Including Reaction With Gaseous Oxygen Patents (Class 423/447.6)
  • Patent number: 11598029
    Abstract: A manufacturing method and an apparatus enable high productivity. A method for manufacturing an oxidized fiber bundle includes joining an upstream precursor fiber bundle and a downstream precursor fiber bundle together with a joining fiber bundle, and oxidizing the joined precursor fiber bundles by feeding the joined precursor fiber bundles through an oxidization furnace. The joining includes applying an oiling agent to a joint area of a joining target precursor fiber bundle before joining the joining target precursor fiber bundle and the joining fiber bundle together. A quantity of the oiling agent adhering to the joint area is 0.15 to 0.85 wt %.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: March 7, 2023
    Assignee: TEIJIN LIMITED
    Inventors: Yosuke Nakamura, Fumio Akiyama
  • Patent number: 10843168
    Abstract: The present invention relates to an activated carbon for organic compound removal in which the average pore diameter obtained from the following formula by using a BET specific surface area calculated by the nitrogen adsorption method and a pore volume calculated by the HK method is from 1.615 to 1.625 nm: D=4000×V/S (wherein, D represents an average pore diameter (nm), V represents a pore volume (mL/g), and S represents a specific surface area (m2/g)).
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: November 24, 2020
    Assignee: KURARAY CO., LTD.
    Inventors: Tetsuya Hanamoto, Mitsunori Hitomi, Yoshinari Kobashi
  • Patent number: 10787755
    Abstract: A method and apparatus for manufacturing a carbon fiber. Pressure is applied to a filament to change a cross-sectional shape of the filament and create a plurality of distinct surfaces on the filament. The filament is converted into a graphitic carbon fiber having the plurality of distinct surfaces. A plurality of sizings is applied to the plurality of distinct surfaces of the graphitic carbon fiber in which the plurality of sizings includes at least two different sizings.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: September 29, 2020
    Assignee: The Boeing Company
    Inventors: Keith Daniel Humfeld, Scott Hartshorn
  • Patent number: 10290388
    Abstract: According to one aspect of the present invention, carbon nanotubes whose diameter, length, crystallinity, purity and the like are adjusted to predetermined ranges are added to a thermoplastic resin, and thus the thermoplastic resin can be provided with improved electrical conductivity.
    Type: Grant
    Filed: February 17, 2017
    Date of Patent: May 14, 2019
    Assignee: Korea Kumho Petrochemical Co., Ltd.
    Inventors: Dong Hoon Oh, Hyun Kyung Sung, Sang Hyo Ryu, Chung Heon Jeong, Ki Hong Kim, Dong Hwan Kim
  • Patent number: 9643894
    Abstract: A self-assembled carbon structure such as a carbon opal is disclosed herein. The structure is composed of hydrophilic carbon spheres oriented in a periodic colloidal crystal structure, wherein the carbon spheres have a porous surface, wherein the carbons spheres have an average particle diameter less than 3000 nm. Also disclosed is an inverse opal structure that includes a plurality of voids in the structural material. The voids are regularly arranged in an ordered periodic structure, the voids having a spherical shape. The inverse opal structure has a specific surface area greater than 100 m2/g and method for making the same together with materials that employ the same.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: May 9, 2017
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The Board of Trustees Of The University Of Illinois
    Inventors: Kazuhisa Yano, Matthew Dave Goodman, Paul Vannest Braun
  • Patent number: 9272169
    Abstract: A fire barrier system for use in aircraft, ship or offshore drilling platform comprises a flexible graphite sheet. Methods of providing fire barrier protection in an aircraft, ship or offshore drilling platform comprise installing the described fire barrier system in the aircraft, ship or offshore drilling platform. Additionally, the fire barrier system when installed in the aircraft, ship or offshore drilling platform is described.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: March 1, 2016
    Assignee: KANEKA CORPORATION
    Inventors: Kazuhiro Ono, Yasushi Nishikawa, Takashi Inada
  • Patent number: 9147873
    Abstract: A method for producing an amorphous carbon material for a negative electrode of a lithium-ion secondary battery includes the steps of; pulverizing and classifying a raw coke composition obtained from a heavy-oil composition undergone coking by delayed coking process to obtain powder of the raw coke composition, the raw coke composition having a H/C atomic ratio that is a ratio of hydrogen atoms H and carbon atoms C of 0.30 to 0.50 and having a micro-strength of 7 to 17 mass %; giving compressive stress and shear stress to the powder of the raw coke composition to obtain a carbonized composition precursor; and heating the carbonized composition precursor under an inert atmosphere at a temperature from 900° C. to 1,500° C. so that a size of a crystallite Lc(002) is in a range of 2 nm to 8 nm, the size being calculated from a (002) diffraction line obtained by X-ray wide-angle diffractometry.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: September 29, 2015
    Assignees: JX NIPPON OIL & ENERGY CORPORATION, TODA KOGYO CORP.
    Inventors: Takashi Suzuki, Noriyo Ishimaru, Takashi Oyama, Tamotsu Tano, Toshiyuki Oda, Ippei Fujinaga, Tomoaki Urai, Seiji Okazaki, Katsuaki Kurata, Toshiaki Hiramoto, Akino Sato, Wataru Oda
  • Patent number: 9096956
    Abstract: A process is provided for preparation of carbon fibers based from fibers of poly(?(1?3) glucan). The method comprises three thermal exposures at progressively higher temperatures to drive off volatiles, thermally stabilize the glucan fiber, and carbonize the thermally stabilized fiber. The carbon fibers prepared according to the process hereof are strong, stiff, tough, and easily handled.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: August 4, 2015
    Assignee: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Mark Brandon Shiflett, Beth Ann Elliott
  • Publication number: 20150114262
    Abstract: Provided are carbon fiber bundles which have high knot strength even if the single fiber fineness is large, and which have excellent handling properties and processability. The carbon fiber bundles have a single fiber fineness of 0.8-2.5 dtex, knot strength of 298 N/mm2 or greater. This method of producing carbon fibers having knot strength of 298 N/mm2 or greater involves a heat treatment step for heat treating, for 50-150 minutes, specific polyacrylonitrile-based precursor fiber bundles described in the description in an oxidizing atmosphere rising in temperature in the temperature range of 220-300° C.
    Type: Application
    Filed: April 18, 2013
    Publication date: April 30, 2015
    Applicant: Mitsubishi Rayon Co., Ltd.
    Inventors: Takayuki Kiriyama, Naoki Sugiura, Masahiro Hata
  • Publication number: 20150110705
    Abstract: Provided is a carbon-fiber-precursor acrylic fiber bundle which can smoothly pass through a flame-resistance impartation step and a carbonization step. The carbon-fiber-precursor acrylic fiber bundle has a high-density part as a portion thereof, wherein the high-density part satisfies the following requirements (A) and (B). Requirement A: The high-density part has a maximum fiber density ?max of 1.33 g/cm3 or higher. Requirement B: The portion extending between an intermediate-density point and a maximum-density-region arrival point has an increase in fiber density of 1.3×10?2 g/cm3 or less per 10 mm of the fiber bundle length. The term “intermediate-density point” means the site which has a density ?m that is intermediate between the fiber density ?o of the non-high-density part and the maximum fiber density ?max. The term “maximum-density-region arrival point” means the site Pr at which the increase in fiber density per 10 mm of the fiber bundle length becomes 1.
    Type: Application
    Filed: April 12, 2013
    Publication date: April 23, 2015
    Applicant: MITSUBISHI RAYON CO., LTD.
    Inventors: Tadanobu Ikeda, Tadao Samejima, Youji Hatanaka, Tetsu Yasunami
  • Publication number: 20150094401
    Abstract: Provided are carbon fibers which have a thicker single fiber fineness of the polyacrylonitrile-based precursor fiber bundles and lower production costs, and which have excellent mechanical properties. Also provided are: carbon fiber bundles having a single fiber fineness of 0.8-2.1 dtex, a strand strength of 4.9 GPa or greater, and a strand elastic modulus of 200 GPa or greater; carbon fiber bundles having a single fiber fineness of 0.8-2.5 dtex, a strand strength of 3.0 GPa or greater, and a strand elastic modulus of 240 GPa or greater; and an optimal method for producing said carbon fiber bundles. carbon fiber bundles having a single fiber fineness of 0.8-2.5 dtex, a strand strength of 3.0 GPa or greater, and a strand elastic modulus of 240 GPa or greater; and an optimal method for producing said carbon fiber bundles.
    Type: Application
    Filed: April 18, 2013
    Publication date: April 2, 2015
    Applicant: Mitsubishi Rayon Co., Ltd.
    Inventors: Takayuki Kiriyama, Naoki Sugiura, Masahiro Hata
  • Patent number: 8945501
    Abstract: A method for preparing a carbon nanotube, including: a) preparing an LPAN solution, stirring the LPAN solution at between 100 and 200° C. for between 100 and 200 hours to yield a cyclized LPAN solution; b) heating the cyclized LPAN solution at between 200 and 300° C. for between 1 and 10 hours to yield an OPAN; c) grinding, screening, and drying at room temperature the OPAN to yield a thermal oxidative precursor; d) calcining the thermal oxidative precursor at between 400 and 1000° C. for between 1 and 24 h in the presence of inert gas having a flow rate of between 10 and 500 mL/min to yield a carbonated precursor; and e) calcining the carbonated precursor at between 1000 and 1500° C. for between 1 and 10 hours in the presence of the inert gas having a flow rate of between 10 and 500 mL/min to yield a carbon nanotube material.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: February 3, 2015
    Inventors: Jianhong Liu, Jian Xu, Shuangquan Wu
  • Patent number: 8906339
    Abstract: The invention provides a high module carbon fiber and a fabrication method thereof. The high module carbon fiber includes the product fabricated by the following steps: subjecting a pre-oxidized carbon fiber to a microwave assisted graphitization process, wherein the pre-oxidized carbon fiber is heated to a graphitization temperature of 1000-3000° C. for 1-30 min. Further, the high module carbon fiber has a tensile strength of between 2.0-6.5 GPa and a module of between 200-650 GPa.
    Type: Grant
    Filed: May 29, 2010
    Date of Patent: December 9, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-Yung Wang, I-Wen Liu, Jong-Pyng Chen, Shu-Hui Cheng, Syh-Yuh Cheng
  • Patent number: 8871172
    Abstract: The invention is directed to carbon fibers having high tensile strength and modulus of elasticity. The invention also provides a method and apparatus for making the carbon fibers. The method comprises advancing a precursor fiber through an oxidation oven wherein the fiber is subjected to controlled stretching in an oxidizing atmosphere in which tension loads are distributed amongst a plurality of passes through the oxidation oven, which permits higher cumulative stretches to be achieved. The method also includes subjecting the fiber to controlled stretching in two or more of the passes that is sufficient to cause the fiber to undergo one or more transitions in each of the two or more passes. The invention is also directed to an oxidation oven having a plurality of cooperating drive rolls in series that can be driven independently of each other so that the amount of stretch applied to the oven in each of the plurality of passes can be independently controlled.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: October 28, 2014
    Assignee: Hexcel Corporation
    Inventor: Carlos A. León y León
  • Patent number: 8858909
    Abstract: There is provided a high-purity carbon nanotube, which can be produced with simple purification by causing graphite to be hardly contained in crude soot obtained immediately after being synthesized by arc-discharge, and a method for producing the same. Soot containing carbon nanotubes produced by arc-discharge using an anode which contains amorphous carbon as a main component is heated at a temperature of not lower than 350° C. to be burned and oxidized, immersed in an acid, heated at a temperature, which is not lower than the heating temperature in the previous burning and oxidation and which is not lower than 500° C., to be burned and oxidized, and immersed in an acid again.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: October 14, 2014
    Assignees: Dowa Holdings Co., Ltd., Tohoku University
    Inventors: Yoshinori Sato, Kazuyuki Tohji, Masaru Namura
  • Patent number: 8734754
    Abstract: The invention is directed to carbon fibers having high tensile strength and modulus of elasticity. The invention also provides a method and apparatus for making the carbon fibers. The method comprises advancing a precursor fiber through an oxidation oven wherein the fiber is subjected to controlled stretching in an oxidizing atmosphere in which tension loads are distributed amongst a plurality of passes through the oxidation oven, which permits higher cumulative stretches to be achieved. The method also includes subjecting the fiber to controlled stretching in two or more of the passes that is sufficient to cause the fiber to undergo one or more transitions in each of the two or more passes. The invention is also directed to an oxidation oven having a plurality of cooperating drive rolls in series that can be driven independently of each other so that the amount of stretch applied to the oven in each of the plurality of passes can be independently controlled.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: May 27, 2014
    Assignee: Hexcel Corporation
    Inventor: Carlos A. León y León
  • Publication number: 20140000454
    Abstract: The various embodiments of the disclosure relate generally to carbon molecular sieve membranes (CMSM) and their associated fabrication processes, and more particularly to CMSM that maintain high gas selectivities without losing productivity. Methods for enriching a mixture of gases in one gas via the use of the CMS membranes, and gas enrichment devices using the same, are also disclosed.
    Type: Application
    Filed: May 30, 2013
    Publication date: January 2, 2014
    Inventors: Rachana Singh, William John Koros
  • Patent number: 8591859
    Abstract: The invention is directed to carbon fibers having high tensile strength and modulus of elasticity. The invention also provides a method and apparatus for making the carbon fibers. The method comprises advancing a precursor fiber through an oxidation oven wherein the fiber is subjected to controlled stretching in an oxidizing atmosphere in which tension loads are distributed amongst a plurality of passes through the oxidation oven, which permits higher cumulative stretches to be achieved. The method also includes subjecting the fiber to controlled stretching in two or more of the passes that is sufficient to cause the fiber to undergo one or more transitions in each of the two or more passes. The invention is also directed to an oxidation oven having a plurality of cooperating drive rolls in series that can be driven independently of each other so that the amount of stretch applied to the oven in each of the plurality of passes can be independently controlled.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: November 26, 2013
    Assignee: Hexcel Corporation
    Inventor: Carlos A. León y León
  • Patent number: 8540959
    Abstract: According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: September 24, 2013
    Assignee: William Marsh Rice University
    Inventors: Kirk J. Ziegler, Urs Rauwald, Robert H. Hauge, Howard K. Schmidt, W. Carter Kittrell, Zhenning Gu, Irene Morin Marek
  • Patent number: 8501146
    Abstract: Disclosed is a method for preparing hollow carbon fibers having an empty space in the cross section thereof. More specifically, the disclosed method includes melt-spinning an acrylonitrile-based polymer by using a supercritical fluid as a plasticizer; drawing spun fibers to prepare hollow precursor fibers; and stabilizing and carbonizing the hollow precursor fibers to prepare the hollow carbon fibers. The hollow carbon fibers obtained by the disclosed method have at least a 10 to 50% lower specific gravity than conventional hollow carbon fibers (solid), but have similar mechanical properties to the conventional fibers. Furthermore, the diameter of carbon fibers can be adjusted, thereby making it possible to widen the application of hollow carbon fibers.
    Type: Grant
    Filed: February 15, 2012
    Date of Patent: August 6, 2013
    Assignee: Hyundai Motor Company
    Inventors: Young-Ho Choi, Do Suck Han, Chi-Hoon Choi
  • Patent number: 8367034
    Abstract: The present invention relates to cobalt and molybdenum doped mesoporous silica catalysts and methods for using the catalysts to making Single-Walled Carbon Nanotubes. The methods offer increased control over the orientation, length and diameter of the nanotubes produced.
    Type: Grant
    Filed: June 3, 2005
    Date of Patent: February 5, 2013
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Stephen O'Brien, Limin Huang, Brian Edward White
  • Patent number: 8329134
    Abstract: A method for fabricating a carbon nanotube film includes the following steps: providing a vacuum chamber having a carbon nanotube array therein; and pulling a carbon nanotube film out from the carbon nanotube array.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: December 11, 2012
    Assignee: Beijing FUNATE Innovation Technology Co., Ltd.
    Inventors: Liang Liu, Li Qian, Chen Feng, Yu-Quan Wang
  • Patent number: 8323602
    Abstract: Carbon monoxide (CO) may be removed from flue gas generated by oxyfuel combustion of a hydrocarbon or carbonaceous fuel, by contacting the flue gas, or a CO-containing gas derived therefrom, at a first elevated temperature, e.g. at least 80° C., and at a first elevated pressure, e.g. at least 2 bar (0.2 MPa), with at least one catalyst bed comprising a CO-oxidation catalyst in the presence of oxygen (O2) to convert CO to carbon dioxide and produce carbon dioxide-enriched gas. The carbon dioxide produced from the CO may be recovered from the carbon dioxide-enriched gas using conventional carbon dioxide recovery techniques. NO in the flue gas may also be oxidized to nitrogen dioxide (NO2) and removed using conventional NO2 removal techniques, or may be reduced in the presence of a reducing gas to nitrogen (N2) which does not have to be removed from the gas.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: December 4, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Wright, Vincent White, Timothy Christopher Golden
  • Patent number: 8236273
    Abstract: There is disclosed a method of producing a pre-oxidation fiber in the production of the pre-oxidation fiber by subjecting a polyacrylic precursor fiber to pre-oxidation processing in an oxidizing atmosphere, including shrinking the precursor fiber as a pretreatment of pre-oxidation at a load of 0.58 g/tex or less in the temperature range of 220 to 260° C. under conditions in which the degree of cyclization (I1620/I2240) of the precursor fiber measured by a Fourier transform infrared spectrophotometer (FT-IR) does not exceed 7%, initially-drawing the precursor fiber at a load of 2.7 to 3.5 g/tex in an oxidizing atmosphere at 230 to 260° C. in the ranges of the degree of cyclization of not exceeding 27% and of the density of not exceeding 1.2 g/cm3, and then subjecting the pre-oxidation fiber to pre-oxidation treatment.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: August 7, 2012
    Assignee: Toho Tenax Co., Ltd.
    Inventors: Taro Oyama, Rie Kawahito, Hiroshi Kimura
  • Publication number: 20120083408
    Abstract: There is provided a high-purity carbon nanotube, which can be produced with simple purification by causing graphite to be hardly contained in crude soot obtained immediately after being synthesized by arc-discharge, and a method for producing the same. Soot containing carbon nanotubes produced by arc-discharge using an anode which contains amorphous carbon as a main component is heated at a temperature of not lower than 350° C. to be burned and oxidized, immersed in an acid, heated at a temperature, which is not lower than the heating temperature in the previous burning and oxidation and which is not lower than 500° C., to be burned and oxidized, and immersed in an acid again.
    Type: Application
    Filed: May 28, 2010
    Publication date: April 5, 2012
    Applicants: TOHOKU UNIVERSITY, DOWA HOLDINGS CO., LTD.
    Inventors: Yoshinori Sato, Kazuyuki Tohji, Masaru Namura
  • Patent number: 8137810
    Abstract: A process for producing polyacrylonitrile-base precursor fibers for production of carbon fibers, which comprises spinning a spinning dope containing 10 to 25 wt % of a polyacrylonitrile-base polymer having an intrinsic viscosity of 2.0 to 10.0 by extruding the spinning dope from a spinneret by a wet spinning or a dry wet spinning method, drying and heat-treating fibers obtained by the spinning, and then steam drawing the resulting fibers, wherein the linear extrusion rate of the polyacrylonitrile-base polymer from the spinneret is 2 to 15 m/min. Carbon fibers which are produced by stabilizing-carbonizing treatment of the polyacrylonitrile-base precursor fibers and which have a strand tensile modulus of 320 to 380 GPa and a conduction electron density of 3.0×1019 to 7.0×1019 spins/g as determined by electron spin resonance.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: March 20, 2012
    Assignee: Toray Industries, Inc.
    Inventors: Masafumi Ise, Isao Nakayama, Makoto Endo
  • Publication number: 20120058889
    Abstract: Disclosed is a composition containing carbon nanotubes which meets all of the following conditions (1) to (4). (1) When observed via transmission electron microscopy, at least 50 out of every 100 carbon nanotubes are double-walled carbon nanotubes. (2) The carbon nanotubes have an average outer diameter in the range of 1.0 to 3.0 nm. (3) During thermogravimetric analysis under atmosphere at a temperature increase rate of 10° C./minute, a high temperature combustion peak is at 700 to 850° C., and the relationship between low temperature weight loss (TG(L)) and high temperature weight loss (TG(H)) is TG(H)/(TG(L)+TG(H))?0.75. (4) The composition containing carbon nanotubes has a volume resistance value between 1.0×10?2 ?·cm and 1.0×10?4 ?·cm, inclusive. The disclosed composition containing carbon nanotubes primarily has double-walled carbon nanotubes with high electrical conductivity and high heat resistance.
    Type: Application
    Filed: March 4, 2010
    Publication date: March 8, 2012
    Inventors: Hidekazu Nishino, Hajime Kato, Naoyo Okamoto, Shuko Ikeuchi, Kenichi Sato, Shiho Tanaka, Kazuyoshi Higuchi
  • Patent number: 8124045
    Abstract: The present invention provides a method of selectively extracting metallic armchair carbon nanotubes alone from the mixture of carbon nanotubes of mixed chiralities, wherein vacant lattice defects are removed from armchair carbon nanotubes alone using the fact that the vacant lattice defects of zigzag carbon nanotubes are hard to diffuse in the axial direction of nanotubes compared with those of armchair carbon nanotubes. Since vacant lattice defects remaining on zigzag carbon nanotubes are active, the tube structures are easily destroyed and decomposed by oxidation etc. Thus it is possible to extract armchair carbon nanotubes alone from the mixture of carbon nanotubes of mixed chiralities.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: February 28, 2012
    Assignee: NEC Corporation
    Inventors: Takazumi Kawai, Yoshiyuki Miyamoto
  • Patent number: 8052918
    Abstract: A method of producing a carbon-based material having an activated surface includes: (a) mixing an elastomer and a carbon material, and dispersing the carbon material by applying a shear force to obtain a composite elastomer; and (b) heat-treating the composite elastomer at a temperature for vaporising an elastomer to vaporize the elastomer in the composite elastomer.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: November 8, 2011
    Assignee: Nissin Kogyo Co., Ltd.
    Inventors: Akira Magario, Toru Noguchi
  • Patent number: 8043693
    Abstract: A flame-resistant polymer excels in moldability capable of providing a flame-resistant molded item of novel configuration; a relevant flame-resistant polymer solution; a process for easily producing them; a carbon molding from the flame-resistant polymer; and a process for easily producing the same. A flame-resistant polymer is modified with an amine compound. Further, a flame-resistant polymer solution has the polymer dissolved in a polar organic solvent. A flame-resistant molding whose part or entirety is constituted of the flame-resistant polymer modified with an amine compound. A carbon molding was part or entirety constituted of a carbon component resulting from carbonization of the flame-resistant polymer modified with an amine compound. From the solution containing the flame-resistant polymer, moldings of various configurations can be obtained through further work.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: October 25, 2011
    Assignee: Toray Industries, Inc.
    Inventors: Tetsunori Higuchi, Katsumi Yamasaki, Koichi Yamaoka, Tomihiro Ishida
  • Publication number: 20110206932
    Abstract: A carbon nanotube (CNT) is provided having micropores with a diameter of 1 to 10 nm in the side wall and in turn, having a large specific surface area. A production method of a surface-modified CNT (DMWCNT), comprises heating CNT having supported on the surface thereof a metal oxide or metal nitrate fine particle at a temperature of 100 to 1000° C., such as, 200 to 500° C., in an atmosphere containing oxygen. A cyclical solid phase oxidation-reduction reaction between the metal oxide and CNT occurs on the surface of the metal oxide fine particle supported on CNT, and carbon of CNT is oxidized to open a micropore. The metal oxide is preferably cobalt oxide, and the metal nitrate is preferably cobalt nitrate.
    Type: Application
    Filed: October 22, 2010
    Publication date: August 25, 2011
    Applicants: SHOWA DENKO K.K., TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Keiko Waki, Do-Hyun Kim, Masashi Takano
  • Publication number: 20100284898
    Abstract: According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.
    Type: Application
    Filed: May 7, 2007
    Publication date: November 11, 2010
    Applicant: William Marsh Rice University
    Inventors: Kirk J. Ziegler, Urs Rauwald, Robert H. Hauge, Howard K. Schmidt, Irene Morin Marek, Zhenning Gu, W. Carter Kittrell
  • Patent number: 7790136
    Abstract: A method for preparing porous fabrics is disclosed. The method includes transporting PAN-based oxidized fabrics to a thermal treatment chamber, which provides multi-pipe to introduce oxygenated gas and oxygenated fluid respectively, by using a plurality set of rollers to carry out an activation-carbonization process. The activation-carbonization process is preformed within a temperature range of 1010° C. to 1500° C., and produced the porous activated carbon fabrics that provide uniform nano-pore with BET surface area about 800˜1500 m2/g.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: September 7, 2010
    Assignee: Linkwin Technology Co., Ltd.
    Inventors: Chien-Hung Lee, Chung-Hua Hu
  • Patent number: 7763228
    Abstract: A carbon nanomaterial produced by: performing centrifugal melt spinning of core-shell particles that are prepared by using fine particles containing a carbon precursor polymer and a thermally decomposable polymer that disappears as a result of heat treatment, wherein the core-shell particles are heated up to a temperature at which phase separation thereof is not caused, and pressed against a plate-like heater 12 having a large number of pores 12A that penetrate therethrough in a thickness direction of the plate-like heater using centrifugal force; making the fiber obtained by the centrifugal melt spinning infusible; and performing carbonization thereof. According to this method, a carbon nanomaterial such as a carbon nanotube or a carbon nanofiber can be produced with high efficiency.
    Type: Grant
    Filed: August 11, 2005
    Date of Patent: July 27, 2010
    Assignee: National University Corporation Gunma University
    Inventors: Asao Oya, Terukazu Sando
  • Patent number: 7749479
    Abstract: The invention is directed to carbon fibers having high tensile strength and modulus of elasticity. The invention also provides a method and apparatus for making the carbon fibers. The method comprises advancing a precursor fiber through an oxidation oven wherein the fiber is subjected to controlled stretching in an oxidizing atmosphere in which tension loads are distributed amongst a plurality of passes through the oxidation oven, which permits higher cumulative stretches to be achieved. The method also includes subjecting the fiber to controlled stretching in two or more of the passes that is sufficient to cause the fiber to undergo one or more transitions in each of the two or more passes. The invention is also directed to an oxidation oven having a plurality of cooperating drive rolls in series that can be driven independently of each other so that the amount of stretch applied to the oven in each of the plurality of passes can be independently controlled.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: July 6, 2010
    Assignee: Hexcel Corporation
    Inventor: Carlos A. Léon y Léon
  • Patent number: 7708805
    Abstract: Porous carbon fibers, whose active centers are formed by pores that are filled at least in part by carbon and/or metal and/or metal carbide, obtainable by carbonization of organic or inorganic polymers, the use thereof for the adsorption or separation of gaseous substances, in particular of CO2, and also a method for the production thereof. First, a spinning mixture containing polyacrylonitrile-based polymer A and an organic or metallo-organic polymer B is produced. Next, the spinning mixture is spun to form mixed fibers of polymer A and polymer B. The mixed fiber is stabilized by oxidation. This is followed by carbonization or graphitization of the mixed fiber under non-oxidizing conditions in such a way that the polymer B forms a carbon and/or metal and/or metal carbide residue of at least 22 wt %, the residue forming active centers.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: May 4, 2010
    Assignee: SGL Carbon AG
    Inventors: Michael Heine, Richard Neuert, Rainer Zimmermann-Chopin
  • Patent number: 7641884
    Abstract: Disclosed is a method of fabricating carbon nanotubes and carbon nano particles, the method comprising: providing a plurality of carbon micro carriers on a silicon substrate; forming a plurality of carbon nano particles on the carbon micro carrier by a first gas; and reacting with a second gas to provide a plurality of carbon nanotubes. Thus the carbon nanotube can be formed without the use of a metal catalyst. The carbon nanotubes can easily separate from each other without the problem of non-uniformity, because the carbon micro carrier used is in a microscale size.
    Type: Grant
    Filed: September 10, 2008
    Date of Patent: January 5, 2010
    Assignee: Tatung Company
    Inventors: Jian-Min Jeng, Wen-Ching Shih, Ming-Hung Tsai, Jyi-Tsong Lo
  • Publication number: 20090191116
    Abstract: A method for forming a porous filamentous nanocarbon involves radially forming a tunnel-like mesopore from an outer periphery toward the central axis of a filamentous nano carbon by attaching a material having a metal catalyst on an outer periphery of the filamentous nanocarbon and removing a carbon hexagonal plane through gasification in virtue of the metal catalyst.
    Type: Application
    Filed: December 16, 2008
    Publication date: July 30, 2009
    Inventors: Seong Ho Yoon, Isao Mochida, Seong Yop Lim
  • Patent number: 7534484
    Abstract: The present invention provides a thermosetting resin composite material excellent in mechanical strength and wear resistance at high temperature, which is achieved by converting graphite into thin-layered one and dispersing it in a thermosetting resin homogeneously. A thermosetting resin composite material, wherein an organically modified graphite having an organic compound molecule inserted between graphite layers is mixed with a thermosetting resin, the organically modified graphite being prepared by subjecting graphite to a chemical treatment to form a graphite interlayer compound having a low-molecular substance inserted between graphite layers and subsequently immersing the resultant product in a solution of an organically modifying agent, as well as a process for producing the same. Preferably, the organically modified graphite is mixed with a thermosetting resin to be converted into thin-layered one having a layer thickness of 0.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: May 19, 2009
    Assignee: Akebono Brake Industry Co., Ltd.
    Inventors: Sho Kurihara, Hiroshi Idei, Mamoru Amano, Yoshihiro Aoyagi
  • Publication number: 20090110628
    Abstract: A method for preparing porous fabrics is disclosed. The method includes transporting PAN-based oxidized fabrics to a thermal treatment chamber, which provides multi-pipe to introduce oxygenated gas and oxygenated fluid respectively, by using a plurality set of rollers to carry out an activation-carbonization process. The activation-carbonization process is preformed within a temperature range of 1010° C. to 1500° C., and produced the porous activated carbon fabrics that provide uniform nano-pore with BET surface area about 800˜1500 m2/g.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 30, 2009
    Applicant: LINKWIN TECHNOLOGY CO., LTD.
    Inventors: Chien-Hung Lee, Chung-Hua Hu
  • Publication number: 20090068085
    Abstract: Disclosed is a method of fabricating carbon nanotubes and carbon nano particles, the method comprising: providing a plurality of carbon micro carriers on a silicon substrate; forming a plurality of carbon nano particles on the carbon micro carrier by a first gas; and reacting with a second gas to provide a plurality of carbon nanotubes. Thus the carbon nanotube can be formed without the use of a metal catalyst. The carbon nanotubes can easily separate from each other without the problem of non-uniformity, because the carbon micro carrier used is in a microscale size.
    Type: Application
    Filed: September 10, 2008
    Publication date: March 12, 2009
    Applicant: Tatung Company
    Inventors: Jian-Min Jeng, Wen-Ching Shih, Ming-Hung Tsai, Jyi-Tsong Lo
  • Patent number: 7498013
    Abstract: A method of treating carbon fibrils and carbon fibril structures such as assemblages, aggregates and hard porous structures with a plasma to effect an alteration of the surface or structure of the carbon fibril or fibrils. The method can be utilized to functionalize, prepare for functionalization or otherwise modify the fibril surface via a “dry” chemical process.
    Type: Grant
    Filed: August 4, 2004
    Date of Patent: March 3, 2009
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Alan Fischer, Robert Hoch
  • Publication number: 20090001326
    Abstract: Provided is an aggregate of carbon nanotubes satisfying (1) there is a 2? peak at 24°±2° by X-ray powder diffraction analysis; (2) a height ratio (G/D ratio) of G band to D band by Raman spectroscopic analysis of wavelength 532 nm is 30 or more; and (3) a combustion peak temperature is 550° C. or more, and 700° C. or less.
    Type: Application
    Filed: June 27, 2008
    Publication date: January 1, 2009
    Inventors: Kenichi Sato, Masahito Yoshikawa, Naoyo Okamoto, Shuko Numata
  • Publication number: 20090004095
    Abstract: There is provided a porous filamentous nanocarbon and a method for forming the same. A mesopore formed on an outer periphery of the porous filamentous nanocarbon is a tunnel-like pore which is formed along the arrangement direction of the carbon hexagonal plane from the outer periphery toward a fiber axis. The porous filamentous nanocarbon is fabricated by selectively removing the carbon hexagonal plane constituting the filamentous nanocarbon through gasification in virtue of a catalyst, after highly dispersing Fe, Ni, Co, Pt, etc., of which size is 2-30 nm, on the surface of the filamentous nanocarbon. That is, the tunnel-like mesopore is formed radially by nano-drilling process. The size of the porous filamentous nanocarbon can be controlled according to the size of the nano-drilling catalyst and non-drilling conditions.
    Type: Application
    Filed: December 28, 2005
    Publication date: January 1, 2009
    Applicant: NEXEN NANO TECH CO., LTD.
    Inventors: Seong Ho Yoon, Isao Mochida, Seong Yop Lim
  • Patent number: 7470417
    Abstract: The present invention is generally directed to methods of ozonating CNTs in fluorinated solvents (fluoro-solvents), wherein such methods provide a less dangerous alternative to existing ozonolysis methods. In some embodiments, such methods comprise the steps of: (a) dispersing carbon nanotubes in a fluoro-solvent to form a dispersion; and (b) reacting ozone with the carbon nanotubes in the dispersion to functionalize the sidewalls of the carbon nanotubes and yield functionalized carbon nanotubes with oxygen-containing functional moieties. In some such embodiments, the fluoro-solvent is a fluorocarbon solvent, such as a perfluorinated polyether.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: December 30, 2008
    Assignee: William Marsh Rice University
    Inventors: Kirk J. Ziegler, Jonah Shaver, Robert H. Hauge, Irene Morin Marek, legal representative, Richard E. Smalley
  • Publication number: 20080292530
    Abstract: A carbon nanotube composition and method of making the same. The composition is made by: heating a precursor composition under a non-oxidizing or reducing atmosphere to form a carbon composition of carbon nanotubes and amorphous carbon; and calcining the carbon composition in the presence of oxygen to oxidize and vaporize the amorphous carbon without oxidizing the carbon nanotubes. The precursor composition includes a mixture or complex of a transition metal compound and an organic compound that chars at elevated temperatures.
    Type: Application
    Filed: September 19, 2007
    Publication date: November 27, 2008
    Applicant: The Government of US, as represented by the Secretary of the Navy
    Inventors: Teddy M. Keller, Matthew Laskoski, Jeffrey W. Long
  • Patent number: 7413681
    Abstract: A process for partial oxidation of a hydrocarbon gas or liquid, involving the steps of partial oxidation and removal of soot by forming a slurry having water and carbon from the gaseous oxidation product, and separating part of the water from the slurry to obtain a soot composition having less water, wherein the separation is performed by means of a decanter centrifuge.
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: August 19, 2008
    Assignee: Shell Oil Company
    Inventors: Gerard Grootveld, Franciscus Johanna Arnoldus Martens
  • Patent number: 7223376
    Abstract: A method and apparatus for the carbonization of polyacrylonitrile (PAN) precursor fibers. The apparatus comprises a furnace, or series of furnaces in side-by-side arrangement. Each furnace includes a heater, an air inlet and an air diffusion plate. The fiber is located in the furnace above the air diffuser plate, such that heated air is evenly dispersed over the fibers. The method generally comprises the steps of heat treating the PAN precursor in an oxidizing environment to stabilize the fiber, and then further heat treating the stabilized fiber in an oxidizing environment to carbonize the stabilized fiber. The method can be carried out in a single furnace, or can be carried out in a series of furnaces in a continuous process.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: May 29, 2007
    Assignee: Industrial Technology and Equipment Company
    Inventors: Ronald L. Panter, Thomas A. Herold
  • Patent number: 7090819
    Abstract: The present invention relates to an all gas-phase process for the purification of single-wall carbon nanotubes and the purified single-wall carbon nanotube material. Known methods of single-wall carbon nanotube production result in a single-wall carbon nanotube product that contains single-wall carbon nanotubes in addition to impurities including residual metal catalyst particles and amounts of small amorphous carbon sheets that surround the catalyst particles and appear on the sides of the single-wall carbon nanotubes and “ropes” of single-wall carbon nanotubes. The purification process removes the extraneous carbon as well as metal-containing residual catalyst particles. The process comprises oxidation of the single-wall carbon nanotube material, reduction and reaction of a halogen-containing gas with the metal-containing species. The oxidation step may be done dry or in the presence of water vapor.
    Type: Grant
    Filed: February 8, 2002
    Date of Patent: August 15, 2006
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Robert H. Hauge, Wan-Ting Chiang, Yuemei Yang, Kenneth A. Smith, Wilber Carter Kittrell, Zhenning Gu
  • Patent number: 7087207
    Abstract: This invention relates generally to a forming an array of single-wall carbon nanotubes (SWNT) in an electric field and compositions thereof. In one embodiment, a purified bucky paper of single-wall carbon nanotubes is used as the starting material. Upon oxidative treatment of the bucky paper surface, many tube and/or rope ends protrude up from the surface of the paper. Disposing the resulting bucky paper in an electric field results in the protruding tubes and or ropes of single-wall carbon nanotubes aligning in a direction substantially perpendicular to the paper surface. These tubes tend to coalesce to form a molecular array. In another embodiment, a molecular array of SWNTs can be made by “combing” the purified bucky paper starting material with a sharp microscopic tip to align the nanotubes.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: August 8, 2006
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Kenneth A. Smith, Ting Guo, Pavel Nikolaev, Andreas Thess