Diamond Patents (Class 423/446)
  • Patent number: 10066317
    Abstract: A method for manufacturing a single crystal diamond in which vapor phase synthetic single crystal diamond is additionally deposited on a single crystal diamond seed substrate obtained by vapor phase synthesis, includes a step of measuring flatness of the seed substrate, a step of determining whether or not to flatten the seed substrate based on the measurement result of the flatness, and any one of the following two steps of a step of additionally depositing the vapor phase synthetic single crystal diamond after flattening the seed substrate for which the flattening is necessary based on the determination and a step of additionally depositing the vapor phase synthetic single crystal diamond without flattening the seed substrate for which the flattening is not necessary based on the determination.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: September 4, 2018
    Assignees: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY, SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Hitoshi Noguchi, Daisuke Takeuchi, Satoshi Yamasaki, Masahiko Ogura, Hiromitsu Kato, Toshiharu Makino, Hideyo Okushi
  • Patent number: 10047731
    Abstract: Systems and methods for improving plasma propellant ablation/sublimation based systems are provided. One set of embodiments provides systems and methods for reducing carbon charring during plasma system (e.g., a plasma coating application system) propellant (e.g., a carbon-fluorine polymer) ablation and increasing heat transfer, ablation, and plasma thrust from plasma systems. In particular, one embodiment can include using a nano or micro-sized magnetic or electromagnetic field responsive material as particulates or microcapsules that are intermixed with polytetrafluoroethylene (e.g., Teflon®) nano-fibers, and using resulting fiber composites as the propellant material. Embodiments can include improved plasma system, e.g., pulsed plasma thrusters, plasma torches, plasma coating systems, etc, as well as nozzle improvements such as embodiments with magnetic structures disposed in relation to the nozzle. Alternative embodiments also include recovery and reuse systems.
    Type: Grant
    Filed: June 10, 2015
    Date of Patent: August 14, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Nishkamraj U. Deshpande, H. Fred Barsun, Steven D. Clark
  • Patent number: 10005672
    Abstract: A method of growing carbonaceous particles comprises depositing carbon from a carbon source, onto a particle nucleus, the particle nucleus being a carbon-containing material, an inorganic material, or a combination comprising at least one of the foregoing, and the carbon source comprising a saturated or unsaturated compound of C20 or less, the carbonaceous particles having a uniform particle size and particle size distribution. The method is useful for preparing polycrystalline diamond compacts (PDCs) by a high-pressure, high-temperature (HPHT) process.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: June 26, 2018
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Oleg A. Mazyar, Soma Chakraborty, Oleksandr V. Kuznetsov, Anthony A. DiGiovanni, Gaurav Agrawal, Michael H. Johnson
  • Patent number: 9969620
    Abstract: A method of forming nanoscale diamond particles comprises providing C2 and CH radicals at a low pressure, and nucleating the C2 and CH radicals to form carbon nanoparticles comprising a diamond phase and a non-diamond phase. The method further comprises removing at least a portion of the non-diamond phase in flight during the nucleation of the C2 and CH radicals to form a carbon powder comprising a plurality of nanoscale diamond particles.
    Type: Grant
    Filed: March 31, 2015
    Date of Patent: May 15, 2018
    Assignee: Case Western Reserve University
    Inventors: R. Mohan Sankaran, John C. Angus
  • Patent number: 9945185
    Abstract: A method of forming polycrystalline diamond includes encapsulating diamond particles, carbon monoxide, and carbon dioxide in a container. The encapsulated diamond particles, carbon monoxide, and carbon dioxide are subjected to a pressure of at least 4.5 GPa and a temperature of at least 1400° C. to form inter-granular bonds between the diamond particles. A cutting element includes polycrystalline diamond material comprising inter-bonded grains of diamond. The polycrystalline diamond material is substantially free of graphitic carbon and metallic compounds. The polycrystalline diamond material exhibits a density of at least about 3.49 g/cm3 and a modulus of at least about 1000 GPa. An earth-boring tool may include such a cutting element secured to a body.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: April 17, 2018
    Assignee: Baker Hughes Incorporated
    Inventor: Marc W. Bird
  • Patent number: 9884767
    Abstract: The present invention relates to a method for producing zeta positive hydrogenated nanodiamond particles, and to a method for producing zeta positive single digit hydrogenated nanodiamond dispersions. The present invention further relates to zeta positive hydrogenated nanodiamond powder and zeta positive single digit hydrogenated nanodiamond dispersion.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: February 6, 2018
    Assignee: CARBODEON LTD OY
    Inventor: Vesa Myllymäki
  • Patent number: 9865454
    Abstract: A substrate processing apparatus includes a vacuum chamber including a top plate, a rotary table rotatably disposed in the vacuum chamber, a first process gas supply part that supplies a first process gas to be adsorbed on a surface of a substrate placed on the rotary table, a plasma processing gas supply part that is disposed apart from the first process gas supply part in a circumferential direction of the rotary table and supplies a second process gas to the surface of the substrate, a separation gas supply part that supplies a separation gas for separating the first process gas and the second process gas, a plasma generator that converts the second process gas into plasma, and an elevating mechanism that moves at least one of the plasma generator and the rotary table upward and downward.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: January 9, 2018
    Assignee: TOKYO ELECTRON LIMITED
    Inventors: Hitoshi Kato, Hiroyuki Kikuchi, Masato Yonezawa, Jun Sato, Shigehiro Miura
  • Patent number: 9816202
    Abstract: A method of producing a large area plate of single crystal diamond from CVD diamond grown on a substrate substantially free of surface defects by chemical vapour deposition (CVD). The homoepitaxial CVD grown diamond and the substrate are severed transverse to the surface of the substrate on which diamond growth took place to produce the large area plate of single crystal CVD diamond.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: November 14, 2017
    Assignee: Element Six Technologies Limited
    Inventors: Geoffrey Alan Scarsbrook, Philip Maurice Martineau, Daniel James Twitchen
  • Patent number: 9816060
    Abstract: A composition which effervesces when added to water, comprises diamond particles with a median equivalent volumetric diameter (Dv50) of less than 40 ?m. The compositions are useful as cleaning compositions, particularly for cleaning diamonds.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: November 14, 2017
    Assignee: DF&G LTD
    Inventor: Andrew Coxon
  • Patent number: 9745197
    Abstract: A mild, acid- and alkali-free purification method of detonation nanodiamond material from water-insoluble metal-containing impurities and product obtained thereof. The products thus obtained include nanodiamond and diamond-containing detonation blend. The method is implemented by an impact treatment of the detonation nanodiamond material with aqueous or water organic solutions of chelating agents in concentrations 0.5-20 wt. % at elevated temperature, wherein the weight-percent ratio of the detonation nanodiamond material to an undiluted chelating agent is substantially 1 to 0.2. Impact treatment of the detonation nanodiamond material in chelating agent solution may include boiling, ultrasonication, cavitational disintegration, and harsh treatment in sealed chamber at temperatures of up to about 300° C. and high pressure.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: August 29, 2017
    Assignee: CARBODEON LTD OY
    Inventors: Valery Dolmatov, Vesa Myllymaki
  • Patent number: 9702045
    Abstract: The present invention relates to metal plating solution comprising at least one source of metal ions and detonation nanodiamonds, wherein the detonation nanodiamonds are substantially free of negatively charged functionalities, and to a method for producing the solution. The present invention further relates to metal plating method and to a metallic coating comprising metal and detonation nanodiamonds substantially free of negatively charged functionalities.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: July 11, 2017
    Assignee: CARBODEON LTD OY
    Inventors: Vesa Myllymaki, Niko Rostedt
  • Patent number: 9682359
    Abstract: A method of processing hydrocarbons includes feeding a hydrocarbon feedstock into a reaction tube positioned within an opening of a waveguide, feeding a process gas into the reaction tube, receiving microwaves in the waveguide from a microwave generator, propagating microwave energy from the waveguide into the reaction tube to cause the formation of a first plasma in the reaction tube, that causes the feedstock and process gas to react and form into a product stream comprising a fuel product. The method also includes periodically, without stopping the propagation of microwave energy into the reaction tube, delivering a cleaning gas comprising oxygen. The method may also include forming a second plasma in the reaction tube, from the cleaning gas that causes burning off of a carbon residue film from the reaction tube; extracting the cleaning gas from the product stream; and delivering the extracted cleaning gas to the cleaning gas source.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: June 20, 2017
    Assignee: H Quest Partners, LP
    Inventors: George L. Skoptsov, Alan A. Johnson
  • Patent number: 9631295
    Abstract: Provided is a method for producing SiC single crystals while maintaining a temperature gradient such that the temperature decreases from within an Si solution inside a graphite crucible toward the solution surface, with the SiC seed crystals that have contacted the solution surface serving as the starting point for crystal seed growth, wherein when the crystal growth surface of the SiC seed crystals, which serves as the starting point for SiC single crystal growth, contacts the solution surface, the height by which the solution rises to the side of the SiC seed crystals is within the range where the SiC single crystals that have grown from the crystal growth surface and the SiC single crystals that have grown from the side grow as one SiC single crystal unit.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: April 25, 2017
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Hironori Daikoku, Kazuhito Kamei
  • Patent number: 9598623
    Abstract: The present disclosure provides nanodiamonds containing thermoplastic thermal composites. The nanodiamond containing thermoplastic thermal composite comprises from 0.01 to 80 wt.-% of nanodiamond particles, from 1 to 90 wt.-% of at least one filler, and from 5 to 80 wt.-% of at least one thermoplastic polymer. The present disclosure further relates to a method for manufacturing the nanodiamonds containing thermoplastic thermal composites, and to use of the nanodiamonds containing thermoplastic thermal composites.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: March 21, 2017
    Assignee: CARBODEON LTD OY
    Inventors: Vesa Myllymaki, Jesse Syren
  • Patent number: 9600694
    Abstract: A manufacturing method for sapphire crystal material is disclosed, including a laser-etched bar code formed into the interior of the sapphire crystal material. The laser-etched bar code may be associated with one or more manufacturing parameters or other manufacturing data. The sapphire crystal may be used to create a cover sheet for use with a display screen of a portable electronic device.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: March 21, 2017
    Assignee: APPLE INC.
    Inventors: Dale N. Memering, Michael M. Li
  • Patent number: 9551090
    Abstract: A CVD single crystal diamond material suitable for use in, or as, an optical device or element. It is suitable for use in a wide range of optical applications such as, for example, optical windows, laser windows, optical reflectors, optical refractors and gratings, and etalons. The CVD diamond material is produced by a CVD method in the presence of a controlled low level of nitrogen to control the development of crystal defects and thus achieve a diamond material having key characteristics for optical applications.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: January 24, 2017
    Assignee: Element Six Technologies Limited
    Inventors: Herman Philip Godfried, Geoffrey Alan Scarsbrook, Daniel James Twitchen, Evert Pieter Houwman, Wilhelmus Gertruda Maria Nelissen, Andrew John Whitehead, Clive Edward Hall, Philip Maurice Martineau
  • Patent number: 9546093
    Abstract: [Task to be Solved] One of the principal objects of the invention is to collect minute diamond particles of D50 of 20 nm and smaller, by MICROTRAC UPA 150, in high precision and high definition. [Means for Solving the Task] The minute diamond particles of the invention are recovered by a method comprising: (1) joining or combining a hydrophilic functional group with a surface of diamond powder that comprises particles of a primary particle size of 50 nm or less, so as to impart hydrophilic nature on the surface, (2) placing the hydrophilic diamond particles to hold in suspension in water to form a slurry, (3) subjecting said slurry to a hyper-centrifugal process at a centrifugal force of 4×103 G and at the same time a centrifugal load product of 200×103 G·min.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: January 17, 2017
    Inventors: Youichi Morita, Tatsuya Takimoto, Naoki Komatsu, Hiroshi Yamanaka, Hisao Shirasawa, Hiroshi Ishizuka
  • Patent number: 9469918
    Abstract: A multilayer substrate includes a diamond layer CVD grown on a composite layer. The composite layer includes particles of diamond and silicon carbide and, optionally, silicon. A loading level (by volume) of diamond in the composite layer can be ?5%; ?20%; ?40%; or ?60%. The multilayer substrate can be used as an optical device; a detector for detecting radiation particles or electromagnetic waves; a device for cutting, drilling, machining, milling, lapping, polishing, coating, bonding, or brazing; a braking device; a seal; a heat conductor; an electromagnetic wave conductor; a chemically inert device for use in a corrosive environment, a strong oxidizing environment, or a strong reducing environment, at an elevated temperature, or under a cryogenic condition; or a device for polishing or planarization of other devices, wafers or films.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: October 18, 2016
    Assignee: II-VI Incorporated
    Inventors: Wen-Qing Xu, Elgin E. Eissler, Chao Liu, Charles D. Tanner, Charles J. Kraisinger, Michael Aghajanian
  • Patent number: 9449631
    Abstract: Systems and methods for tuning seed layer hardness in components of magnetic recording systems are described. One such system includes a substrate including a component of a magnetic recording system, a first deposition source configured to deposit a seed layer material on a portion of a top surface of the substrate at a first angle, and a second deposition source configured to deposit a carbon material including sp3 carbon bonds on the portion of the top surface at a second angle not equal to the first angle, where the first deposition source and the second deposition source deposit the seed layer material and the carbon material, respectively, simultaneously. The component can be a slider or a magnetic medium.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: September 20, 2016
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Yongping Gong, Phuwanai Bunnak, Kah Choong Loo, Krisda Siangchaew
  • Patent number: 9260797
    Abstract: A single crystal CVD synthetic diamond material comprising: a total as-grown nitrogen concentration equal to or greater than 5 ppm, and a uniform distribution of defects, wherein said uniform distribution of defects is defined by one or more of the following characteristics: (i) the total nitrogen concentration, when mapped by secondary ion mass spectrometry (SIMS) over an area equal to or greater than 50×50 ?m using an analysis area of 10 ?m or less, possesses a point-to-point variation of less than 30% of an average total nitrogen concentration value, or when mapped by SIMS over an area equal to or greater than 200×200 ?m using an analysis area of 60 ?m or less, possesses a point-to-point variation of less than 30% of an average total nitrogen concentration value; (ii) an as-grown nitrogen-vacancy defect (NV) concentration equal to or greater than 50 ppb as measured using 77K UV-visible absorption measurements, wherein the nitrogen-vacancy defects are uniformly distributed through the synthetic single cryst
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: February 16, 2016
    Assignee: Element Six Limited
    Inventors: Harpreet Kaur Dhillon, Daniel James Twitchen, Rizwan Uddin Ahmad Khan
  • Patent number: 9227166
    Abstract: There are provided sufficiently strong, hard, and heat resistant, dense and homogenous polycrystalline diamond applicable to cutting tools, dressers, dies and other working tools and excavation bits and the like, and a cutting tool having a cutting edge of the polycrystalline diamond. The polycrystalline diamond is formed substantially only of diamond formed using a composition of material containing a non diamond type carbon material, the composition of material being converted directly into diamond and sintered at ultra high pressure and ultra high temperature without aid of a sintering aid or a catalyst, and has a mixed microstructure having a fine crystal grain of diamond having a maximal grain size of at most 100 nm and an average grain size of at most 50 nm and a coarse crystal grain of diamond in the form of one of a platelet and a granule having a grain size of at least 50 nm and at most 10,000 nm.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: January 5, 2016
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Hitoshi Sumiya
  • Patent number: 9216493
    Abstract: A method of making diamond including mixing graphene with diamond seed to form a powder mixture, and then sintering the powder mixture, in the absence of a transition metal catalyst, at high pressure and high temperature; and a method of making a polycrystalline diamond compact including mixing graphene in diamond powder to form a powder mixture with less than about 50% graphene by weight, and then sintering the powder mixture, in the absence of a transition metal catalyst, at high pressure and high temperature.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: December 22, 2015
    Assignee: Diamond Innovations, Inc.
    Inventors: Abds-Sami Malik, Hui Zhang
  • Patent number: 9192899
    Abstract: A diamond sintered body conventionally used in a cutting tool or the like includes an iron group metal element as a sintering aid, and therefore has a problem in heat resistance. A diamond sintered body not including the iron group metal, on the other hand, does not have sufficient mechanical strength to be used as a tool material, and also does not have conductivity, which makes electrical discharge machining impossible, and thus processing thereof is difficult. A diamond polycrystalline body having high heat resistance and mechanical strength and having conductivity enabling electrical discharge machining is obtained by using only an amorphous or fine graphite-type carbon material as a starting material, adding boron thereto and concurrently performing conversion into diamond and sintering in an ultra-high pressure and temperature condition.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: November 24, 2015
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventor: Hitoshi Sumiya
  • Patent number: 9156695
    Abstract: A method of fabricating a carbon allotrope is disclosed. The method includes forming an intermediate carbon template from a carbon feedstock; and creating a pressure and temperature in the carbon template suitable for fabrication of the carbon allotrope from the intermediate carbon template. The pressure and temperature may be created from a shockwave resulting from collapse of a bubble formed during a bubble cavitation process.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: October 13, 2015
    Assignee: RAYTHEON COMPANY
    Inventor: Chae Deok Lee
  • Patent number: 9085723
    Abstract: The present disclosure provides nanodiamonds containing thermoplastic thermal composites. The nanodiamond containing thermoplastic thermal composite comprises from 0.01 to 80 wt.-% of nanodiamond particles, from 1 to 90 wt.-% of at least one filler, and from 5 to 80 wt.-% of at least one thermoplastic polymer. The present disclosure further relates to a method for manufacturing the nanodiamonds containing thermoplastic thermal composites, and to use of the nanodiamonds containing thermoplastic thermal composites.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: July 21, 2015
    Assignee: CARBODEON LTD OY
    Inventors: Vesa Myllymaki, Jesse Syren
  • Patent number: 9067797
    Abstract: The invention provides methods and systems for producing large size diamonds. The methods include using carbon containing gases and supplementary gases to form reaction zones that are suitable for diamonds to grow; controlling the temperatures that are suitable for diamonds to grow; and keeping the small size seeds in motion in the reaction zones to form large size diamonds. The method provides controlling the high temperature endurable small size seeds at suitable temperatures for diamonds to grow and keep them in motion in the reaction zones. The invention also provides systems that allow all the surfaces of the high temperature endurable small size seeds continually extend to form diamonds, then to form large size diamonds. The invention provides a large-scale, low cost production of large size diamonds.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: June 30, 2015
    Inventor: Xi Chu
  • Patent number: 9061917
    Abstract: A combinatorial synthesis of the diamond unit cell is disclosed wherein a carbon atom free of meta-stable radical impurities reacts with cyclic hydrocarbon compounds or heterocyclic compounds whose structure is tetrahedral or nearly tetrahedral. Reactions conducted in the vapor phase and in the solid state are disclosed.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: June 23, 2015
    Assignee: Unit Cell Diamond LLC
    Inventor: Daniel Hodes
  • Patent number: 9034296
    Abstract: The present invention relates to an HPHT method for synthesizing single crystal diamond, wherein a single crystal diamond seed having an aspect ratio of at least 1.5 is utilized. Single crystal diamond seeds having an aspect ratio of at least 1.5 and synthetic single crystal diamond which may be obtained by the method recited are also described. The growth surface is substantially aligned along a <100> or <110> direction in the plane of the growth surface.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: May 19, 2015
    Assignee: Element Six Technologies Limited
    Inventors: Carlton Nigel Dodge, Raymond Anthony Spits
  • Patent number: 9034468
    Abstract: Embodiments presented herein relate generally to the formation of diamond-like carbon, forms of diamond-like carbon and/or carbon dioxide fixation.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: May 19, 2015
    Assignee: XI'AN JIAOTONG UNIVERSITY
    Inventors: Yun-hai Wang, Qing-yun Chen, Xiang-lin Li, Jing-lian Zhao
  • Publication number: 20150125379
    Abstract: A method of purifying a nanodiamond powder includes preparing the nanodiamond powder, heating the nanodiamond powder at between 450° C. and 470° C. in an atmosphere including oxygen, performing a hydrochloric acid treatment on the heated nanodiamond powder, and performing a hydrofluoric acid treatment on the nanodiamond powder obtained after performing the hydrochloric acid treatment.
    Type: Application
    Filed: January 9, 2015
    Publication date: May 7, 2015
    Inventors: Palash Gangopadhyay, Robert A. Norwood, Alexander Ashton Miles, Jun Kato, Shabnam Virji-Khalfan, Mamoru Miyawaki
  • Patent number: 9023307
    Abstract: The invention relates to single crystal diamond with high optical quality and methods of making the same. The diamond possesses an intensity ratio of the second-order Raman peak to the fluorescence background of around 5 or greater.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: May 5, 2015
    Assignee: Carnegie Institution of Washington
    Inventors: Russell J. Hemley, Yu-fei Meng, Chih-Shiue Yan, Ho-kwang Mao
  • Patent number: 9023306
    Abstract: The invention relates to a single crystal boron doped CVD diamond that has a toughness of at least about 22 MPa m1/2. The invention further relates to a method of manufacturing single crystal boron doped CVD diamond. The growth rate of the diamond can be from about 20-100 ?m/h.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: May 5, 2015
    Assignee: Carnegie Institution of Washington
    Inventors: Russell J. Hemley, Ho-Kwang Mao, Chih-Shiue Yan, Qi Liang
  • Patent number: 9017632
    Abstract: A method of making fancy pale blue or fancy pale blue/green CVD diamond material is described. The method comprises irradiating single crystal diamond material that has been grown by a CVD process with electrons to introduce isolated vacancies into the diamond material, the irradiated diamond material having (or after a further post-irradiation treatment having) a total vacancy concentration [VT] and a path length L such that [VT]×L is at least 0.072 ppm cm and at most 0.36 ppm cm, and the diamond material becomes fancy pale blue or fancy pale blue/green in color. Fancy pale blue diamonds are also described.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: April 28, 2015
    Assignee: Element Six Technologies Limited
    Inventors: Daniel James Twitchen, Sarah Louise Geoghegan, Neil Perkins
  • Patent number: 9017633
    Abstract: Single crystal diamond material produced using chemical vapour deposition (CVD), and particularly diamond material having properties suitable for use in optical applications such as lasers, is disclosed. In particular, a CVD single crystal diamond material having preferred characteristics of longest linear internal dimension, birefringence and absorption coefficient, when measured at room temperature, is disclosed. Uses of the diamond material, including in a Raman laser, and methods of producing the diamond are also disclosed.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: April 28, 2015
    Assignee: Element Six Technologies Limited
    Inventors: Ian Friel, Sarah Louise Geoghegan, Daniel James Twitchen, Joseph Michael Dodson
  • Patent number: 8992877
    Abstract: A method of forming mono-crystalline diamond by chemical vapor deposition, the method comprising the steps of: (a) providing at least one diamond seed; (b) exposing the seed to conditions for growing diamond by chemical vapor deposition, including supplying reaction gases that include a carbon-containing gas and hydrogen for growing diamond and include a nitrogen-containing gas; and (c) controlling the quantity of nitrogen-containing gas relative to other gases in the reaction gases such that diamond is caused to grow by step-growth with defect free steps without inclusions. The nitrogen is present in the range of 0.0001 to 0.02 vol %. Diborane can also be present in a range of from 0.00002 to 0.002 vol %. The carbon-containing gas can be methane.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: March 31, 2015
    Assignees: IIA Technologies Pte. Ltd., Indian Institute of Technology Bombay
    Inventor: Devi Shanker Misra
  • Patent number: 8986408
    Abstract: Embodiments of the invention relate to polycrystalline diamond (“PCD”) fabricated by sintering a mixture including diamond particles and a selected amount of graphite particles, polycrystalline diamond compacts (“PDCs”) having a PCD table comprising such PCD, and methods of fabricating such PCD and PDCs. In an embodiment, a method includes providing a mixture including graphite particles present in an amount of about 0.1 weight percent (“wt %”) to about 20 wt % and diamond particles. The method further includes subjecting the mixture to a high-pressure/high-temperature process sufficient to form PCD.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: March 24, 2015
    Assignee: US Synthetic Corporation
    Inventor: Mohammad N. Sani
  • Patent number: 8986646
    Abstract: A method of introducing NV centers in single crystal CVD diamond material is described. One step of the method comprises irradiating diamond material that contains single substitutional nitrogen to introduce isolated vacancies into the diamond material in a concentration of at least 0.05 ppm and at most 1 ppm. Another step of the method comprises annealing the irradiated diamond to form NV centers from at least some of the single substitutional nitrogen defects and the introduced isolated vacancies.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: March 24, 2015
    Assignee: Element Six Technologies Limited
    Inventors: Daniel James Twitchen, Sarah Louise Geoghegan, Neil Perkins, Rizwan Uddin Ahmad Khan
  • Patent number: 8986645
    Abstract: A method of producing a CVD single crystal diamond layer on a substrate includes adding into a DVD synthesis atmosphere a gaseous source comprising silicon. The method can be used to mark the diamond material, for instance to provide means by which its synthetic nature can more easily be determined. It can also be exploited to generate single crystal diamond material of high color.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: March 24, 2015
    Assignee: Element Six Limited
    Inventors: Daniel James Twitchen, Geoffrey Alan Scarsbrook, Philip Maurice Martineau, Paul Martyn Spear, Stephen David Williams, Ian Friel
  • Patent number: 8974599
    Abstract: Synthetic monocrystalline diamond compositions having one or more monocrystalline diamond layers formed by chemical vapor deposition, the layers including one or more layers having an increased concentration of one or more impurities (such as boron and/or isotopes of carbon), as compared to other layers or comparable layers without such impurities. Such compositions provide an improved combination of properties, including color, strength, velocity of sound, electrical conductivity, and control of defects. A related method for preparing such a composition is also described., as well as a system for use in performing such a method, and articles incorporating such a composition.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: March 10, 2015
    Assignee: SCIO Diamond Technology Corporation
    Inventors: Robert C. Linares, Patrick J. Doering
  • Publication number: 20150059527
    Abstract: A method of treating an offgas includes purifying the offgas to remove particulate matter, water, undesirable gaseous components and inert gases to produce a dried carbon oxide gas feedstock, and converting at least a portion of carbon oxides in the dried carbon oxide gas feedstock into solid carbon. In other embodiments, a method includes passing a dried carbon oxide gas feedstock through a multi-stage catalytic converter. A first stage is configured to catalyze methane-reforming reactions to convert methane into carbon dioxide, carbon monoxide and hydrogen with residual methane. A second stage is configured to catalyze the Bosch reaction and convert carbon oxides and hydrogen to solid carbon and water.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 5, 2015
    Inventor: Dallas B. Noyes
  • Publication number: 20150060699
    Abstract: Authentication systems for products employing populations containing particles of diamonds that have fluorescent emissions of various wavelengths, intensities and durations are described. By varying the populations of diamond particles in products to be labeled, multiple different identification systems can be obtained permitting authentication taggants for large numbers of different products.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 5, 2015
    Inventor: Andrew S. JANOFF
  • Patent number: 8961920
    Abstract: Embodiments of methods of altering the color of diamonds are disclosed. In an embodiment, a method for altering the color of diamonds includes identifying and selecting a diamond having a suitable nitrogen content, HPHT processing the selected diamond under diamond-stable conditions to alter the color of the selected diamond from a first color to a second color, irradiating the HPHT-processed diamond with an electron source having an energy between about 1 MeV and about 20 MeV so as to alter the color of the selected diamond from the second color to a third color, and annealing the irradiated diamond either under partial vacuum conditions, or under HPHT diamond-stable conditions so as to alter the color from the third color to a fourth color (e.g., pink, red, or purple, depending on the nitrogen content of the selected diamond).
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: February 24, 2015
    Assignee: US Synthetic Corporation
    Inventor: Louis McConkie Pope, II
  • Publication number: 20150050207
    Abstract: A mild, acid- and alkali-free purification method of detonation nanodiamond material from water-insoluble metal-containing impurities and product obtained thereof. The products thus obtained include nanodiamond and diamond-containing detonation blend. The method is implemented by an impact treatment of the detonation nanodiamond material with aqueous or water organic solutions of chelating agents in concentrations 0.5-20 wt. % at elevated temperature, wherein the weight-percent ratio of the detonation nanodiamond material to an undiluted chelating agent is substantially 1 to 0.2. Impact treatment of the detonation nanodiamond material in chelating agent solution may include boiling, ultrasonication, cavitational disintegration, and harsh treatment in sealed chamber at temperatures of up to about 300° C. and high pressure.
    Type: Application
    Filed: March 16, 2012
    Publication date: February 19, 2015
    Applicant: CARBODEON LTD OY
    Inventors: Valery Dolmatov, Vesa Myllymaki
  • Publication number: 20150041225
    Abstract: A method of making a body of polycrystalline superhard material comprising placing an aggregated mass of grains of superhard material into a canister, placing a ceramic layer either in direct contact with the aggregated mass of grains of superhard material or in indirect contact therewith, the ceramic layer being spaced from the grains by an interlayer of material when present, the ceramic layer having a surface with surface topology, the surface topology imprinting a pattern in the aggregated mass of grains of superhard material complementary to the surface topology, the ceramic material and the material of the interlayer being such that they do not react chemically with the superhard material and/or a sinter catalyst material for the grains of superhard material. The aggregated mass of grains of superhard material and ceramic layer are subjected to a pressure of greater than 5.
    Type: Application
    Filed: March 27, 2013
    Publication date: February 12, 2015
    Inventors: Cornelis Roelof Jonker, Roger William Nigel Nilen, Maweja Kasonde, Stig Åke Andersin
  • Publication number: 20150038593
    Abstract: The present invention is directed to methods of disaggregating nanodiamond clusters, especially those clusters typically produced from detonation syntheses, the nanodiamond particles and dispersions produced from these disaggregation processes, and compositions derived from these nanodiamond particles and dispersions.
    Type: Application
    Filed: May 7, 2012
    Publication date: February 5, 2015
    Applicant: Drexel University
    Inventors: Yury Gogotsi, Vadym Mochalin
  • Patent number: 8945301
    Abstract: A method for producing a diamond material by contacting a fluorinated precursor with a hydrocarbon in a reactor and forming a combination in the absence of a metal catalyst; increasing the pressure of the reactor to a first pressure; heating the combination under pressure to form a material precursor; cooling the material precursor; and forming a diamond material.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: February 3, 2015
    Assignee: University of Houston System
    Inventors: Valery N. Khabashesku, Valery A. Davydov, Alexandra V. Rakhmanina
  • Patent number: 8940266
    Abstract: The present invention provides a method for producing a large substrate of single-crystal diamond, including the steps of preparing a plurality of single-crystal diamond layers separated form an identical parent substrate, placing the single-crystal diamond layers in a mosaic pattern on a flat support, and growing a single-crystal diamond by a vapor-phase synthesis method on faces of the single-crystal diamond layers where they have been separated from the parent substrate. According to the method of the invention, a mosaic single-crystal diamond having a large area and good quality can be produced relatively easily.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: January 27, 2015
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hideaki Yamada, Akiyoshi Chayahara, Yoshiaki Mokuno, Shinichi Shikata
  • Patent number: 8940267
    Abstract: A method of purifying a nanodiamond powder includes preparing the nanodiamond powder, heating the nanodiamond powder at between 450° C. and 470° C. in an atmosphere including oxygen, performing a hydrochloric acid treatment on the heated nanodiamond powder, and performing a hydrofluoric acid treatment on the nanodiamond powder obtained after performing the hydrochloric acid treatment.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: January 27, 2015
    Assignees: The Arizona Board of Regents on Behalf of the University of Arizona, Canon Kabushiki Kaisha
    Inventors: Robert A. Norwood, Palash Gangopadhyay, Alexander Ashton Miles, Jun Kato, Shabnam Virji-Khalfan, Mamoru Miyawaki
  • Patent number: 8936774
    Abstract: A CVD single crystal diamond material suitable for use in, or as, an optical device or element. It is suitable for use in a wide range of optical applications such as, for example, optical windows, laser windows, optical reflectors, optical refractors and gratings, and etalons. The CVD diamond material is produced by a CVD method in the presence of a controlled low level of nitrogen to control the development of crystal defects and thus achieve a diamond material having key characteristics for optical applications.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: January 20, 2015
    Assignee: Element Six Technologies Limited
    Inventors: Herman Philip Godfried, Geoffrey Alan Scarsbrook, Daniel James Twitchen, Evert Pieter Houwman, Wilhelmus Gertruda Maria Nelissen, Andrew John Whitehead, Clive Edward Hall, Philip Maurice Martineau
  • Patent number: 8932554
    Abstract: Method to produce diamonds containing Nitrogen-Vacancy centers from diamonds grown by a high pressure and high temperature process and containing isolated substitutional nitrogen, comprising: —Irradiating (12) said diamonds by an electron beam such that the irradiation dose is comprised between 1017 and 1019 electrons per square centimeter; —annealing (14) the irradiated diamonds in vacuum or in a inert atmosphere at a temperature above 700° C. and for at least 1 hour; characterized in that said electron beam has an acceleration energy above 7 MeV.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: January 13, 2015
    Assignees: INSERM (Institut National de la Sante et de la Recherche Medicale), Universitat Stuttgart, Armines
    Inventors: Jean-Paul Boudou, Patrick Curmi