Controlling Varying Temperature Or Plural Heating Steps Patents (Class 423/447.8)
  • Publication number: 20040053780
    Abstract: A method of fabricating a long carbon nanotube yarn includes the following steps: (1) providing a flat and smooth substrate; (2) depositing a catalyst on the substrate; (3) positioning the substrate with the catalyst in a furnace; (4) heating the furnace to a predetermined temperature; (5) supplying a mixture of carbon containing gas and protecting gas into the furnace; (6) controlling a difference between the local temperature of the catalyst and the furnace temperature to be at least 50° C.; (7) controlling the partial pressure of the carbon containing gas to be less than 0.2; (8) growing a number of carbon nanotubes on the substrate such that a carbon nanotube array is formed on the substrate; and (9) drawing out a bundle of carbon nanotubes from the carbon nanotube array such that a carbon nanotube yarn is formed.
    Type: Application
    Filed: December 31, 2002
    Publication date: March 18, 2004
    Inventors: KaiLi Jiang, Shoushan Fan, QunQing Li
  • Patent number: 6632849
    Abstract: A porous carbonized film with fine continuous pores, obtained by carbonization of a highly heat-resistant resin porous film in an anaerobic atmosphere, and a process for its production.
    Type: Grant
    Filed: May 25, 2000
    Date of Patent: October 14, 2003
    Assignee: UBE Industries, Ltd.
    Inventors: Shigeru Yao, Shyusei Ohya, Yukihiko Asano
  • Patent number: 6576212
    Abstract: A process of producing a carbonized material, which includes a step of treating the biomass with a microwave for a period of time sufficient to carbonize an inner region thereof but insufficient to carbonize an outer region thereof, thereby obtaining a partly carbonized product, a step of contacting the partly carbonized product with an oxidizing gas for a period of time sufficient to carbonize the outer region, thereby obtaining a completely carbonized product, and a step of cooling the completely carbonized product in a non-oxidizing atmosphere.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: June 10, 2003
    Assignee: Secretary of Agency of Industrial Science and Technology
    Inventors: Masakatsu Miura, Harumi Kaga, Kozo Ishizaki
  • Patent number: 6524501
    Abstract: This invention provides a pitch fiber bundle for carbon fibers of small size, a carbon fiber bundle, and a method for the production thereof, i.e. a method for the production of carbon fibers of a small size, a pitch fiber bundle, and a carbon fiber bundle at a lower cost with higher productivity than usual. The method for the production of pitch type carbon fibers according to this invention comprises dividing a plurality of pitch fibers into not less than two bundles, intertwining the bundles by exposure to currents of air thereby forming a first fiber bundle, binding a plurality of such first fiber bundles, and again intertwining the bound pitch fiber bundles by exposure to currents of air thereby forming a second fiber bundle.
    Type: Grant
    Filed: September 8, 2000
    Date of Patent: February 25, 2003
    Assignees: Nippon Steel Corporation, Nippon Mitsubishi Oil Corporation, Nippon Graphite Fiber Corporation
    Inventors: Yutaka Arai, Yoshiyuki Doken, Tsutomu Nakamura
  • Patent number: 6500401
    Abstract: A method of making carbon foam is described which involves pyrolizing a mixture containing at least one pyrolizable substance and at least one unpyrolizable material and then removing the unpyrolizable material to obtain the carbon foam. Carbon foam made by this process is also described. Incorporating the carbon foam in a variety of end use applications including electrodes, thermal insulation material, polymers, and the like is also described.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: December 31, 2002
    Assignee: Cabot Corporation
    Inventors: Steven R. Reznek, Robert K. Massey
  • Publication number: 20020058139
    Abstract: A fine carbon fiber having a multilayer structure having stacked cylindrical carbon sheets and a center axis having a hollow structure. The fine carbon fiber has an outer diameter of 2 to 300 nm and an aspect ratio of 10 to 15,000, and at least one cylindrical carbon sheet layer among the multiple layers is folded at an end part of the carbon fiber and continued to another cylindrical carbon sheet. The folded and continued cylindrical carbon sheets form a cylindrical structure opened at the end part.
    Type: Application
    Filed: November 8, 2001
    Publication date: May 16, 2002
    Applicant: SHOWA DENKO K.K.
    Inventors: Toshio Morita, Hitoshi Inoue, Yutaka Suhara
  • Publication number: 20010033035
    Abstract: A method and apparatus for the carbonization of polyacrylonitrile (PAN) precursor fibers. The apparatus comprises a furnace, or series of furnaces in side-by-side arrangement. Each furnace includes a heater, an air inlet and an air diffusion plate. The fiber is located in the furnace above the air diffuser plate, such that heated air is evenly dispersed over the fibers. The method generally comprises the steps of heat treating the PAN precursor in an oxidizing environment to stabilize the fiber, and then further heat treating the stabilized fiber in an oxidizing environment to carbonize the stabilized fiber. The method can be carried out in a single furnace, or can be carried out in a series of furnaces in a continuous process.
    Type: Application
    Filed: February 9, 2001
    Publication date: October 25, 2001
    Inventors: Ronald L. Panter, Thomas A. Herold
  • Patent number: 6299850
    Abstract: A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm3 is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350° C. for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: October 9, 2001
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Daniel H. Doughty, Erhard T. Eisenmann
  • Patent number: 6261485
    Abstract: A process for producing carbon foam or a composite is disclosed which obviates the need for conventional oxidative stabilization. The process employs mesophase or isotropic pitch and a simplified process using a single mold. The foam has a relatively uniform distribution of pore sizes and a highly aligned graphic structure in the struts. The foam material can be made into a composite which is useful in high temperature sandwich panels for both thermal and structural applications.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: July 17, 2001
    Assignee: UT-Battelle, LLC
    Inventor: James W. Klett
  • Patent number: 6241923
    Abstract: A process for the production of carbon fibers, including melt-spinning mesophase pitch having an optically anisotropic content of at least 90%, a softening point of 190° C. to 280° C. and a heating weight loss of 0.7% by weight or less at a spinning temperature to form a spun fiber, infusibilizing the spun fiber to obtain an infusible fiber and carbonizing the infusible fiber.
    Type: Grant
    Filed: June 18, 1999
    Date of Patent: June 5, 2001
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventor: Yukio Sakai
  • Patent number: 6171696
    Abstract: The resent invention provides a carbon fiber which enables a molded article produced from a fiber-reinforced composite material using the carbon fiber to exhibit excellent flexibility and to be freed from defects such as bending. According to the method of the present invention the carbon fiber is produced by a two-stage infusibilizing process, namely carrying out a first-stage infusibilization of a pitch-based fiber, which is obtained from mesophase pitch having a softening point of 200 to 400° C. and a true density of 1.30 to 1.38 g/cm3, in a mixed gas atmosphere having a nitrogen dioxide concentration of 1 to 5% by volume and an oxygen concentration of 5 to 50% by volume, the balance being an inert gas or steam, at a temperature between 100 and 200° C. and then carrying out a second-stage infusibilization of the product of the first-stage infusibilization in a mixed gas atmosphere having a nitrogen dioxide concentration of 0.
    Type: Grant
    Filed: May 21, 1999
    Date of Patent: January 9, 2001
    Assignees: Nippon Mitsubishi Oil Corporation, Nippon Steel Corporation, Nippon Graphite Fiber Corporation
    Inventors: Shinichi Takemura, Yoshio Soda, Hideyuki Ohno, Yutaka Arai, Tomohiro Nakanishi