Refractory Metal Containing Patents (Class 423/440)
  • Patent number: 11713251
    Abstract: A method according to an embodiment of the present invention is for preparing powdered composite carbide of tungsten and titanium in which tungsten trioxide (WO3), titanium dioxide (TiO2) and carbon (C), each being in powdered form are mixed with a reducing agent powder to obtain a reaction mixture in the mixing step, followed by the synthesis step in which the reaction mixture is heated at a temperature of about 600° C. to 1200° C. to obtain the reaction products, and the washing step in which the reaction products are washed with water. The method for preparing tungsten titanium carbide powder is capable of carrying out both reduction and carburizing at a relatively low temperature and affords homogeneity in shape and particle size in the resultant composite carbide.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: August 1, 2023
    Assignee: NANOTECH Co., Ltd.
    Inventors: Hyun Ho Lee, Byeong Ho Choi
  • Patent number: 11519063
    Abstract: Methods of fabricating objects using additive manufacturing are provided. The methods create in situ dispersoids within the object. The methods are used with refractory alloy powders which are pretreated to increase the oxygen content to between 500 ppm and 3000 ppm or to increase the nitrogen content to between 250 ppm and 1500 ppm. The pretreated powders are then formed into layers in an environmentally controlled chamber of an additive manufacturing machine. The environmentally controlled chamber is adjusted to have between 500 ppm and 200 ppm oxygen. The layer of pretreated powder is then exposed to a transient moving energy source for melting and solidifying the layer; and creating in situ dispersoids in the layer.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: December 6, 2022
    Inventor: Youping Gao
  • Patent number: 11384439
    Abstract: Some examples of a method for manufacturing an electrode material for electrolytic hydrogen generation are described. Tungsten salt and nickel salt are mixed in a determined molar ratio on a carbon support by effectively controlling synthesis temperature and composition. Water and adsorbed oxygen, produced by mixing the tungsten salt and nickel salt are removed. Then, methane gas is flowed over the mixture resulting in the electrode material. The electrode material is suitable for use as a catalyst in electrolytic hydrogen generation processes, for example, at an industrial scale, to produce large quantities of hydrogen.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: July 12, 2022
    Assignee: Saudi Arabian Oil Company
    Inventors: Belabbes Merzougui, Bukola Saheed Abidemi, Mohammad Qamar, Adeola Akeem Akinpelu, Mohamed Nabil Noui-Mehidi
  • Patent number: 10399131
    Abstract: A compound roll includes a sintered inner core of a first cemented carbide and at least one sintered outer sleeve of a second cemented carbide disposed around the inner core. The outer sleeve and inner core each have a joining surface, wherein when the inner core and outer sleeve are assembled each joining surface contact to form a bonding interface therebetween. When the assembled, sintered inner core and outer sleeve are heated to a predetermined temperature the sintered inner core and outer sleeve are fused together at the bonding interface to form the unitary compound roll. To reduce the overall cost of the compound roll, a lower cost cemented carbide, or a cemented carbide with a lower density can be used for the inner core and fused to an outer sleeve of a virgin cemented carbide, thereby reducing the powder cost and/or reducing the overall mass of the compound roll.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: September 3, 2019
    Assignee: HYPERION MATERIALS & TECHNOLOGIES (SWEDEN) AB
    Inventor: Stephen Hewitt
  • Patent number: 10161017
    Abstract: Provided are a method for crushing hard tungsten carbide (WC) scraps which is a pre-step of alkaline leaching and acid leaching processes for recycling of tungsten and cobalt, the method including mixing hard tungsten carbide (WC) scraps such as chips, wires, bolts, drills, etc., that are metalworking tools to be discarded after being used, with aluminum, followed by heating to a high temperature, to form an intermetallic compound, metal oxides, or mixtures thereof in a sponge form, and crushing the intermetallic compound, the metal oxides, or the mixtures thereof in a sponge form. Further, provided is a method for recovering tungsten and cobalt from hard tungsten carbide (WC) scrap powder through alkaline leaching and acid leaching methods.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: December 25, 2018
    Assignee: KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES
    Inventors: Byung-Su Kim, Hanjung Kwon, Ki-Min Roh, Chang-Youl Suh, Ji-Hyuk Choi
  • Patent number: 9415379
    Abstract: A method of synthesizing tungsten carbide nanorods, the method comprising: mixing tungsten oxide (WO3) nanorods with a carbon source to obtain precursors; and calcining the precursors to obtain tungsten carbide nanorods, without use of any catalyst. A catalyst of metal nanostructures supported on tungsten carbide nanorods.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: August 16, 2016
    Assignee: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Xin Wang, Ya Yan
  • Patent number: 9318781
    Abstract: A computer-implemented method for predicting a value of a cell parameter is provided, wherein the cell is one of a plurality of cells of a battery pack. The method includes determining which other different conditions of the cell and which similar and/or different conditions of any other cell of the plurality of cells correlate with the cell condition, determining values of one or more parameters from the same cell or any other cell of the plurality of cells that correspond to the determined conditions that correlate with the cell condition, and predicting the value of the cell parameter based on the determined values.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: April 19, 2016
    Assignee: Johnson Controls Technology Company
    Inventor: Brian C. Sisk
  • Patent number: 9153823
    Abstract: A method of forming a catalyst structure includes providing a catalyst support structure having a core and an inner carbide film on the core, depositing catalyst nanoparticles on the catalyst support structure, and forming an outer carbide film on the catalyst support structure after the step of depositing catalyst nanoparticles. The outer carbide film is preferentially formed on the catalyst support structure compared to the catalyst particles.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: October 6, 2015
    Assignee: Audi AG
    Inventors: Minhua Shao, Belabbes Merzougui
  • Publication number: 20150139888
    Abstract: A method of synthesizing mechanically resilient titanium carbide (TiC) nanofibrous felts comprising continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix, comprising: (a) electrospinning a spin dope for making precursor nanofibers with diameters less than 0.5 J·Lm; (b) overlaying the nanofibers to produce a nano-fibrous mat (felt); and then (c) heating the nano-felts first at a low temperature, and then at a high temperature for making electrospun continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix; and (d) chlorinating the above electrospun nano-felts at an elevated temperature to remove titanium for producing carbide derived carbon (CDC) nano-fibrous felt with high specific surface areas.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 21, 2015
    Applicant: SOUTH DAKOTA BOARD OF REGENTS
    Inventors: Hao Fong, Lifeng Zhang, Yong Zhao, Zhengtao Zhu
  • Publication number: 20150125378
    Abstract: A method for synthesizing catalyst beads of bulk transmission metal carbides, nitrides and phosphides is provided. The method includes providing an aqueous suspension of transition metal oxide particles in a gel forming base, dropping the suspension into an aqueous solution to form a gel bead matrix, heating the bead to remove the binder, and carburizing, nitriding or phosphiding the bead to form a transition metal carbide, nitride, or phosphide catalyst bead. The method can be tuned for control of porosity, mechanical strength, and dopant content of the beads. The produced catalyst beads are catalytically active, mechanically robust, and suitable for packed-bed reactor applications. The produced catalyst beads are suitable for biomass conversion, petrochemistry, petroleum refining, electrocatalysis, and other applications.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 7, 2015
    Inventors: Jae Soon Choi, Beth L. Armstrong, Viviane Schwartz
  • Patent number: 8980215
    Abstract: A method for preparing ultrafine powder of tungsten carbide using ultrafine tungsten powder and carbon black as raw materials is provided. The following steps are included: (1) passivation of the ultrafine tungsten powder: passivating the ultrafine tungsten powder under pure carbon dioxide; (2) carbon addition: mixing the ultrafine tungsten powder with carbon black powder after applying cooling water and inert gases; (3) carbonization: synthesizing the bulk tungsten carbide powder at high temperature in a carbonizing stove; (4) crushing and sieving: crushing the bulk tungsten carbide powder, cooling and sieving to obtain the ultrafine powder of tungsten carbide.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: March 17, 2015
    Assignee: Jiangxi Rare Earth and Rare Metals Tungsten Group Corporation
    Inventors: Baiwan Wei, Zhao Lin, Zhifeng Li, Anshi Zou, Yi Wu
  • Publication number: 20150064094
    Abstract: Disclosed herein is a method for preparing titanium carbide powder. More specifically, the method comprises the steps of: mixing titanium dioxide (TiO2), calcium (Ca) and carbon (C); heating the resultant mixture to form titanium carbide (TiC) under an inert atmosphere; and washing the reaction mixture with water to separate the titanium carbide from calcium oxide (CaO). The present method is capable of providing titanium carbide powders homogeneous in shape and particle size in a relatively low temperature.
    Type: Application
    Filed: August 17, 2014
    Publication date: March 5, 2015
    Inventor: Hyun Ho Lee
  • Patent number: 8969236
    Abstract: A preferred embodiment of the process involves a generate a catalyst that comprises molybdenum carbide nickel material. Steps may involve heating a surface that comprises molybdenum oxide and a nickel salt while passing thereover a gaseous mixture that comprises a reductant and a carburizer. In certain embodiments, the reductant and the carburizer may both be carbon monoxide, or both be a saturated hydrocarbon. In others, the reductant may be carbon monoxide and the carburizer may be a saturated hydrocarbon.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: March 3, 2015
    Assignee: University of Wyoming Research Corporation
    Inventors: Vijay K. Sethi, Yulong Zhang
  • Patent number: 8968590
    Abstract: A composition of a crystalline ferromagnetic material based upon nanoscale cobalt carbide particles and to a method of manufacturing the ferromagnetic material of the invention via a polyol reaction are disclosed. The crystalline ferromagnetic cobalt carbide nanoparticles of the invention are useful for high performance permanent magnet applications. The processes according to the invention are extendable to other carbide phases, for example to Fe-, FeCo-carbides. Fe- and FeCo-carbides are realizable by using as precursor salts Fe-, Co-, and mixtures of Fe- and Co-salts, such as acetates, nitrates, chlorides, bromides, citrates, and sulfates, among others. The materials according to the invention include mixtures and/or admixtures of cobalt carbides, as both Co2C and Co3C phases. Mixtures may take the form of a collection of independent particles of Co2C and Co3C or as a collection of particles which consist of an intimate combination of Co2C and Co3C phases within individual particles.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: March 3, 2015
    Assignee: Northeastern University
    Inventor: Vincent G. Harris
  • Patent number: 8951671
    Abstract: Novel intercalation electrode materials including ternary acetylides of chemical formula: AnMC2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: February 10, 2015
    Assignee: U.S. Department of Energy
    Inventors: Karoly Nemeth, George Srajer, Katherine C. Harkay, Joseph Z. Terdik
  • Publication number: 20140371052
    Abstract: A method of synthesizing tungsten carbide nanorods, the method comprising: mixing tungsten oxide (WO3) nanorods with a carbon source to obtain precursors; and calcining the precursors to obtain tungsten carbide nanorods, without use of any catalyst. A catalyst of metal nanostructures supported on tungsten carbide nanorods.
    Type: Application
    Filed: March 13, 2013
    Publication date: December 18, 2014
    Inventors: Xin Wang, Ya Yan
  • Patent number: 8859931
    Abstract: A process and apparatus for preparing a nanopowder are presented. The process comprises feeding a reactant material into a plasma reactor in which is generated a plasma flow having a temperature sufficiently high to vaporize the material; transporting the vapor with the plasma flow into a quenching zone; injecting a preheated quench gas into the plasma flow in the quenching zone to form a renewable gaseous condensation front; and forming a nanopowder at the interface between the renewable controlled temperature gaseous condensation front and the plasma flow.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: October 14, 2014
    Assignee: Tekna Plasma Systems Inc.
    Inventors: Maher I. Boulos, Jerzy Jurewicz, Jiayin Guo, Xiaobao Fan, Nicolas Dignard
  • Publication number: 20140272415
    Abstract: Near-stoichiometric spherical tungsten carbide particles and a method for making near-stoichiometric spherical tungsten carbide particles are disclosed. The method of making these particles may comprise coating a starting powder with a carbon containing compound followed by plasma processing the starting powder in a plasma formed by known ionization techniques using a suitable fluid medium. The near-stoichiometric spherical tungsten carbide particles exhibit desirable particle uniformity, impact resistance, and wear resistance in a variety of applications.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Harold Edward Kelley, Pankaj K. Mehrotra
  • Publication number: 20140239559
    Abstract: A method for producing monolithic Zirconium Carbide (ZrC) is described. The method includes raising a pressure applied to a ZrC powder until a final pressure of greater than 40 MPa is reached; and raising a temperature of the ZrC powder until a final temperature of less than 2200° C. is reached.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 28, 2014
    Applicant: United States Department of Energy
    Inventor: Brian V. Cockeram
  • Publication number: 20140182511
    Abstract: A susceptor for supporting a crucible includes a body with an interior surface defining a cavity. A coating is disposed on the interior surface to provide a barrier for preventing contact between the body of the susceptor and the crucible disposed within the cavity.
    Type: Application
    Filed: December 26, 2013
    Publication date: July 3, 2014
    Inventors: Shailendra B. Rathod, Richard J. Phillips
  • Publication number: 20140162130
    Abstract: The present invention is directed to compositions comprising free standing and stacked assemblies of two dimensional crystalline solids, and methods of making the same.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 12, 2014
    Applicant: DREXEL UNIVERSITY
    Inventors: MICHEL W. BARSOUM, YURY GOGOTSI, MICHAEL NAGUIB ABDELMALAK, OLHA MASHTALIR
  • Publication number: 20140142007
    Abstract: Provided is a carbon layer derived from carbide ceramics, wherein metal or non-metal atoms are extracted selectively from the surface of carbide ceramics to form voids, which, in turn, are filled with carbon synthesized by a carbon compound, thereby providing improved roughness and hardness, as well as to a method for preparing the same.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 22, 2014
    Applicant: KOREA UNIVERSITY RESEARCH AND BUSINESS FOUNDATION
    Inventors: Dae Soon Lim, Min-gun Jeong, Seo-hyun Yoon
  • Patent number: 8728966
    Abstract: It is an object to provide an aluminum oxycarbide composition capable of suppressing oxidation of Al4O4C during use to maintain advantageous effects of Al4O4C for a long time. In an aluminum oxycarbide composition comprising Al4O4C crystals, the Al4O4C crystals have an average diameter of 20 ?m or more, based on an assumption that a cross-sectional area of each Al4O4C crystal during observation of the aluminum oxycarbide composition in an arbitrary cross-section thereof is converted into a diameter of a circle having the same area as the cross-sectional area. This aluminum oxycarbide composition can be produced by subjecting a carbon-based raw material and an alumina-based raw material to melting in an arc furnace and then cooling within the arc furnace.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: May 20, 2014
    Assignee: Krosakiharima Corporation
    Inventors: Keiichiro Akamine, Joki Yoshitomi
  • Patent number: 8679220
    Abstract: This invention relates to a ceramic and a cermet each having a second phase for improving toughness via phase separation from a complete solid-solution phase and to a method of preparing them. The ceramic and the cermet may have the second phase phase-separated from the complete solid-solution phase, thereby easily achieving a great improvement in toughness and exhibiting other good properties including high strength, consequently enabling the manufacture of high-strength and high-toughness cutting tools, instead of conventional WC—Co hard materials.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: March 25, 2014
    Assignee: SNU R&DB Foundation
    Inventor: Shin Hoo Kang
  • Publication number: 20140030181
    Abstract: Nanocomposite materials comprising a metal oxide bonded to at least one graphene material. The nanocomposite materials exhibit a specific capacity of at least twice that of the metal oxide material without the graphene at a charge/discharge rate greater than about 10 C.
    Type: Application
    Filed: October 1, 2013
    Publication date: January 30, 2014
    Applicants: The Trustees of Princeton University, Battelle Memorial Institute
    Inventors: Jun Liu, Ilhan A. Aksay, Daiwon Choi, Donghai Wang, Zhenguo Yang
  • Patent number: 8623510
    Abstract: Provided are a graphite material, which has excellent bonding characteristics to semiconductor and efficiently dissipates heat generated from the semiconductor, and a method for manufacturing such material. The graphite material is provided by adding at least two kinds of elements selected from among silicon, zirconium, calcium, titanium, chromium, manganese, iron, cobalt, nickel, calcium, yttrium, niobium, molybdenum, technetium, ruthenium and compounds containing such elements, and by performing heat treatment. The graphite material is characterized in having a thickness of the 112 face of the graphite crystal of 15 nm or more by X-ray diffraction, and an average heat conductivity of 250 W/(m·K) or more in the three directions of the X, Y and Z axes.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: January 7, 2014
    Assignee: Toyo Tanso Co., Ltd.
    Inventors: Akiyoshi Takeda, Masayuki Ito
  • Patent number: 8557190
    Abstract: A carbon nanotube synthesis process apparatus comprises a reaction tube in which a reaction field is formed, and a discharge pipe (32) arranged downstream of the reaction tube and discharging carbon nanotubes to the outside. A plurality of nozzles (34) are provided on the sidewall of the discharge pipe (32) in directions which are deflected with respect to the center (O) of the discharge pipe (32). When gases are discharged from the plurality of nozzles (34), a swirl flowing from the inner side surface along the inner side surface is produced in the discharge pipe (32). Adhesion of carbon nanotubes to the inner side surface of the discharge pipe (32) is prevented by the swirl flow and thus the apparatus can be operated continuously.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: October 15, 2013
    Assignee: Nikkiso Co., Ltd.
    Inventors: Shuichi Shiraki, Takeji Murai, Yuzo Nakagawa
  • Patent number: 8546292
    Abstract: A zinc-carbon compound that is a reaction product of zinc and carbon, wherein the zinc and the carbon form a single phase material that is meltable. The compound is one in which the carbon does not phase separate from the zinc when the single phase material is heated to a melting temperature.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: October 1, 2013
    Assignee: Third Millennium Metals, LLC
    Inventors: Jason V. Shugart, Roger C. Scherer
  • Patent number: 8541335
    Abstract: A lead-carbon compound that is a reaction product of lead and carbon, wherein the lead and the carbon form a single phase material that is meltable. The compound is one in which the carbon does not phase separate from the lead when the single phase material is heated to a melting temperature.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: September 24, 2013
    Assignee: Third Millennium Metals, LLC
    Inventors: Jason V. Shugart, Roger C. Scherer
  • Patent number: 8541336
    Abstract: A tin-carbon compound that is a reaction product of tin and carbon, wherein the tin and the carbon form a single phase material that is meltable. The compound is one in which the carbon does not phase separate from the tin when the single phase material is heated to a melting temperature.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: September 24, 2013
    Assignee: Third Millennium Metals, LLC
    Inventors: Jason V. Shugart, Roger C. Scherer
  • Patent number: 8536080
    Abstract: A metal carbide ceramic fiber having improved mechanical properties and characteristics and improved processes and chemical routes for manufacturing metal carbide ceramic fiber. Metal carbide ceramic fibers may be formed via reaction bonding of a metal-based material (e.g. boron) with the inherent carbon of a carrier medium. One embodiment includes a method of making a metal carbide ceramic fiber using VSSP to produce high yield boron carbide fiber. Embodiments of the improved method allow high volume production of high density boron carbide fiber. The chemical routes may include a direct production of boron carbide fiber from boron carbide powder (B4C) and precursor (e.g. rayon fiber) having a carbon component to form a B4C/rayon fiber that may be processed at high temperature to form boron carbide fiber, and that may be subsequently undergo a hot isostatic pressing to improve fiber purity. Another route may include a carbothermal method comprising combining boron powder (B) with a precursor (e.g.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: September 17, 2013
    Assignee: Advanced Cetametrics, Inc.
    Inventors: Farhad Mohammadi, Richard B. Cass
  • Patent number: 8518287
    Abstract: A dichalcogenide thermoelectric material having a very low thermal conductivity in comparison with a conventional metal or semiconductor is described. The dichalcogenide thermoelectric material has a structure of Formula 1 below: RX2-aYa??Formula 1 wherein R is a rare earth or transition metal magnetic element, X and Y are each independently an element selected from the group consisting of S, Se, Te, P, As, Sb, Bi, C, Si, Ge, Sn, B, Al, Ga, In, and a combination thereof, and 0?a<2.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: August 27, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-soo Rhyee, Sang-mock Lee
  • Publication number: 20130202515
    Abstract: A method of modifying a carbon material is disclosed. The method comprises: bonding a metal to a carbon material to form a metal-carbon complex comprising the metal and a benzene unit, wherein the carbon material comprises extended sp2-bonded carbon atoms.
    Type: Application
    Filed: October 14, 2011
    Publication date: August 8, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Robert C. Haddon, Santanu Sarkar, Sandip Niyogi, Elena Bekyarova, Mikhail E. Itkis, Xiaojuan Tian, Feihu Wang
  • Publication number: 20130168889
    Abstract: An aggregate includes coke and titanium for introduction into metallurgical vessels for increasing the durability and for repairing the refractory lining. The aggregate has a content of titanium-containing compounds and a content of 10 to 98 wt.-% of coke-containing material, based on the total amount of aggregate, which contains no or only small amounts of less than 25 wt.-%, based on the coke containing material of substances being volatile at the temperatures present at a reaction site, whereby the aggregate is obtained by the combined coking of carbonaceous material and titanium-containing compounds.
    Type: Application
    Filed: July 22, 2011
    Publication date: July 4, 2013
    Applicant: SACHTLEBEN CHEMIE GMBH
    Inventors: Djamschid Amirzadeh-Asl, Dieter Fuenders
  • Patent number: 8465720
    Abstract: Provided is an aluminum oxycarbide composition production method capable of increasing a yield of Al4O4C while reducing a content rate of Al4C3 and achieving high productivity, and an aluminum oxycarbide composition. The method comprises: preparing a blend substantially consisting of a carbon-raw material having a mean particle diameter of 0.5 mm or less and an alumina-raw material having a mean particle diameter of 350 ?m or less, wherein a mole ratio of the carbon-raw material to the alumina-raw material (C/Al2O3) is in a range of 0.8 to 2.0; homogeneously mixing the blend to allow a variation in C component to fall within ±10%; and melting the obtained mixture in an arc furnace at 1850° C. or more.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: June 18, 2013
    Assignee: Krosakiharima Corporation
    Inventors: Keiichiro Akamine, Katsumi Morikawa, Joki Yoshitomi, Yoshihiko Uchida
  • Patent number: 8449845
    Abstract: In light of the recent analytical technology demanded of fast and accurate measurement of high purity materials, a zirconium crucible is provided for melting an analytical sample and is capable of inhibiting the inclusion of impurities from the crucible by using a high-purity crucible, improving the durability of high-purity zirconium as an expensive crucible material, and increasing the number of times that the zirconium crucible can be used. With this zirconium crucible used for melting an analytical sample in the pretreatment of the analytical sample, the purity excluding gas components is 3N or higher, and the content of carbon as a gas component is 100 mass ppm or less.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: May 28, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Masahiro Sakaguchi, Mitsuru Yamaguchi
  • Publication number: 20130008748
    Abstract: A friction disc (2) with an anti-abrasion layer (1) and integrated wear indication, the friction disc (2) having a friction surface (2?) which is completely covered by the anti-abrasion layer (1). At least one indication surface element (3) which occupies a part of the friction surface (2?) and differs from at least one of the components friction surface (2?) and anti-abrasion layer (1) of the friction disc (2) in at least one of the features coloring and texture is provided between the anti-abrasion layer (1) and the friction disc (2). Compositions of the anti-abrasion layer (1) of the friction disc (2).
    Type: Application
    Filed: March 16, 2011
    Publication date: January 10, 2013
    Applicant: DAIMLER AG
    Inventors: Oliver Lembach, Ralph Mayer
  • Publication number: 20130004407
    Abstract: A method for preparing ultrafine powder of tungsten carbide using ultrafine tungsten powder and carbon black as raw materials is provided. The following steps are included: (1) passivation of the ultrafine tungsten powder: passivating the ultrafine tungsten powder under pure carbon dioxide; (2) carbon addition: mixing the ultrafine tungsten powder with carbon black powder after applying cooling water and inert gases; (3) carbonization: synthesizing the bulk tungsten carbide powder at high temperature in a carbonizing stove; (4) crushing and sieving: crushing the bulk tungsten carbide powder, cooling and sieving to obtain the ultrafine powder of tungsten carbide.
    Type: Application
    Filed: December 30, 2009
    Publication date: January 3, 2013
    Inventors: Baiwan Wei, Zhao Lin, Zhifeng Li, Anshi Zou, Yi Wu
  • Publication number: 20130004401
    Abstract: The disclosure provides a device and method used to produce a tubular structure made of a refractory metal compound. In particular, the disclosure provides a device and method used to produce a tubular structure made of a refractory metal compound by reacting a green tubular structure made of a refractory metal with at least one reactive gas.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 3, 2013
    Applicant: NITRIDE SOLUTIONS INC.
    Inventor: Jason Schmitt
  • Patent number: 8343449
    Abstract: The disclosure provides a device and method used to produce a tubular structure made of a refractory metal compound. In particular, the disclosure provides a device and method used to produce a tubular structure made of a refractory metal compound by reacting a green tubular structure made of a refractory metal with at least one reactive gas.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: January 1, 2013
    Assignee: Nitride Solutions, Inc.
    Inventor: Jason Schmitt
  • Publication number: 20120321892
    Abstract: Disclosed herein are structures comprising a titanium, zirconium, or hafnium powder particle with titanium carbide, zirconium carbide, or hafnium carbide (respectively) nano-whiskers disposed adjacent and anchored to the powder particle. Also disclosed are methods for fabrication of such structures, involving heating the powder particles and exposing the particles to an organic gas.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 20, 2012
    Applicant: BABCOCK & WILCOX TECHNICAL SERVICES Y-12, LLC
    Inventors: Roland D. Seals, Paul A. Menchhofer, James O. Kiggins, JR.
  • Publication number: 20120295783
    Abstract: Methods of converting shaped templates into shaped metal-containing components, allowing for the production of freestanding, porous metal-containing replicas whose shapes and microstructures are derived from a shaped template, and partially or fully converting the shaped templates to produce metal-containing coatings on an underlying shaped template are described herein. Such coatings and replicas can be applied in a variety of fields including, but not limited to, catalysis, energy storage and conversion, and various structural or refractory materials and structural or refractory composite materials.
    Type: Application
    Filed: February 1, 2011
    Publication date: November 22, 2012
    Applicant: Georgia Tech Research Corporation
    Inventors: David W. Lipke, Kenneth H. Sandhage
  • Patent number: 8273290
    Abstract: A method for producing a composite metal material includes preparing a solution containing a surfactant having both hydrophilicity and hydrophobicity, dispersing a nanosized to micro-sized fine carbonaceous substance into a state of being monodispersed in the solution, bringing the solution having the dispersed fine carbonaceous substance into contact with surface of a metal powder particle, drying the metal powder particle to make the fine carbonaceous substance in the monodispersed state adhere to the surface of the metal powder particle via a component of the solution, and thermally decomposing and removing the solution component adhering to the surface of the metal powder particle by heat-treating the metal powder particle either in a hydrogen-containing reducing atmosphere or in a vacuum atmosphere to partially expose the surface of the metal powder particle out of the adhering fine carbonaceous substance, and thus progress diffusion and sintering among the metal powder particles through exposed parts.
    Type: Grant
    Filed: October 16, 2008
    Date of Patent: September 25, 2012
    Assignees: National University Corporation Hokkaido University
    Inventors: Katsuyoshi Kondoh, Bunshi Fugetsu
  • Publication number: 20120231159
    Abstract: A method of producing a reactive powder includes providing a bulk structure of reactive material comprising a first reactant and a second reactant, the bulk structure having a preselected average spacing between the first and the second reactants; and mechanically processing the bulk structure of reactive material to produce a plurality of particles from the bulk structure such that each of the plurality of particles comprises the first and second reactants having an average spacing that is substantially equal to the preselected average spacing of the bulk structure of reactive material. The first and second materials of the plurality of particles react with each other in an exothermic reaction upon being exposed to a threshold energy to initiate the exothermic reaction and remain substantially stable without reacting with each other prior to being exposed to the threshold energy.
    Type: Application
    Filed: October 25, 2010
    Publication date: September 13, 2012
    Applicant: The Johns Hopkins University
    Inventors: Timothy P. Weihs, Adam Stover
  • Patent number: 8222171
    Abstract: A method for the production of a ceramic substrate for a semiconductor component, includes the steps of producing paper containing at least cellulose fibers, as well as a filler to be carbonized and/or SiC, pyrolizing the produced paper, and siliconizing the pyrolyzed paper.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: July 17, 2012
    Assignee: Schunk Kohlenstofftechnik GmbH
    Inventors: Marco Ebert, Martin Henrich, Andreas Lauer, Gotthard Nauditt, Thorsten Scheibel, Roland Weiss
  • Publication number: 20120175639
    Abstract: It is an object of the present invention to provide a method for manufacturing tantalum carbide which can form tantalum carbide having a prescribed shape using a simple method, can form the tantalum carbide having a uniform thickness even when the tantalum carbide is coated on the surface of an article and is not peeled off by a thermal history, tantalum carbide obtained by the manufacturing method, wiring of tantalum carbide, and electrodes of tantalum carbide. The tantalum carbide is formed on the surface of tantalum or a tantalum alloy by placing the tantalum or tantalum alloy in a vacuum heat treatment furnace, heat-treating the tantalum or tantalum alloy under a condition where a native oxide layer of Ta2O5 formed on the surface of tantalum or tantalum alloy is sublimated to remove the Ta2O5, introducing a carbon source into the vacuum heat treatment furnace, and then heat-treating.
    Type: Application
    Filed: March 16, 2012
    Publication date: July 12, 2012
    Applicant: THE NEW INDUSTRY RESEARCH ORGANIZATION
    Inventors: Tadaaki Kaneko, Yasushi Asaoka, Naokatsu Sano
  • Patent number: 8211244
    Abstract: The present invention relates to a method for manufacturing tantalum carbide which can form tantalum carbide having a prescribed shape using a simple method, can form the tantalum carbide having a uniform thickness even when the tantalum carbide is coated on the surface of an article and is not peeled off by a thermal history, tantalum carbide obtained by the manufacturing method, wiring of tantalum carbide, and electrodes of tantalum carbide, where the tantalum carbide is formed on the surface of tantalum or a tantalum alloy by placing the tantalum or tantalum alloy in a vacuum heat treatment furnace, heat-treating the tantalum or tantalum alloy under a condition where a native oxide layer of Ta2O5 formed on the surface of tantalum or tantalum alloy is sublimated to remove the Ta2O5, introducing a carbon source into the vacuum heat treatment furnace, and then heat-treating.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: July 3, 2012
    Assignee: Toyo Tanso Co., Ltd.
    Inventors: Tadaaki Kaneko, Yasushi Asaoka, Naokatsu Sano
  • Patent number: 8197786
    Abstract: Porous carbon materials and methods of manufacturing the same are provided. One method includes forming a carbon-metal oxide composite by heating a coordination polymer to form a carbon-metal oxide composite, and then removing the metal oxide from the carbon-metal oxide composite. The porous carbon material has an average pore diameter ranging from about 10 nm to about 100 nm, and a d002 ranging from about 3.35 to 3.50 ?.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: June 12, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Dong-min Im, Jeong-hee Lee, Yong-nam Ham, Chan-ho Pak
  • Patent number: 8178477
    Abstract: Proppants which can be used to prop open subterranean formation fractions are described. Proppant formulations which use one or more proppants of the present invention are described, as well as methods to prop open subterranean formation fractions, and other uses for the proppants and methods of making the proppants.
    Type: Grant
    Filed: September 14, 2011
    Date of Patent: May 15, 2012
    Assignee: Oxane Materials, Inc.
    Inventors: Robert D. Skala, John R. Loscutova, Christopher E. Coker
  • Patent number: 8148281
    Abstract: Disclosed is a highly-pure fine titanium carbide powder having a maximum particle size of 100 nm or less and containing metals except titanium in an amount of 0.05 wt % or less and free carbon in an amount of 0.5 wt % or less. The powder has a NaCl-type crystal structure, and a composition represented by TiCxOyNz, wherein X, Y and Z satisfy the relations: 0.5?X?1.0; 0?Y?0.3; 0?Z?0.2; and 0.5?X+Y+Z?1.0.) The powder is produced by: dissolving an organic substance serving as a carbon source in a solvent to prepare a liquid, wherein the organic substance contains at least one OH or COOH group which is a functional group coordinatable to titanium of titanium alkoxide, and no element except C, H, N and O; mixing titanium alkoxide with the liquid to satisfy the following relation: 0.7???1.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: April 3, 2012
    Assignees: Fukuoka Prefecture, Nippon Tungsten Co., Ltd.
    Inventors: Yoko Taniguchi, Teruhisa Makino, Kunitaka Fujiyoshi, Osamu Nakano, Toru Okui, Yusuke Hara