Product Patents (Class 423/447.2)
  • Publication number: 20110262341
    Abstract: A catalyst free process for manufacturing carbon nanotubes by inducing an arc discharge from a carbon anode and a carbon cathode in an inert gas atmosphere contained in a closed vessel. The process is carried out at atmospheric pressure in the absence of external cooling mechanism for the carbon cathode or the carbon anode.
    Type: Application
    Filed: April 25, 2010
    Publication date: October 27, 2011
    Applicant: Sri Lanka Institute of Nanotechnology (Pvt) Ltd.
    Inventors: Lilantha Samaranayake, Nilwala Kottegoda, Asurasinghe R. Kumarasinghe, Ajith De Alwis, Sunanda Gunasekara, Sameera Nanayakkara, Veranja Karunaratne
  • Patent number: 8043693
    Abstract: A flame-resistant polymer excels in moldability capable of providing a flame-resistant molded item of novel configuration; a relevant flame-resistant polymer solution; a process for easily producing them; a carbon molding from the flame-resistant polymer; and a process for easily producing the same. A flame-resistant polymer is modified with an amine compound. Further, a flame-resistant polymer solution has the polymer dissolved in a polar organic solvent. A flame-resistant molding whose part or entirety is constituted of the flame-resistant polymer modified with an amine compound. A carbon molding was part or entirety constituted of a carbon component resulting from carbonization of the flame-resistant polymer modified with an amine compound. From the solution containing the flame-resistant polymer, moldings of various configurations can be obtained through further work.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: October 25, 2011
    Assignee: Toray Industries, Inc.
    Inventors: Tetsunori Higuchi, Katsumi Yamasaki, Koichi Yamaoka, Tomihiro Ishida
  • Publication number: 20110256401
    Abstract: A process of producing a composite having carbon nanotubes is described where the carbon nanotube formation process of producing carbon nanotubes includes controlled heating of plant fiber materials in an oxygen-limited atmosphere. The plant fiber materials may be heated either cyclically or by rapid heating to produce the carbon nanotubes.
    Type: Application
    Filed: June 29, 2011
    Publication date: October 20, 2011
    Inventors: Barry S. Goodell, Xinfeng Xie, Yuhui Qian, Dajie Zhang, Michael L. Peterson, Jody L. Jellison
  • Publication number: 20110243831
    Abstract: A production method of a carbon fiber precursor fiber and/or a fiber bundle which permits easy bundling of a plurality of small tows into one bundle, with a dividing capability to divide into the original small tows spontaneously at the time of firing, and is suitable for obtaining a carbon fiber that is excellent in productivity and quality. A production method of carbon fiber precursor fiber and/or a fiber bundle that has a degree of intermingle of 1 m?1 or less between small tows, consists of substantially straight fibers without imparted crimp, a tow of which straight fibers has a moisture content of less than 10% by mass when housed in a container, and has a widthwise dividing capability to maintain a form of a single aggregate of tows when housed in a container, taken out from the container and guided into a firing step, and to divide into a plurality of small tows in the firing step by the tension generated in the firing step.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 6, 2011
    Applicant: Mitsubishi Rayon Co., Ltd.
    Inventors: Katsuhiko Ikeda, Takahiko Kunisawa, Atsushi Kawamura
  • Patent number: 8029758
    Abstract: There is provided a process for producing single-walled carbon nanotubes with an increased diameter, characterized in that it comprises a diameter-increasing treatment step of heating carbon nanotubes of a raw material at a degree of vacuum of 1.3×10?2 Pa or below and at a temperature ranging from 1500 to 2000° C., preferably 1700 to 2000° C.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: October 4, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kyoichi Tange, Shizuka Takeuchi, Jiro Mizuno
  • Patent number: 8029759
    Abstract: Carbon nanostructures such as multiwalled carbon nanotubes are formed from electrolyzed coal char. The electrolyzed coal char is formed by forming a slurry of coal particles, metal catalyst and water and subjecting this to electrolysis, which generates carbon dioxide and hydrogen. This forms a coating on the particles which includes metal catalysts. These particles can be used as is for formation of multi-walled carbon nanotubes using a pyrolysis method or other method without the addition of any catalyst. The gelatinous coating can be separated from the char and used as a fuel or as a carbon source to form carbon nanostructures.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: October 4, 2011
    Assignee: Ohio University
    Inventor: Gerardine G. Botte
  • Patent number: 8021463
    Abstract: The invention relates to a method for producing spherical activated carbon, wherein polymer globules, which comprise thermally decomposing chemical groups, are carbonized. It is characterized by that during the carbonization, a supplier of free radicals is added to the polymer globules, the supplier of free radicals forming free radicals, which are different from the free radicals that are generated by the decomposition of the chemical groups.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: September 20, 2011
    Assignee: Blucher GmbH
    Inventors: Manfred Schönfeld, Raik Schönfeld
  • Publication number: 20110223094
    Abstract: A method is described herein for the providing of high quality graphene layers on silicon carbide wafers in a thermal process. With two wafers facing each other in close proximity, in a first vacuum heating stage, while maintained at a vacuum of around 10?6 Torr, the wafer temperature is raised to about 1500° C., whereby silicon evaporates from the wafer leaving a carbon rich surface, the evaporated silicon trapped in the gap between the wafers, such that the higher vapor pressure of silicon above each of the wafers suppresses further silicon evaporation. As the temperature of the wafers is raised to about 1530° C. or more, the carbon atoms self assemble themselves into graphene.
    Type: Application
    Filed: March 8, 2011
    Publication date: September 15, 2011
    Applicant: The Regents of the University of California
    Inventors: Alessandra Lanzara, Andreas K. Schmid, Xiaozhu Yu, Choonkyu Hwang, Annemarie Kohl, Chris M. Jozwiak
  • Patent number: 8012584
    Abstract: A pressure vessel includes a vessel body and a fiber reinforced plastic layer formed on the surface of the vessel body, wherein the fiber reinforced plastic layer include fiber reinforced plastic in which reinforcing fibers are impregnated with plastic, a strand elastic modulus of the reinforcing fiber is 305 GPa or higher, and a tensile elongation of the reinforcing fiber is 1.45 to 1.70%. A carbon fiber for a pressure vessel has a strand elastic modulus of 305 GPa or higher and a tensile elongation of 1.45 to 1.70%.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: September 6, 2011
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Naoki Sugiura, Satoshi Nagatsuka, Hidehiro Takemoto, Makoto Matsumoto, Masayuki Sugiura
  • Publication number: 20110206932
    Abstract: A carbon nanotube (CNT) is provided having micropores with a diameter of 1 to 10 nm in the side wall and in turn, having a large specific surface area. A production method of a surface-modified CNT (DMWCNT), comprises heating CNT having supported on the surface thereof a metal oxide or metal nitrate fine particle at a temperature of 100 to 1000° C., such as, 200 to 500° C., in an atmosphere containing oxygen. A cyclical solid phase oxidation-reduction reaction between the metal oxide and CNT occurs on the surface of the metal oxide fine particle supported on CNT, and carbon of CNT is oxidized to open a micropore. The metal oxide is preferably cobalt oxide, and the metal nitrate is preferably cobalt nitrate.
    Type: Application
    Filed: October 22, 2010
    Publication date: August 25, 2011
    Applicants: SHOWA DENKO K.K., TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Keiko Waki, Do-Hyun Kim, Masashi Takano
  • Patent number: 7998584
    Abstract: A high-purity carbon fiber-reinforced carbon composite includes a matrix, a carbon fiber, and sulfur. The matrix includes a crystalline carbon-based powder and glassy carbon. A content of sulfur in the high-purity carbon fiber-reinforced carbon composite is 5 ppm by mass or less.
    Type: Grant
    Filed: April 28, 2009
    Date of Patent: August 16, 2011
    Assignee: Ibiden Co., Ltd.
    Inventors: Hideki Kato, Masahiro Yasuda
  • Patent number: 7993780
    Abstract: This invention provides a process for producing a lithium secondary battery. The process comprises: (a) providing a positive electrode; (b) providing a negative electrode comprising a carbonaceous material capable of absorbing and desorbing lithium ions, wherein the carbonaceous material is obtained by chemically or electrochemically treating a laminar graphite material to form a graphite crystal structure having an interplanar spacing d002 of at least 0.400 nm as determined from a (002) reflection peak in powder X-ray diffraction; and (c) providing a non-aqueous electrolyte disposed between the negative electrode and the positive electrode to form the battery structure. This larger interplanar spacing (greater than 0.400 nm, preferably no less than 0.55 nm) implies a larger interstitial space between two graphene planes to accommodate a greater amount of lithium. The resulting battery exhibits an exceptionally high specific capacity, an excellent reversible capacity, and a long cycle life.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: August 9, 2011
    Assignee: Nanotek Instruments, Inc.
    Inventors: Bor Z. Jang, Aruna Zhamu
  • Publication number: 20110184077
    Abstract: The present invention is a method for decomposing a polymer material by chemically decomposing a polymer material containing a first monomer and a second monomer in a mixture of the polymer material with the first monomer or a derivative of the first monomer to produce a chemical raw material. A relationship between a proportion of number of molecules of the second monomer to number of molecules of the first monomer in a reaction system for decomposing the polymer material and the molecular weight of the chemical raw material produced in the reaction system is acquired in advance (S101). Subsequently, an addition mount of the derivative of the first monomer to be added to the polymer material is determined based on the above relationship (S102). The first monomer in the addition amount determined is then mixed with the polymer material (S103).
    Type: Application
    Filed: September 9, 2009
    Publication date: July 28, 2011
    Applicant: SUMITOMO BAKELITE CO., LTD
    Inventors: Junya Goto, Masaki Ishikawa, Tamotsu Orihara, Taichi Koide
  • Publication number: 20110171419
    Abstract: An electronic element includes a substrate, and a transparent conductive layer. The substrate includes a surface. The transparent conductive layer is formed on a surface of the substrate. The transparent conductive layer includes at least one carbon nanotube layer. Carbon nanotubes in the carbon nanotube layer are adhered together by the van der Waals attractive force therebetween.
    Type: Application
    Filed: September 29, 2008
    Publication date: July 14, 2011
    Applicants: Tsinghua University, HON HAI Precision Industry CO., LTD.
    Inventors: Qun-Qing Li, Kai-Li Jiang, Liang Liu, Shou-Shan Fan
  • Publication number: 20110171111
    Abstract: A method of producing carbon nanotubes includes directing a flow of a gas over a substrate to provide growth of at least one carbon nanotube in a carbon-nanotube-growth region of the substrate; applying an electric field to the carbon-nanotube-growth region of the substrate after the at least one carbon nanotube has begun to grow in the carbon-nanotube-growth region, the electric field being substantially in a first direction in the carbon-nanotube-growth region; and changing the electric field at a preselected time to be substantially in a second direction in the carbon-nanotube-growth region during growth of the at least one carbon nanotube. The second direction is different from the first direction resulting in a bend substantially at a selected position of the at least one carbon nanotube, the method of producing carbon nanotubes providing the production of the at least one carbon nanotube having at least one bend substantially at a selected position along the at least one carbon nanotube.
    Type: Application
    Filed: October 19, 2009
    Publication date: July 14, 2011
    Applicant: The Johns Hopkins University
    Inventors: Nina Markovic, Christopher A. Merchant, James R. Medford
  • Publication number: 20110171110
    Abstract: A method of synthesizing carbon nanotubes. In one embodiment, the method includes the steps of: (a) dissolving a first amount of a first transition-metal salt and a second amount of a second transition-metal salt in water to form a solution; (b) adding a third amount of tannin to the solution to form a mixture; (c) heating the mixture to a first temperature for a first duration of time to form a sample; and (d) subjecting the sample to a microwave radiation for a second duration of time effective to produce a plurality of carbon nanotubes.
    Type: Application
    Filed: March 22, 2011
    Publication date: July 14, 2011
    Applicant: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventor: Tito Viswanathan
  • Patent number: 7976814
    Abstract: The invention presents a fullerene derivative fine wire composed of basic component unit of fullerene derivative, being made of acicular crystal of fullerene derivative, as a fine wire showing high crystallinity and semiconductor performance.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: July 12, 2011
    Assignee: National Institute For Material Science
    Inventors: Kun'ichi Miyazawa, Tadatomo Suga, Tadahiko Mashino
  • Publication number: 20110158895
    Abstract: The invention provides a high module carbon fiber and a fabrication method thereof. The high module carbon fiber includes the product fabricated by the following steps: subjecting a pre-oxidized carbon fiber to a microwave assisted graphitization process, wherein the pre-oxidized carbon fiber is heated to a graphitization temperature of 1000-3000° C. for 1-30 min. Further, the high module carbon fiber has a tensile strength of between 2.0-6.5 GPa and a module of between 200-650 GPa.
    Type: Application
    Filed: May 29, 2010
    Publication date: June 30, 2011
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Chih-Yung Wang, I-Wen Liu, Jong-Pyng Chen, Shu-Hui Cheng, Syh-Yuh Cheng
  • Publication number: 20110159604
    Abstract: An isotope-doped nano-structure of an element is provided. The isotope-doped nano-structure includes at least one isotope-doped nano-structure segment having at least two isotopes of the element, and the at least two isotopes of the element are mixed uniformly in a certain proportion. The present disclosure also provides a method for making the isotope-doped nano-structures, and a labeling method using the isotope-doped nano-structures.
    Type: Application
    Filed: June 4, 2010
    Publication date: June 30, 2011
    Applicants: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: SHOU-SHAN FAN, LIANG LIU, KAI-LI JIANG
  • Patent number: 7968013
    Abstract: Nicotinamide and/or a compound which is chemically combined with nicotinamide may be used as a carbon nanotube (“CNT”) n-doping material. CNTs n-doped with the CNT n-doping material may have long-lasting doping stability in the air without de-doping. Further, CNT n-doping state may be easily controlled when using the CNT n-doping material. The CNT n-doping material and/or CNTs n-doped with the CNT n-doping material may be used for various applications.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: June 28, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jaeyoung Choi, Hyeon Jin Shin, Seonmi Yoon, Boram Kang, Young Hee Lee, Un Jeong Kim
  • Patent number: 7968073
    Abstract: Methods of producing stable dispersions of single-walled carbon nanotube structures in solutions are achieved utilizing dispersal agents. The dispersal agents are effective in substantially solubilizing and dispersing single-walled carbon nanotube structures in aqueous solutions by coating the structures and increasing the surface interaction between the structures and water. Exemplary agents suitable for dispersing nanotube structures in aqueous solutions include synthetic and natural detergents having high surfactant properties, deoxycholates, cyclodextrins, chaotropic salts and ion pairing agents. The dispersed nanotube structures may further be deposited on a suitable surface in isolated and individualized form to facilitate easy characterization and further processing of the structures.
    Type: Grant
    Filed: November 2, 2004
    Date of Patent: June 28, 2011
    Assignee: Battelle Memorial Institute
    Inventors: Mark S. F. Clarke, Daniel L. Feeback
  • Patent number: 7964151
    Abstract: Provided is an apparatus for producing carbon nanotubes, that is provided with a reaction chamber and a dispersion plate. The dispersion plate is provided with a plate and a gas guiding portion provided on an edge of the plate, and a catalyst supply hole is defined in the central portion of the plate, through which metal catalysts are supplied. The gas guiding portion guides source gas to the central portion of the plate and suspends the metal catalysts discharged from the catalyst supply hole in a specific direction. Thus, the apparatus for producing carbon nanotubes can prevent loss of metal catalysts and improve space utilization.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: June 21, 2011
    Assignee: Semes Co., Ltd.
    Inventor: Jong-Kwan Jeon
  • Patent number: 7959889
    Abstract: A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 ?m to about 150 ?m, and a density of less than 20 mg/cm3. Also described is a carbon microtube, having a diameter of at least 10 ?m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: June 14, 2011
    Assignee: Los Alamos National Security, LLC
    Inventors: Huisheng Peng, Yuntian Theodore Zhu, Dean E. Peterson, Quanxi Jia
  • Patent number: 7955699
    Abstract: An composite material is disclosed, which includes carbon fibrous structures which are capable of being included in a relatively large amount in the composite material, and which are capable of improving the physical properties, such as electric, mechanical, or thermal properties. The carbon fibrous structure comprises (a) carbon fibrous structures each of which comprises a three dimensional network of carbon fibers, each of the carbon fibers having an outside diameter of 15-100 nm, wherein the carbon fibrous structure further comprises a granular part, at which the carbon fibers are bound in a state that the carbon fibers are extended outwardly therefrom, and wherein the granular part is produced in a growth process of the carbon fibers, and (b) an material other than the carbon fibrous structures, wherein the amount of carbon fibrous structures added is more than 30% and not more than 100% by weight of the total weight of the composite.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: June 7, 2011
    Assignee: Hodogaya Chemical Co., Ltd
    Inventors: Koichi Handa, Subiantoro, Takayuki Tsukada, Jiayi Shan, Tsuyoshi Okubo
  • Publication number: 20110121227
    Abstract: Disclosed is a method of: providing a mixture of a polymer or a resin and a transition metal compound, producing a fiber from the mixture, and heating the fiber under conditions effective to form a carbon nanotube-containing carbonaceous fiber. The polymer or resin is an aromatic polymer or a precursor thereof and the mixture is a neat mixture or is combined with a solvent. Also disclosed are a carbonaceous fiber or carbonaceous nanofiber sheet having at least 15 wt. % carbon nanotubes, a fiber or nanofiber sheet having the a polymer or a resin and the transition metal compound, and a fiber or nanofiber sheet having an aromatic polymer and metal nanoparticles.
    Type: Application
    Filed: February 4, 2011
    Publication date: May 26, 2011
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Teddy M. Keller, Matthew Laskoski
  • Patent number: 7947114
    Abstract: A process for the production of a carbon membrane comprising: (i) reacting a mixture of cellulose and hemicellulose with an acid; (ii) casting the mixture to form a film, (iii) drying said film; and (iv) carbonizing said film.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: May 24, 2011
    Assignee: NTNU Technology Transfer AS
    Inventors: May-Britt Hagg, Jon Arvid Lie
  • Patent number: 7943110
    Abstract: A crosslinked carbon nanotube, in which multiple carbon nanotubes therein are crosslinked with each other at multiple cross-linking sites via a connecting group containing a ?-electron conjugation system, and the bond between the connecting group and the carbon nanotube is not an ester or amido bond.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: May 17, 2011
    Assignee: FUJIFILM Corporation
    Inventors: Yoshio Inagaki, Kenta Yoshida, Hirotaka Kitagawa
  • Publication number: 20110110843
    Abstract: Articles comprising neat, aligned carbon nanotubes and methods for production thereof are disclosed. The articles and methods comprise extrusion of a super acid solution of carbon nanotubes followed by removal of the super acid solvent. The articles may be processed by wet-jet wet spinning, dry-jet wet spinning, and coagulant co-flow extrusion techniques.
    Type: Application
    Filed: October 29, 2008
    Publication date: May 12, 2011
    Applicant: WILLIAM MARCH RICE UNIVERSITY
    Inventors: Matteo Pasquali, Wen-Fang Hwang, Howard K. Schmidt, Natneal Behabtu, Virginia Davis, A. Nicholas G. Parra-Vasquez, Micah J. Green, Richard Booker, Colin c. Young, Hua Fan
  • Patent number: 7931884
    Abstract: Methods and processes for preparing interconnected carbon single-walled nanotubes (SWNTs) are disclosed. The SWNTs soot, synthesized by any one of the art methods, is heated to less than about 1250° C. in flowing dry air using the electrical field (E) component of microwave energy. The tubes of the SWNTs thus treated become welded and interconnected.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: April 26, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventor: Avetik Harutyunyan
  • Patent number: 7927567
    Abstract: An adsorbent including a porous member having holes and a nanostructure formed on at least a portion of a surface of the porous member, and an air cleaning device including the adsorbent. A porous filter including a porous member having holes and a nanostructure formed on at least a portion of a surface of the porous member, and an air cleaning device including the porous filter. A method of cleaning air for decomposing a hazardous substance using the porous filter and a decomposition gas including a superheated water vapor. A method of manufacturing a porous filter including the steps of growing a nanostructure on at least a portion of a surface of a porous member having holes, allowing a catalyst particle to be contained in a dispersion gas including a superheated water vapor, and spraying the dispersion gas on a surface of the nanostructure to attach the catalyst particle thereto.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: April 19, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Mikihiro Yamanaka, Jun Kudo, Keita Hara
  • Patent number: 7922796
    Abstract: A carbon nanotube filter. The filter including a filter housing; and chemically active carbon nanotubes within the filter housing, the chemically active carbon nanotubes comprising a chemically active layer formed on carbon nanotubes or comprising chemically reactive groups on sidewalls of the carbon nanotubes; and media containing the chemically active carbon nanotubes.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: April 12, 2011
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Holmes, Mark C. Hakey, David V. Horak, James G. Ryan
  • Patent number: 7919427
    Abstract: A catalyst carrier, being characterized in that a catalyst metal for promoting an oxidation-reduction reaction is carried on a vapor-grown carbon fiber having an average outer diameter of from 2 nm to 500 nm, which has been subjected to a crushing treatment so as to have a BET specific surface area of from 4 m2/g to 100 m2/g and an aspect ratio of from 1 to 200, and exhibiting high activity per unit amount of a catalyst metal, a low reaction resistance and an improved output density, and is useful for a fuel cell; a production method thereof and a fuel cell using the catalyst carrier.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: April 5, 2011
    Assignee: Showa Denko K.K.
    Inventors: Ken-ichiro Ota, Akimitsu Ishihara, Satoshi Iinou, Akinori Sudoh
  • Publication number: 20110073010
    Abstract: Processes are provided for removing metal-based catalyst residues from carbon nanotubes by contacting the carbon nanotubes with an active metal agent and carbon monoxide.
    Type: Application
    Filed: December 2, 2010
    Publication date: March 31, 2011
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventor: Steven Dale Ittel
  • Publication number: 20110064645
    Abstract: The present invention provides a method for producing carbon nanotubes comprising (a) providing a substrate; (b) coating a catalyst layer on said substrate; (e) heating the substrate from step (b); (d) continuously supplying a carbon source to grow carbon nanotubes; (e) interrupting the supplement of the carbon source and supplying an oxidizing gas; and (f) resupplying the carbon source to make the carbon nanotubes obtained from step (d) to re-grow at a higher growth rate. The present invention also provides carbon nanotubes fabricated by the above-mentioned method. The carbon nanotubes have extremely excellent field emission properties.
    Type: Application
    Filed: December 11, 2009
    Publication date: March 17, 2011
    Applicant: National Cheng Kung University
    Inventors: Jyh-Ming TING, Wen-Chen Lin
  • Patent number: 7906096
    Abstract: The present invention provides a chiral inorganic-organic composite porous material in which cationic chiral organic molecules are present as charge-balancing cations in a porous material containing charge-balancing cations, as well as a method for preparing the same by an ion exchange process. The chiral inorganic-organic composite porous material according to the present invention is excellent in stability, selectivity and durability, and thus, will be useful as a chiral-selective catalyst or a material of separating an isomeric mixture.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: March 15, 2011
    Assignee: Chirolite
    Inventors: Dong Han Bae, Chang Ick Lee, Seung Kwon Yang, Kyoung Tai No, Suk Kyu Chang, Byung Hee Seo, Jung Sup Kim, Jong Won Kim, Mee Kyung Song
  • Publication number: 20110058308
    Abstract: This invention provides a metal encapsulated dendritic carbon nanostructure comprising a dendritic carbon nanostructure comprising a branched carbon-containing rod-shaped or annular material and a metallic body capsulated in the carbon nanostructure. There is also provided a dendritic carbon nanostructure comprising a branched carbon-containing rod-shaped or annular material.
    Type: Application
    Filed: December 9, 2008
    Publication date: March 10, 2011
    Inventors: Nobuyuki Nishi, Shigenori Numao, Kent Judai, Junichi Nishijo, Kazuhiko Mizuuchi
  • Publication number: 20110038787
    Abstract: A system includes a carbon nanotube and a torsion device. The torsion device is coupled to the carbon nanotube. The torsion device is configured to apply torsion to the carbon nanotube.
    Type: Application
    Filed: July 6, 2010
    Publication date: February 17, 2011
    Applicant: Technology Transfer Office, University of Manitoba
    Inventor: Quan Wang
  • Publication number: 20110039075
    Abstract: A carbon nanotube film includes a plurality of carbon nanotubes. The plurality of carbon nanotubes is arranged approximately along a same first direction. The plurality of carbon nanotubes are joined end to end by van der Waals attractive force therebetween. The carbon nanotube film has a uniform width. The carbon nanotube film has substantially the same density of the carbon nanotubes along a second direction perpendicular to the first direction. The change in density across the width is within 10 percent. The present application also relates to a carbon nanotube film precursor and a method for making the carbon nanotube film.
    Type: Application
    Filed: December 30, 2009
    Publication date: February 17, 2011
    Applicants: TSINGHUA UNIVERSITY, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: CHEN FENG, KAI-LI JIANG, ZHUO CHEN, YONG-CHAO ZHAI, SHOU-SHAN FAN
  • Publication number: 20110038788
    Abstract: A carbon fiber precursor fiber having a weight average molecular weight Mw(F) of 200,000 to 700,000 and a degree of polydispersity MZ(F)/Mw(F), wherein MZ(F) indicates Z-average molecular weight of the fiber, of 2 to 5.
    Type: Application
    Filed: April 10, 2009
    Publication date: February 17, 2011
    Applicant: TORAY INDUSTRIES, INC.
    Inventors: Fumihiko Tanaka, Makoto Endo, Daisuke Kawakami
  • Publication number: 20110038786
    Abstract: The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.
    Type: Application
    Filed: January 5, 2010
    Publication date: February 17, 2011
    Applicant: Northwestern University
    Inventors: Mark C. Hersam, Samuel I. Stupp, Michael S. Arnold
  • Patent number: 7887772
    Abstract: The present invention discloses an ultrafine graphitic carbon fiber and a preparation method thereof. An ultrafine fiber having a diameter of 1 to 3000 nm is prepared by electrospinning a halogenated polymer solution containing a metal compound inducing graphitization. In carbonization, an ultrafine porous graphitic carbon fiber having a large specific surface area, micropores and macropores is prepared by the graphitization by a metal catalyst generated from the metal compound. The ultrafine carbon fiber can be used as a carbon material for storing hydrogen, an adsorbing material of biochemically noxious substances, an electrode material of a supercapacitor, a secondary cell and a fuel cell, and a catalyst carrier material.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: February 15, 2011
    Assignee: Korea Institute of Science and Technology
    Inventors: Seong-Mu Jo, Dong-Young Kim, Byung-Doo Chin, Sung-Eun Hong
  • Patent number: 7887774
    Abstract: The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: February 15, 2011
    Assignee: William Marsh Rice University
    Inventors: Michael S. Strano, Monica Usrey, Paul Barone, Christopher A. Dyke, James M. Tour, W. Carter Kittrell, Robert H Hauge, Richard E. Smalley, Irene Marie Marek, legal representative
  • Publication number: 20110033365
    Abstract: This invention provides a process and apparatus for producing a carbonaceous film such as a DLC film using a solid raw material without the need to supply a high energy radiation such as a laser beam. The process comprises providing a solid organic material as a raw material, applying a discharge energy to the material to form plasma, and depositing the plasma onto a base material to form a carbonaceous film. This process is preferably carried out by using a film production apparatus (1) comprising discharge means (10). The discharge means (10) comprises a pair of electrodes (a raw material holder) (12, 14) for holding a raw material (50) and voltage applying means (20) for applying voltage across the electrodes.
    Type: Application
    Filed: December 7, 2007
    Publication date: February 10, 2011
    Applicants: NATIONAL UNIVERSITY CORPORATION NAGOYA UNIVERSITY, THE UNIVERSITY OF TOKYO
    Inventors: Hiroyuki Kousaka, Hiroyuki Koizumi, Eri Hamajima, Noritsugu Umehara, Yoshihiro Arakawa
  • Publication number: 20110033366
    Abstract: A method includes isolating carbon atoms as carbide anions below a surface of a reactant liquid. The carbide anions are then enabled to escape from the reactant liquid to a collection area where carbon nanostructures may form. A carbon structure produced in this fashion includes at least one layer made up of hexagonally arranged carbon atoms. Each carbon atom has three covalent bonds to adjoining carbon atoms and one unbound pi electron.
    Type: Application
    Filed: October 18, 2010
    Publication date: February 10, 2011
    Inventor: Anthony S. Wagner
  • Patent number: 7884300
    Abstract: A method of realizing selective separation of metallic single-walled carbon nanotubes and semiconducting carbon nanotubes from bundled carbon nanotubes; and obtaining of metallic single-walled carbon nanotubes separated at high purity through the above method. Metallic single-walled carbon nanotubes are dispersed one by one from bundled carbon nanotubes not only by the use of a difference in interaction with amine between metallic single-walled carbon nanotubes and semiconducting carbon nanotubes due to a difference in electrical properties between metallic single-walled carbon nanotubes and semiconducting carbon nanotubes but also by the use of the fact that an amine is an important factor in SWNTs separation. The thus dispersed carbon nanotubes are subjected to centrifugation, thereby attaining separation from non-dispersed semiconducting carbon nanotubes.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: February 8, 2011
    Assignee: University of Tsukuba
    Inventors: Takeshi Akasaka, Takatsugu Wakahara, Yutaka Maeda
  • Publication number: 20110027163
    Abstract: A method for preparing hollow nanofibers having carbon as a primary component by contacting a carbon-containing compound with a catalyst at 500 to 1200° C., wherein the catalyst is one of a zeolite exhibiting thermal resistance at 900° C. and, supported thereon, a metal; a metallosilicate zeolite containing a heteroatom except aluminum and silicon and a metal; a supporting material and fine cobalt particles exhibiting a binding energy of a cobalt 2P3/2 electron of 779.3 to 781.0 eV; a supporting material and fine cobalt particles exhibiting a cobalt atom ratio in the surface of the supporting material of 0.1 to 1.5%, as measured by the X-ray photoelectron spectroscopy at 10 kV and 18 mA; a supporting material and fine cobalt particles exhibiting a weight ratio of cobalt to a second metal component of 2.5 or more; and a zeolite having a film form and a metal.
    Type: Application
    Filed: April 28, 2010
    Publication date: February 3, 2011
    Inventors: Hisanori Shinohara, Masahito Yoshikawa, Yuji Ozeki, Atsushi Okamoto, Motohiro Kuroki
  • Publication number: 20110024697
    Abstract: The present invention in one aspect relates to a method for producing carbon nanotubes. In one embodiment, the method includes the steps of forming a substrate, depositing a loading amount of catalyst including iron and cobalt nanoparticles on the surfaces of the substrate, and heating the catalyst deposited on the substrate in a radio frequency reactor having a flow of a methane carbon source at a predetermined temperature so as to cause the growth of carbon nanotubes on the substrate.
    Type: Application
    Filed: April 1, 2010
    Publication date: February 3, 2011
    Applicant: BOARD OF TRUSTEES OF THE UNIVERSITY OF ARKANSAS
    Inventors: Alexandru S. Biris, Yang Xu, Dervishi Enkeleda, Li Zhongrui
  • Patent number: 7879306
    Abstract: The present invention relates to dispersions of nanostructured carbon in organic solvents containing alkyl amide compounds and/or diamide compounds. The invention also relates to methods of dispersing nanostructured carbon in organic solvents and methods of mobilizing nanostructured carbon. Also disclosed are methods of determining the purity of nanostructured carbon.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: February 1, 2011
    Assignee: Rochester Institute of Technology
    Inventors: Brian J. Landi, Ryne P. Raffaelle, Herbert J. Ruf, Christopher M. Evans
  • Patent number: 7879307
    Abstract: Separation of carbon nanotubes or fullerenes according to diameter through non-covalent pi-pi interaction with molecular clips is provided. Molecular clips are prepared by Diels-Alder reaction of polyacenes with a variety of dienophiles. The pi-pi complexes of carbon nanotrubes with molecular clips are also used for selective placement of carbon nanotubes and fullerenes on substrates.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: February 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Cherie R. Kagan, Rudolf Tromp
  • Patent number: 7879300
    Abstract: Method for preparing carbon nanotubes or nitrogen-doped carbon nanotubes by pyrolysis, in a reaction chamber, of a liquid containing at least one liquid hydrocarbon precursor of carbon or at least one liquid compound precursor of carbon and nitrogen consisting of carbon atoms, nitrogen atoms and optionally hydrogen atoms and/or atoms of other chemical elements such as oxygen, and optionally at least one metal compound precursor of a catalyst metal, in which said liquid is formed under pressure into finely divided liquid particles such as droplets by a specific injection system, preferably a periodic injection system, and the finely divided particles, such as droplets, formed in this way are conveyed by a carrier gas stream and introduced into the reaction chamber, where the deposition and growth of the carbon nanotubes or nitrogen-doped carbon nanotubes take place.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: February 1, 2011
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Martine Mayne, Dominique Porterat, Frédéric Schuster