the present invention. The invention is also directed to catalyst compositions comprising the magnesium aluminosilicate clays synthesized according to the process of the invention. The resulting magnesium aluminosilicate clay can be used as a catalyst or as a component in catalyst compositions.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: December 27, 2011
    Assignee: Chevron U.S.A. Inc.
    Inventors: Alexander E. Kuperman, Theodorus Maesen, Dennis Dykstra, Ibrahim J. Uckung
  • Patent number: 8029817
    Abstract: The invention is a silicon substituted oxyapatite compound (Si-OAp) for use as a synthetic bone biomaterial either used alone or in biomaterial compositions. The silicon substituted oxyapatite compound has the formula Ca5(PO4)3-x(SiO4)xO(1-x)/2, where 0<x<1.0.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: October 4, 2011
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Michael Sayer, Joel Reid, Timothy J. N. Smith, Jason Hendry
  • Patent number: 8025726
    Abstract: A silica containing composition is disclosed. The composition comprises a compound having the following formula: (SiO2)x(OH)yMzSaF: wherein M is at least one of the following metal or metalloid cations: boron, magnesium, aluminum, calcium, titanium, vanadium, manganese, iron, cobalt, nickel, copper, zinc, zirconium, molybdenum, palladium, silver, cadmium, tin, platinum, gold, and bismuth; wherein S is a sulfur-based species selected from at least one of the following: sulfide salts, dithiocarbamates, polymer-based dithiocarbamates, and polysulfide salts; wherein F optionally exists and said F is at least one of the following: a functionalized organosilane, a sulfur-containing organosilane, an amine-containing organosilane, and an alkyl-containing organosilane at a surface area coverage of 0.01-100%; and wherein the molar ratio of y/x is equal to 0.01-0.5, the molar ratio of x/z is equal to 3-300, and the molar ratio of a/z is 1-5.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: September 27, 2011
    Assignee: Nalco Company
    Inventors: Bruce A. Keiser, Nicholas S. Ergang, Richard Mimna
  • Patent number: 7959886
    Abstract: A new mixed layer silicate useful for industrial materials is provided. The mixed layer silicate is obtained by a specific synthesis method. The mixed layer silicate includes non-swelling 2:1 type layered silicate layers having a layer charge of 0 or non-swelling 2:1 type layered silicate layers having a layer charge of 0.6 to 1 and including potassium ions between layers and swelling 2:1 type layered silicate layers having a layer charge of 0.2 to 0.6 and including exchangeable cations between layers. The mixed layer silicate has a structure in which individual layers are laminated in a regular order in a lamination direction (regularly mixed layer structure).
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: June 14, 2011
    Assignee: National Institute for Materials Science
    Inventors: Hirohisa Yamada, Kenji Tamura, Shingo Yokoyama
  • Publication number: 20110111005
    Abstract: The present invention relates to a biocompatible ceramic material comprising Sr, Mg or Ba doped Hardystonite (Ca2ZnSi2O7), and a method for its synthetic preparation. The present invention also relates to an implantable medical device comprising biocompatible doped Hardystonite, and a method for its production. The present invention further relates to a method for improving the long term stability of an implantable medical device and an implantable drug delivery device comprising doped Hardystonite. Further, the present invention relates to the use of comprising biocompatible doped Hardystonite in the regeneration or resurfacing of tissue.
    Type: Application
    Filed: July 10, 2009
    Publication date: May 12, 2011
    Applicant: The University of Sydney
    Inventors: Hala Zreiqat, Chengtie Wu, Colin Dunstan
  • Publication number: 20110097255
    Abstract: The present invention is directed to a method for controlling the d50 particle size and the specific surface area SSA of talc particles by the steps of a) providing an aqueous suspension of coarse talc, b) breaking down the talc particles in a homogeniser, delaminating the talc particles in a ball mill, the particles obtainable by this method and their use.
    Type: Application
    Filed: May 15, 2008
    Publication date: April 28, 2011
    Inventors: Joachim Schoelkopf, Daniel Gantenbein, Patrick A.C. Gane
  • Patent number: 7932203
    Abstract: A method for producing an oil-binding agent of granular open-porous structure with a silicate ceramic matrix by using recovered paper material and clay. The method is characterized in that, in each case based on the entire raw material, 35 to 60 wt.-% sewage sludge with a water content of between 70 and 85 wt.-%, 25 to 55 wt.-% recovered paper material with a water content of between 35 and 55 wt.-%, 10 to 25 wt.-% clay and optionally 1 to 3 wt.-% zeolite, 1 to 2 wt.-% quicklime and/or up to 3 wt. % fly ash are mixed to a homogeneous mixture. The raw material thus obtained is subsequently processed in order to form particles having an average diameter of 4 to 6 mm. The particles are then dried and subsequently burnt at 950 to 1050° C. The oil-binding agents produced according to said method have a bulk density of between 0.4 and 0.75 kg/1 and a oil-binding capability of 0.7 to 1.0 1 oil per oil-binder.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: April 26, 2011
    Assignee: Commerzialbank Mattersburg im Burgenland AG
    Inventor: Franz Josef Philipp
  • Patent number: 7910084
    Abstract: A compound oxide manufacturing method includes: dispersing micelles, in each of which an aqueous phase is formed, in an oil phase; producing primary particles of a precursor of compound oxide in the aqueous phases in the micelles; synthesizing secondary particles by causing the primary particles to aggregate; and causing the secondary particles to aggregate by breaking the dispersion state of the micelles, or by causing the micelles to coalesce. In particular, polarization is produced in each of the micelles with the use of a cation having an ionic radius larger than that of a metal ion at least when the secondary particles are synthesized in the micelles.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: March 22, 2011
    Assignee: Toyota Jidoshi Kabushiki Kaisha
    Inventors: Shinichi Takeshima, Akio Koyama
  • Publication number: 20110052465
    Abstract: The invention provides a process for the activation of a magnesium or calcium sheet silicate hydroxide mineral comprising: (a) providing a bed of magnesium or calcium sheet silicate hydroxide mineral particles; (b) supplying to such bed a fluid fuel and molecular oxygen-comprising gas; and (c) allowing the fuel and molecular oxygen to react to obtain activated magnesium or calcium sheet silicate hydroxide mineral particles and a flue gas. In another aspect the invention provides an activated magnesium or calcium sheet silicate hydroxide mineral and a process for sequestration of carbon dioxide by mineral carbonation.
    Type: Application
    Filed: January 21, 2009
    Publication date: March 3, 2011
    Inventor: Harold Boerrigter
  • Patent number: 7879303
    Abstract: Described is a method for the production of metal salts, wherein the cationic metal is preferably selected from Group I to IV metals and mixtures thereof and the anionic group is selected from phosphates, silicates, sulfates, carbonates, hydroxides, fluorides and mixtures thereof, and wherein said method comprises forming a mixture of at least one metal source that is a metal carboxylate with a mean carbon value per carboxylate group of at least 3 and at least one anion source into droplets and oxiding said droplets in a high temperature environment, preferably a flame. This method is especially suited for the production of calcium phosphate biomaterials such as hydroxyapatite (HAp,Cal0(P04)6(OH)2) and tricalcium phosphate (TCP,Ca3(P04)2) that exhibit excellent biocompatibility and osteoconductivity and therefore are widely used for reparation of bony or periodontal defects, coating of metallic implants and bone space fillers.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: February 1, 2011
    Assignee: Eidgenossische Technische Hochschule Zurich
    Inventors: Wendelin Jan Stark, Sotiris-Emmanuel Pratsinis, Marek Maciejewski, Stefan Fridolin Loher, Alfons Baiker
  • Publication number: 20110008234
    Abstract: High temperature fusion of olivine to produce forsterite in the presence of a reducing agent such as carbon can produce improved refractories when in addition to MgO additional, particular oxidation and/or oxidative reaction environments beyond the use of Carbon are employed.
    Type: Application
    Filed: February 25, 2009
    Publication date: January 13, 2011
    Inventors: Dale F. DeSanto, Robert A. Pattillo
  • Patent number: 7867471
    Abstract: A process of producing a ceramic powder including providing a plurality of precursor materials in solution, wherein each of the plurality of precursor materials in solution further comprises at least one constituent ionic species of a ceramic powder, combining the plurality of precursor materials in solution with an onium dicarboxylate precipitant solution to cause co-precipitation of the ceramic powder precursor in a combined solution; and separating the ceramic powder precursor from the combined solution. The process may further include calcining the ceramic powder precursor.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: January 11, 2011
    Assignee: SACHEM, Inc.
    Inventor: Wilfred Wayne Wilson
  • Patent number: 7838460
    Abstract: A nanoporous metal oxide material comprising two or more metal oxides, wherein the nanoporous metal oxide material has ceria content of 10 to 60 weight %, zirconia content of 20 to 90 weight %, and alumina content of 70 weight % or less, and has nanopores whose diameters are 10 nm or less, and the metal oxides are homogeneously dispersed in a wall constituting the nanopores.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: November 23, 2010
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Takashi Shimazu, Ryusuke Tsuji, Hideo Sobukawa, Yoshiki Seno
  • Publication number: 20100282079
    Abstract: The invention provides a process for the activation of a magnesium or calcium sheet silicate hydroxide mineral comprising: (a) preheating magnesium or calcium sheet silicate hydroxide mineral particles to obtain preheated silicate hydroxide mineral particles; (b) activating the preheated silicate hydroxide mineral particles at elevated temperature to obtain at least hot activated mineral particles; and (c) cooling the hot activated mineral particles, wherein energy released during cooling in step (c) is used for preheating the magnesium or calcium sheet silicate hydroxide mineral particles in step (a) by heat-integration. The invention further provides an activated magnesium or calcium sheet silicate hydroxide mineral and a process for sequestration of carbon dioxide.
    Type: Application
    Filed: May 16, 2008
    Publication date: November 11, 2010
    Inventor: Harold Boerrigter
  • Patent number: 7824642
    Abstract: A forsterite powder with superior characteristics which can be sintered at a relatively low temperature can be economically produced, when a magnesium source, a silicon source, and copper particles are mixed to prepare a mixed powder containing 300 to 2,000 ppm by weight of the copper particles, and the mixed powder is fired. The magnesium source used is preferably Mg(OH)2, and the silicon source used is preferably SiO2. A polycrystalline forsterite powder is preferably produced. The magnesium source, the silicon source, and the copper particles can be mixed in the presence of a solvent to prepare the mixed powder. The forsterite powder preferably contains 300 to 2,000 ppm by weight of copper, has a particle size of 0.20 to 0.40 ?m and has a crystal size of 0.034 to 0.040 ?m.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: November 2, 2010
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoichi Moriya, Naoya Mori
  • Publication number: 20100247414
    Abstract: The crude oil reserves have a calculable time limit. Starting materials containing silicon dioxide are preferably used as raw materials.
    Type: Application
    Filed: December 7, 2007
    Publication date: September 30, 2010
    Applicant: SILICON FIRE AG
    Inventor: Florian Krass
  • Patent number: 7794625
    Abstract: A method for preparing a composition including mineral particles, that is swelling TOT-TOT interlayer particles, formed by interlayering between: at least one non-swelling mineral phase formed by a stack of elementary laminae of the phyllogermanosilicate 2/1 type and of formula —(SixGe1?x) 4M3O10(OH)2—, and at least one swelling mineral phase formed by a stack of elementary laminae of the phyllogermanosilicate 2/1 type and at least one interlaminar space between two consecutive elementary laminae, the swelling mineral phase being of formula —(SixGe1?x)4M3??O10(OH)2, (M2+)??.nH2O. The composition is prepared by subjecting a gel containing silicon, germanium and metal, of chemical formula —(SixGe1?x)4M3O11,nH2O—, in the liquid state to a hydrothermal treatment which is carried out over a defined period of time and at a temperature of between 150° C. and 300° C.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: September 14, 2010
    Assignees: Luzenac Europe SAS, Centre National de la Recherche Scientifique (C.N.R.S)
    Inventors: Francois Martin, Jocelyne Ferret, Cederic Lebre, Sabine Petit, Olivier Grauby, Jean-Pierre Bonino, Didier Arseguel, Alain Decarreau, Eric Ferrage
  • Patent number: 7785555
    Abstract: Methods of converting olivine to lizardite without formation of chrysotile or brucite are disclosed. The methods comprise heating a mixture of olivine, silica, water, and a caustic agent. The addition of silica allows for complete conversion of the olivine to lizardite through a more thermodynamically favorable reaction. The olivine and silica are preferably of small particle size to increase reactivity.
    Type: Grant
    Filed: April 9, 2008
    Date of Patent: August 31, 2010
    Assignee: Unimin Corporation
    Inventors: David D. Kragten, Chris Capobianco
  • Publication number: 20100214763
    Abstract: A fluorescent substance contains M1 (M1 is: barium; barium and strontium; or barium and calcium), europium, magnesium, manganese, and silicon as essential components. The amount of the europium is 0.14 mol or smaller per mol of the silicon, and the amount of the manganese is 0.07 mol or smaller per mol of the silicon. The main crystals are a solid solution of europium and manganese in M13MgSi2O8. When X-ray diffraction intensities for the M13MgSi2O8 crystals, M12MgSi2O7 crystals, M12SiO4 crystals, and M1MgSiO4 crystals are expressed by A, B, C, and D, respectively, then B/(A+B+C+D) is 0.1 or less, C/(A+B+C+D) is 0.1 or less, and D/(A+B+C+D) is 0.26 or less.
    Type: Application
    Filed: December 21, 2007
    Publication date: August 26, 2010
    Applicant: KYOCERA CORPORATION
    Inventors: Wataru Katou, Naoki Koshitani
  • Patent number: 7771686
    Abstract: An inorganic polymer which comprises one or more organic functional groups and which has the following empirical formula: Rm[M2O]x[Al2O3]y[SiO2]zXqPH2O, in which: R represents an organic functional group; M is an alkali metal; X is selected from chlorine and fluorine; m is >0; q is ?0; x is from 1 to 1.6; y is from 1.0; x/y is from 1.0 to 1.6; z is from 3 to 65; z/y is ?1.0; and P is from 3 to 5.
    Type: Grant
    Filed: December 2, 2004
    Date of Patent: August 10, 2010
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Kwesi Kurentsir Sagoe-crentsil, Luqian Weng, Alan Harry Taylor
  • Publication number: 20100175588
    Abstract: Cement compositions and methods for making cement compositions are provided. The cement compositions can comprise at least one oxide having a particle size of less than about 600 nm.
    Type: Application
    Filed: February 26, 2008
    Publication date: July 15, 2010
    Applicants: TATA CHEMICALS LIMITED, NANODYNAMICS, INC.
    Inventors: Richard J. Schorr, Suvankar Sengupta, Richard L. Helferich, Gary M. Gordon, Debabrata Rautaray
  • Publication number: 20100170705
    Abstract: A forsterite powder with superior characteristics which can be sintered at a relatively low temperature can be economically produced, when a magnesium source, a silicon source, and copper particles are mixed to prepare a mixed powder containing 300 to 2,000 ppm by weight of the copper particles, and the mixed powder is fired. The magnesium source used is preferably Mg(OH)2, and the silicon source used is preferably SiO2. A polycrystalline forsterite powder is preferably produced. The magnesium source, the silicon source, and the copper particles can be mixed in the presence of a solvent to prepare the mixed powder. The forsterite powder preferably contains 300 to 2,000 ppm by weight of copper, has a particle size of 0.20 to 0.40 ?m and has a crystal size of 0.034 to 0.040 ?m.
    Type: Application
    Filed: March 8, 2010
    Publication date: July 8, 2010
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Yoichi MORIYA, Naoya Mori
  • Patent number: 7736611
    Abstract: A method of producing a material including agglomerated particles of precipitated silica, including preparing a solution of at least two metal salts (Me), wherein the metal ions are divalent or polyvalent. A solution of alkali metal (M) silicate having a molar ratio SiO2/M2O of 1-4 is prepared. The solutions are mixed and the mixture stirred, allowing a coagulum to immediately form. The coagulum is rinsed, collected, dewatered, impregnated and processed to provide a material having a dry matter content of >75%, preferably >97%. A material obtainable by the process is also provided.
    Type: Grant
    Filed: December 23, 2005
    Date of Patent: June 15, 2010
    Assignee: Svenska Aerogel AB
    Inventors: Sven-Peter Norberg, Jörgen Abrahamsson, Lars Gösta Lindahl
  • Publication number: 20100135886
    Abstract: The present invention is directed to a process for the treatment of talc, comprising the steps of (a) providing a talc having a first brightness value B1, measured according to ISO 2469, and forming a suspension of the talc in a liquid phase, the liquid phase of the suspension comprising at least one organic solvent, (b) delaminating and/or reducing the weight median particle size d50 of the talc, wherein the treated talc has a brightness value B2, measured according to ISO 2469, and B2?B1.
    Type: Application
    Filed: May 27, 2008
    Publication date: June 3, 2010
    Inventors: Patrick A. C. Gane, Daniel Gantenbein, Joachim Schoelkopf
  • Patent number: 7714156
    Abstract: Nanolayered layered silicate materials of octahedrally arranged units with divalent metal ions at centers of the units covalently linked above and below to tetrahedrally arranged oxygen and hydroxyl units with silicon atoms. The silicate materials contain silanol groups which are reactive to form derivative compositions useful for water purification to remove heavy meal cations.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: May 11, 2010
    Assignee: Board of Trustees of Michigan State University
    Inventors: Thomas J. Pinnavaia, Mihai Polverejan
  • Publication number: 20100111803
    Abstract: Disclosed herein is a spinel article. The article comprises a spinel material, wherein the spinel material has a monomodal grain size distribution with average grain sizes of less than or equal to about 15 micrometers, and a biaxial flexural strength of greater than or equal to about 300 megapascals when measured by a ring-on-ring flexural test as per ASTM Standard C1499-08. Disclosed herein too is a spinel article manufactured by a method comprising calcining a spinel powder; milling the powder in a milling medium; granulating the powder; screening the powder to a mesh size of about 40 to about 200 mesh; pressing the powder to form an article; burning out organics from the article; sintering the article; and hot isostatically pressing the article.
    Type: Application
    Filed: November 6, 2008
    Publication date: May 6, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Milivoj Konstantin Brun, Anteneh Kebbede, Sean Michael Sweeney, Timothy James Yosenick
  • Patent number: 7704477
    Abstract: A forsterite powder with superior characteristics which can be sintered at a relatively low temperature can be economically produced, when a magnesium source, a silicon source, and copper particles are mixed to prepare a mixed powder containing 300 to 2,000 ppm by weight of the copper particles, and the mixed powder is fired. The magnesium source used is preferably Mg(OH)2, and the silicon source used is preferably SiO2. A polycrystalline forsterite powder is preferably produced. The magnesium source, the silicon source, and the copper particles can be mixed in the presence of a solvent to prepare the mixed powder. The forsterite powder preferably contains 300 to 2,000 ppm by weight of copper, has a particle size of 0.20 to 0.40 ?m and has a crystal size of 0.034 to 0.040 ?m.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: April 27, 2010
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Yoichi Moriya, Naoya Mori
  • Publication number: 20100098780
    Abstract: The present invention has an object to provide a flaky particulate material giving skin an excellent smoothness, which is free from whitening problem upon use thereof owing to its high transparency. The present invention also has another object to provide a cosmetic composition containing the flaky particulate material. The present invention relates to flaky particulate material, which has an average coefficient of friction is not more than 0.50, and a total light transmittance is not less than 85%. A particle in the flaky particulate material comprises a substrate particle made of one material selected from the group consisting of mica, a synthetic mica, sericite, talc, barium sulfate and aluminum oxide. The present invention provides a flaky particulate material that gives skin excellent smoothness, a natural tone, and a matt appearance. The flaky particulate material of the present invention gives a cosmetic composition which provides great comfort of use, and an excellent appearance.
    Type: Application
    Filed: February 13, 2007
    Publication date: April 22, 2010
    Applicant: SAKAI CHEMICAL INDUSTRY CO., LTD.
    Inventors: Keiji Ono, Takuro Ashida, Hiroyuki Izumikawa, Hirobumi Yoshida
  • Publication number: 20100098614
    Abstract: A process for synthesizing clay particles comprising the step of heating a reactant solution mixture of metal salt and a metal silicate using a radiation source under conditions to form said synthetic clay particles.
    Type: Application
    Filed: March 14, 2008
    Publication date: April 22, 2010
    Applicant: SHAYONANO SINGAPORE PTE LTD
    Inventor: Mahesh Dahyabhai Patel
  • Patent number: 7700061
    Abstract: The present invention provides a heat-resistant material for a low-melting metal casting machine, which comprises calcium silicate and a fluoride.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: April 20, 2010
    Assignee: Nichias Corporation
    Inventor: Akifumi Sakamoto
  • Patent number: 7682596
    Abstract: A powdery compound selected from the group consisting of Li4Ti5O12 and its derivatives selected from the group consisting of Li4?xMxTi5O12 and Li4Ti5?yNyO12 (x and y between 0 and 0.2, M and N selected from the group consisting of Na, K, Mg, Nb, Al, Ni , Co, Zr, Cr, Mn, Fe, Cu, Zn, Si and Mo), used as active material of an electrode for a lithium storage battery, consists of unitary particles having a diameter not greater than 1 ?m and 10-50% volume agglomerated particles having a diameter not greater than 100 ?m wherein the agglomerated particles formed by agglomeration of said unitary particles. The method for producing such a compound preferably consists in grinding the synthesized oxide for a duration comprised between 24 hours and 48 hours in a planetary mill and in then performing thermal treatment at a temperature comprised between 450° C. and 600° C.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: March 23, 2010
    Assignee: Commissariat à l'Energie Atomique
    Inventors: Carole Bourbon, Séverine Jouanneau, Frédéric Le Cras, Hélène Lignier
  • Patent number: 7670579
    Abstract: Nano-particles of calcium and phosphorous compounds are made in a highly pure generally amorphous state by spray drying a weak acid solution of said compound and evaporating the liquid from the atomized spray in a heated column followed by collection of the precipitated particles. Hydroxyapatite (HA) particles formed by such apparatus and methods are examples of particle manufacture useful in bone and dental therapies. Dual nozzle spraying techniques are utilized for generally insoluble compounds.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: March 2, 2010
    Assignee: American Dental Association Foundation
    Inventors: Laurence C. Chow, Limin Sun
  • Patent number: 7670585
    Abstract: Provided is a method for preparing an electroconductive mayenite type compound with good properties readily and stably at low cost without need for expensive facilities, a reaction at high temperature and for a long period of time, or complicated control of reaction. A method for preparing an electroconductive mayenite type compound comprises a step of subjecting a precursor to heat treatment, wherein the precursor contains Ca and/or Sr, and Al, a molar ratio of (a total of CaO and SrO:Al2O3) is from (12.6:6.4) to (11.7:7.3) as calculated as oxides, a total content of CaO, SrO and Al2O3 in the precursor is at least 50 mol %, and the precursor is a vitreous or crystalline material; and the method comprises a step of mixing the precursor with a reducing agent and performing the heat treatment of holding the mixture at 600-1,415° C. in an inert gas or vacuum atmosphere with an oxygen partial pressure of at most 10 Pa.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: March 2, 2010
    Assignees: Asahi Glass Company, Limited, Tokyo Institute of Technology
    Inventors: Hideo Hosono, Katsuro Hayashi, Sung Wng Kim, Masahiro Hirano, Satoru Narushima, Setsuro Ito
  • Patent number: 7662354
    Abstract: The present invention relates to use of an aluminosilicate particle for deodorization, wherein the aluminosilicate particle has the composition of: s M(1)xOy t M(2)2O.Al2O3 u SiO2 v RmQn w H2O, wherein M(1) is one or more members selected from the group consisting of Ag, Cu, Zn and Fe, M(2) is one or more members selected from the group consisting of Na, K and H, R is one or more members selected from the group consisting of Na, K, Ca and Mg, Q is one or more members selected from the group consisting of CO3, SO4, NO3, and Cl, s satisfies 0<s?3, and t satisfies 0?t?3, with proviso that s+t is from 0.5 to 3, and u satisfies 0.5?u?6, v satisfies 0<v?2, w satisfies w?0, x satisfies 1?x?2, y satisfies 1?y?3, m satisfies 1?m?2, and n satisfies 1?n?3, and wherein the aluminosilicate particle has a specific surface area of 1 m2/g or more and less than 70 m2/g.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: February 16, 2010
    Assignee: Kao Corporation
    Inventor: Kazuo Oki
  • Publication number: 20100034720
    Abstract: The method which is the subject of protection is characteristic by the fact that firstly is made the suspension consisting of 10 to 20 mass % of mineral talc and 80 to 90 mass % of water; resulting suspension is homogenized and thereafter is heated to the temperature 50° to 70° C. To heated suspension is then added 37% hydrochloric acid in the amount of 1 to 6 mass % under continuous stirring. After reaching pH 3 to 5 and increasing the temperature up to 85° C., to the suspension is then added concentrated sulphuric acid in the amount of 1 to 5 mass %. The suspension is further maintained at the temperature up to 90° C., then it is chilled to the ambient temperature and thereafter is separated the sediment which is finally dried at the temperature 140° to 160° C. after washing with water and reaching pH 5 to 6.
    Type: Application
    Filed: February 26, 2008
    Publication date: February 11, 2010
    Inventors: Ivan Kovanda, Leo Benkovsky, Karol Pobis, Jiri Nemec, Jana Ondrasikova
  • Patent number: 7655207
    Abstract: An aluminum complex hydroxide salt having Al oxide octahedral layers and a divalent anion among the octahedral layers, wherein an aluminosilicate anion expressed by the following general formula (1), [NapAlqSirOz]2???(1) wherein p, q, r and z are positive numbers satisfying, 5?z?20, z=(p/2)+(3q/2)+2r+1, 0<p/q<1, 0.01?q/r?1 is, at least, contained as the divalent anion. The aluminum complex hydroxide salt can be favorably used as a compounding agent for resins, and exhibits excellent heat retaining property as well as excellent transparency particularly when it is mixed as a heat retaining agent into films for agricultural use.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: February 2, 2010
    Assignee: Mizusawa Chemicals, Ltd.
    Inventor: Madoka Minagawa
  • Patent number: 7611815
    Abstract: An external additive for a toner for electrophotography which contains oxide fine particles which contain silicon, in which the oxide fine particles have a primary particle diameter of 30 nm to 300 nm in number average, a standard deviation ? of a particle size distribution of the primary particle diameter satisfies a relation of: R/4???R, in which the R expresses the primary particle diameter, the oxide fine particles are substantially spherical having a circularity SF1 defined as equation (1) of 100 to 130 and a circularity SF2 defined as equation (2) of 100 to 125; SF1=(L2/A)×(?/4)×100??equation (1) SF2=(P2/A)×(1/4?)×100??equation (2), in the equations, “L” expresses the absolute maximum length of the oxide fine particles; “A” expresses a projected area of the oxide fine particles; and “P” expresses a maximum perimeter of the oxide fine particles.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: November 3, 2009
    Assignee: Ricoh Company, Ltd.
    Inventors: Hideki Sugiura, Satoshi Mochizuki, Kazuhiko Umemura, Shinya Nakayama, Yasuo Asahina
  • Patent number: 7605110
    Abstract: A ceramic body, a ceramic catalyst body, a ceramic catalyst body and related manufacturing methods are disclosed wherein a cordierite porous base material has a surface, formed with acicular particles made of a component different from that of cordierite porous base material, which has an increased specific surface area with high resistance to a sintering effect. The ceramic body is manufactured by preparing a slurry containing an acicular particle source material, preparing a porous base material, applying the slurry onto a surface of the porous base material and firing the porous base material, whose surface is coated with the slurry, to cause acicular particles to develop on the surface of the porous base material. A part of or a whole of surfaces of the acicular particles is coated with a constituent element different from that of the acicular particles.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: October 20, 2009
    Assignees: Denso Corporation, Nippon Soken, Inc.
    Inventors: Keiichi Yamada, Kazuhiko Koike, Katsumi Yoshida, Hideki Kita, Naoki Kondo, Hideki Hyuga
  • Patent number: 7601318
    Abstract: A method for the synthesis of compounds of the formula C—LixM1?yM?y(XO4)n, where C represents carbon cross-linked with the compound LixM1?yM?y(XO4)n, in which x, y and n are numbers such as 0?x?2, 0?y?0.6, and 1?n?1.5, M is a transition metal or a mixture of transition metals from the first period of the periodic table, M? is an element with fixed valency selected among Mg2+, Ca2+, Al3+, Zn2+ or a combination of these same elements and X is chosen among S, P and Si, by bringing into equilibrium, in the required proportions, the mixture of precursors, with a gaseous atmosphere, the synthesis taking place by reaction and bringing into equilibrium, in the required proportions, the mixture of the precursors, the procedure comprising at least one pyrolysis step of the carbon source compound in such a way as to obtain a compound in which the electronic conductivity measured on a sample of powder compressed at a pressure of 3750 Kg·cm?2 is greater than 10?8 S·cm?1.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: October 13, 2009
    Assignees: Hydro-Quebec, CNRS, Universite de Montreal
    Inventors: Michel Armand, Michel Gauthier, Jean-Francois Magnan, Nathalie Ravet
  • Publication number: 20090252963
    Abstract: The invention relates to a method for preparing a synthetic talc composition. According to said method, a kerolite composition is subjected to an anhydrous thermal treatment carried out at a pressure lower than 5 bar, from over a few hours up to over a few days, at a treatment temperature higher than 300° C. The invention also relates to a synthetic talc composition prepared in this way, the synthetic talc particles of the composition being exclusively of chemical formula —(Si4)Mg3O10(OH)2— and identifiable, during X-ray diffraction, by the presence of a characteristic diffraction peak located at a distance of between 9.40-9.68 and corresponding to a plane (001). Said synthetic talc particles also have a thermally stable crystalline structure of stacked laminae, which is very similar to that of a natural talc and has a particle size smaller than approximately ten micrometers.
    Type: Application
    Filed: July 13, 2008
    Publication date: October 8, 2009
    Applicant: LUZENAC EUROPE SAS
    Inventors: Francois Martin, Jocelyne Ferret, Cedric Lebre, Sabine Petit, Olivier Grauby, Jean-Pierre Bonino, Didier Arseguel, Alain Decarreau, Eric Ferrage
  • Patent number: 7598194
    Abstract: It is aimed at providing an oxynitride powder, which is suitable for usage as a phosphor, is free from coloration due to contamination of impurities, and mainly includes a fine ?-sialon powder. An oxynitride powder is produced by applying a heat treatment in a reducing and nitriding atmosphere, to a precursor compound including at least constituent elements M, Si, Al, and O (where M is one element or mixed two or more elements selected from Li, Mg, Ca, Sr, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu), thereby decreasing an oxygen content and increasing a nitrogen content of the precursor.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: October 6, 2009
    Assignee: National Institute for Materials Science
    Inventors: Naoto Hirosaki, Takayuki Suehiro
  • Patent number: 7578988
    Abstract: The invention relates to a process for preparing a silicate of an element chosen from alkali metals, alkaline-earth metals or rare earths, comprising a reaction between silica and a sulfate of said element in a reactor equipped with at least one submerged burner within a molten mass, said submerged burner being fed with a gas containing oxygen, an excess of fuel/reducing agent being introduced into the reactor relative to the oxygen effectively consumed. The process allows the reaction to be carried out satisfactorily and at relatively low temperature.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: August 25, 2009
    Assignee: Saint-Gobain Glass France
    Inventors: Remi Jacques, Pierre Jeanvoine, Biagio Palmieri, Melanie Rattier
  • Publication number: 20090200515
    Abstract: A nitridosilicate-based compound is produced by reacting an alkaline-earth metal compound capable of generating an alkaline-earth metal oxide by heating or a rare earth compound capable of generating a rare earth oxide by heating with at least a silicon compound, while the alkaline-earth metal compound or the rare earth compound is being reduced and nitrided by the reaction with carbon in an atmosphere of nitriding gas. Because of this, a nitridosilicate-based compound of high quality can be produced industrially at low cost.
    Type: Application
    Filed: April 17, 2009
    Publication date: August 13, 2009
    Applicant: PANASONIC CORPORATION
    Inventor: Shozo OSHIO
  • Patent number: 7538067
    Abstract: A silica xerogel, a process for making it, and a process for using it to reduce chill haze in beer includes incorporation in the xerogel of one or more alkali metals, optionally in combination with one or more alkaline earth metals. The pH of the xerogel is between 8.0 and 10.5, preferably between 8.5 and 10.0.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: May 26, 2009
    Assignee: PQ Corporation
    Inventors: Yatao Hu, Larissa Ding, Robert E. Patterson