Binary Compound Patents (Class 423/509)
  • Patent number: 8012448
    Abstract: A method of synthesizing metal chalcogenide nanocrystals involving the steps of combining an organodichalcogenide, a metal salt and a ligand compound to form a mixture; degassing the mixture to remove air and water from the mixture; heating the mixture at a temperature below the decomposition temperature of the organodichalcogenide for a period of time sufficient to form a metal chalcogenide nanocrystal.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: September 6, 2011
    Assignee: University of Southern California
    Inventors: Richard L. Brutchey, Matthew A. Franzman, David H. Webber
  • Patent number: 8012546
    Abstract: A method for producing a semiconductor film having a chalcopyrite structure including a Ib group element, a IIIb group element and a VIb group element including selenium, the method including cracking selenium with plasma to generate radical selenium, and using the radical selenium in the process of forming the semiconductor film.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: September 6, 2011
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Shogo Ishizuka, Shigeru Niki, Keiichiro Sakurai, Akimasa Yamada, Koji Matsubara
  • Patent number: 8007757
    Abstract: A method of synthesizing nanostructures. In one embodiment, the method includes the step of heating a reaction mixture at an elevated temperature, T, for a period of time effective to allow the growth of desired nanostructures. The reaction mixture contains an amount, P, of a carboxylate salt and an amount, L, of a fatty acid ligand, defining a molar ratio of the fatty acid ligand to the carboxylate salt, ?=L/P, and a hydrocarbon solvent. The reaction mixture is characterizable with a critical ligand protection, ?, associating with the chemical structure of the carboxylate salt such that when ?<?, the reaction mixture is in a limited ligand protection (LLP) domain, and when ?>?, the reaction mixture is in a sufficient ligand protection (SLP) domain.
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: August 30, 2011
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: Xiaogang Peng, Arun Narayanaswamy, Narayan Pradhan
  • Patent number: 8007756
    Abstract: The object of the invention is a process for the synthesis of nanotubes of transition metal dichalcogenides, of fullerene-like nanostructures of transition metal dichalcogenides, of nanotubes of transition metal dichalcogenides, filled with fullerene-like nanostructures of transition metal dichalcogenides, of quasi one-dimensional structures (nanowires, microwires and ribbons) of transition metal oxides and of quasi one-dimensional structures of transition metal dichalcogenides, consisting of fine crystallites of transition metal dichalcogenides. The process is characterized in that the synthesis occurs by the chemical transformation of quasi one-dimensional compounds with a sub-micron diameter, described by the formula M6CyHz, 8.2<y+z?10, where M is a transition metal (Mo, W, Ta, Nb), C is a chalcogen (S, Se, Te), H is a halogen (I).
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: August 30, 2011
    Assignee: Institut “Jo{hacek over (z)}ef Stefan”
    Inventors: Ales Mrzel, Maja Remskar, Adolf Jesih, Marko Virsek
  • Patent number: 8003070
    Abstract: Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
    Type: Grant
    Filed: March 13, 2008
    Date of Patent: August 23, 2011
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Robert V. Fox, Rene G. Rodriguez, Joshua Pak
  • Publication number: 20110189080
    Abstract: Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.
    Type: Application
    Filed: February 4, 2010
    Publication date: August 4, 2011
    Inventors: Calvin J. Curtis, Alexander Miedaner, Marinus Franciscus Antonius Maria van Hest, David S. Ginley, Jennifer Leisch, Matthew Taylor, Billy J. Stanbery
  • Publication number: 20110186779
    Abstract: A method for reclaiming a semiconductor material from a glass substrate is disclosed, the method comprises the steps of providing at least one glass substrate having the semiconductor material disposed thereon, reducing the glass substrate having a semiconductor material disposed thereon to a plurality of glass particles having the semiconductor material disposed thereon by introducing a source of energy thereto, separating the semiconductor material from the plurality of glass particles to obtain semiconductor particles, and pyrometall?rgicaHy refining the semiconductor particles and the fine glass particles.
    Type: Application
    Filed: August 13, 2009
    Publication date: August 4, 2011
    Inventors: John Bohland, Andreas Wade
  • Patent number: 7985388
    Abstract: There is disclosed a process of making nano-sized or micro-sized precipitate particles. The process comprising the steps of mixing, in a reaction zone, a metal salt solution with a precipitant solution to form a precipitate, said precipitate being at least one of a metal chalcogenide, metal hydroxide and metal oxide; and applying a shear force to said mixing solutions in said reaction zone during said mixing step, wherein said shear force and the conditions within said reaction zone form said nano-sized or micro-sized precipitate particles.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: July 26, 2011
    Assignee: NanoMaterials Technology Pte Ltd
    Inventors: Zhigang Shen, Jiyao Zhang, Giawen Sim, Jimmy Sung Lai Yun, Jianfeng Chen
  • Publication number: 20110176958
    Abstract: There is provided a sintered body that does not readily deform during use and that allows a high flexibility for the design of surface layers, a method for manufacturing the sintered body, and an optical component including the sintered body. The method for manufacturing a sintered body includes a sintered body having a predetermined shape, the sintered body having a ceramic base material, the method for manufacturing a sintered body comprising a step for preparing a ceramic preform, a step for using a predetermined mold having an upper die and a lower die to hot-press the ceramic preform to form a pressure-sintered body, and a step for cooling the pressure-sintered body while applying a pressure load of approximately 5% or more and 100% or less (and preferably approximately 20% or more and 40% or less) of the pressure load applied during the step for forming the pressure-sintered body.
    Type: Application
    Filed: May 20, 2009
    Publication date: July 21, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masato Hasegawa, Tomoyuki Ueno
  • Patent number: 7968075
    Abstract: A multi-element metal chalcogenide and a method for preparing the same are provided. The multi-element metal chalcogenide includes multiple metal elements. A multi-element metal chalcogenide powder is prepared, and all of the multiple metal elements of the multi-element metal chalcogenide are derived from at least one of simple substance powders of the metal elements and one or more alloy powders mixed in accordance with a mole ratio. A solution phase synthesis of the powder of the multi-element metal chalcogenide is then conducted under normal pressure to prepare the multi-element metal chalcogenide. The multi-element metal chalcogenide can be coated to obtain a film or used to make a target and then bombard the target for sputtering a film. In such a way, a selenization process which is conventional in fabricating the semiconductor solar cell is eliminated, thus improving production yield and efficiency.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: June 28, 2011
    Assignees: Heliohawk Optoelectronics Corp.
    Inventor: Jun-Wen Chung
  • Publication number: 20110142746
    Abstract: A conveyor assembly for use in a vapor deposition apparatus wherein a sublimed source material is deposited as a thin film on a photovoltaic (PV) module substrate. The assembly includes a conveyor movable in an endless loop path that includes an upper leg that moves in a conveyance direction to carry a substrate through a deposition area of the vapor deposition apparatus. A heat source is disposed relative to the endless loop path so as to heat the conveyor at a location generally after the point where substrates leave the conveyor. The heat source heats the conveyor to a temperature effective for sublimating source material from the conveyor. A cold trap is disposed relative to the endless loop path downstream of the heat source in a direction of movement of the conveyor and is maintained at a temperature effective for causing sublimated source material generated from heating the conveyor to plate out onto a collection member configured with the cold trap.
    Type: Application
    Filed: December 15, 2009
    Publication date: June 16, 2011
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: MAX WILLIAM REED, Mark Jeffrey Pavol, Christopher Rathweg
  • Patent number: 7959891
    Abstract: The present invention provides a process for obtaining fullerene-like metal chalcogenide nanoparticles, comprising feeding a metal precursor selected from metal halide, metal carbonyl, organo-metallic compound and metal oxyhalide vapor into a reaction chamber towards a reaction zone to interact with a flow of at least one chalcogen material in gas phase, the temperature conditions in said reaction zone being such to enable the formation of the fullerene-like metal chalcogenide nanoparticles product. The present invention further provides novel IF metal chalcogenides nanoparticles with spherical shape and optionally having a very small or no hollow core exhibiting excellent tribological behaviour. The present invention further provides an apparatus for preparing various IF nanostructures.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: June 14, 2011
    Assignees: Yeda Research & Development Company Ltd, A.Y.Y.T. Technological Application and Data Update Ltd
    Inventors: Reshef Tenne, Alexander Margolin, Ronit Popovitz-Biro, Lev Rapoport
  • Publication number: 20110132645
    Abstract: Embodiments described include a non-polymeric voltage switchable dielectric (VSD) material comprising substantially of a grain structure formed from only a single compound, processes for making same, and applications for using such non-polymeric VSD materials.
    Type: Application
    Filed: November 24, 2010
    Publication date: June 9, 2011
    Inventors: Ning Shi, Robert Fleming, Junjun Wu, Lex Kosowsky
  • Patent number: 7939048
    Abstract: Methods for assemblies of anisotropic nanoparticles which includes forming a substantially close packed dense layer by assembling a plurality of anisotropic nanoparticles, each of the plurality of anisotropic nanoparticles having a) a first dimension that is substantially different than both a second dimension and a third dimension and b) a non-random nanoparticle crystallographic orientation that is substantially aligned with the first direction, wherein assembling includes mechanically interacting the plurality of anisotropic nanoparticles by imposing a delocalized force that defines a direction that is substantially perpendicular to a basal plane of the substantially closed packed dense layer; and imposing a fluctuating force to which the anisotropic nanoparticles respond, which is sufficient to overcome a short range weak attractive force between members of the plurality of anisotropic nanoparticles with respect to anisotropic nanoparticles that are not substantially overlapping.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 10, 2011
    Assignee: HelioVolt Corporation
    Inventor: Billy J. Stanbery
  • Patent number: 7939744
    Abstract: A thermoelectric element formed of a sintered body of a semiconductor comprising at least two kinds of elements selected from the group consisting of Bi, Te, Se and Sb, and having a micro-Vickers' hardness of not smaller than 0.5 GPa. The thermoelectric element has a hardness of not smaller than 0.5 GPa, and exhibits a large resistance against deformation, and is not easily broken by deformation. As a result, breakage due to deformation is prevented and a highly reliable thermoelectric element is realized even when a shape factor which is a ratio of the sectional area of the thermoelectric element to the height thereof, is increased and even when the element density is increased.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: May 10, 2011
    Assignee: Kyocera Corporation
    Inventors: Masato Fukudome, Kazuhiro Nishizono, Koichi Tanaka, Kenichi Tajima
  • Publication number: 20110104043
    Abstract: The subject of the invention is the (50) continuous flow system for the synthesis of nanoparticles which consist of the (1a) feeding unit connected to the flow path, at least one (2) first reactor unit possessing the (13) heatable reactor-zone, the (3) second reactor unit which follows (2) in the same cascade; the (5) mixing unit and the (1b) second feeding unit between (2) and (3) reactor units, the (9) and (10) feeding pumps connected to the raw material source and/or (22) control unit which is capable of controlling at least one (18) pressure controller and/or controlling the temperature of at least one (13) heatable reactor-zone; each (13) heatable reactor-zone is followed by (14) cooling unit in the cascade. In addition, the subject of this invention is a process for the synthesis of nanoparticles, preferably metal-containing nanoparticles, and nanoparticles of biologically active organic molecules wherein the process is accomplished in the device according to FIG. 1.
    Type: Application
    Filed: April 28, 2009
    Publication date: May 5, 2011
    Applicant: Nangenex Nanotechnology Incorporated
    Inventors: Krisztián Niesz, Attila Wootsch, Maxime Groualle, Zsolt Ötvös, Ferenc Darvas
  • Publication number: 20110070147
    Abstract: A method of producing nanoparticles comprises effecting conversion of a nanoparticle precursor composition to the material of the nanoparticles. The precursor composition comprises a first precursor species containing a first ion to be incorporated into the growing nanoparticles and a separate second precursor species containing a second ion to be incorporated into the growing nanoparticles. The conversion is effected in the presence of a molecular cluster compound under conditions permitting seeding and growth of the nanoparticles.
    Type: Application
    Filed: August 11, 2010
    Publication date: March 24, 2011
    Applicant: NANOCO TECHNOLOGIES LIMITED
    Inventors: Paul O'Brien, Nigel Pickett
  • Patent number: 7906084
    Abstract: Disclosed is a method for producing, controlling the shape and size of, Pb-chalcogenide nanoparticles. The method includes preparing a lead (Pb) precursor containing Pb and a carboxylic acid dissolved in a hydrocarbon solution and preparing a chalcogen element precursor containing a chalcogen element dissolved in a hydrocarbon solution. The amount of Pb and chalcogen in the respective precursor affords for a predetermined Pb:chalcogen element ratio to be present when the Pb precursor is mixed with the chalcogen element precursor. The Pb precursor is mixed with the chalcogen element precursor to form a Pb-chalcogen mixture in such a manner that Pb-chalcogenide nanoparticle nucleation does not occur. A nucleation and growth solution containing a surfactant is also prepared by heating the solution to a nucleation temperature sufficient to nucleate nanoparticles when the Pb-chalcogen element mixture is added.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: March 15, 2011
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., University of California, Berkeley
    Inventors: Taleb Mokari, Minjuan Zhang, Peidong Yang
  • Publication number: 20110052918
    Abstract: Disclosed herein are magic size nanoclusters comprising lead and one or more chalcogens. The disclosed magic size nanoclusters have both spectrally narrow fluorescence and ultra-high quantum efficiencies. Further disclosed herein is a method for preparing PbS, PbSe, and PbTe magic size nanoclusters. The yield of magic size nanoclusters can be increased by using anion sources enriched for secondary phosphines. The use of enriched secondary phosphine anion sources also increases the yield of quantum nanostructures.
    Type: Application
    Filed: March 24, 2009
    Publication date: March 3, 2011
    Inventors: Todd D. Krauss, Christopher Evans, Li Guo, Jeffrey J. Peterson
  • Publication number: 20110042611
    Abstract: An apparatus (10) and a method (200) for the manufacture of nanoparticles. The apparatus and the method allows for the nucleation and growth of nanoparticles at independent temperatures. The independent temperatures allow for the growth of nanoparticles in a controlled environment avoiding spontaneous nucleation and allowing particle sizes to be controlled and facilitating the manufacture of particles of a substantially uniform size. Furthermore the apparatus (10) allows for the manufacture of core-shell nanoparticles and core-shell-shell nanoparticles.
    Type: Application
    Filed: February 11, 2009
    Publication date: February 24, 2011
    Applicant: CENTRUM FUR ANGEWANDTE NANOTECHNOLOGIE (CAN) GMBH
    Inventors: Horst Weller, Jan Niehaus
  • Patent number: 7892514
    Abstract: Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: February 22, 2011
    Assignee: Nanotek Instruments, Inc.
    Inventors: Bor Z. Jang, Aruna Zhamu
  • Publication number: 20110038779
    Abstract: In one embodiment, the present invention relates generally to a multi-stage system for performing melt coalescence and separation, the multi-stage system. In one embodiment, the multi-stage system includes a first container for mixing a powder with a salt, the first container having an opening, a heating means coupled to the first container for heating the first container and a second container coupled to the first container.
    Type: Application
    Filed: August 12, 2009
    Publication date: February 17, 2011
    Inventors: Angel Sanjurjo, Kai-Hung Lau, Xiaobing Xie, Lorenza Moro, Jordi Perez Mariano, Gopala N. Krishnan, Marc Hornbostel, Anoop Nagar
  • Publication number: 20110033368
    Abstract: Methods of forming a nanocrystal are provided. The nanocrystal may be a binary nanocrystal of general formula M1A or of general formula M1O, a ternary nanocrystal of general formula M1M2A, of general formula M1AB or of general formula M1M2O or a quaternary nanocrystal of general formula M1M2AB. M1 is a metal of Groups II-IV, Group VII or Group VIII of the PSE. A is an element of Group VI or Group V of the PSE. O is oxygen. A homogenous reaction mixture in a non-polar solvent of low boiling point is formed, that includes a metal precursor containing the metal M1 and, where applicable M2. For an oxygen containing nanocrystal the metal precursor contains an oxygen donor. Where applicable, A is also included in the homogenous reaction mixture. The homogenous reaction mixture is under elevated pressure brought to an elevated temperature that is suitable for forming a nanocrystal.
    Type: Application
    Filed: October 3, 2008
    Publication date: February 10, 2011
    Applicant: AGENCY FOR SCIENCE, TECHNOLOGY AND RESEARCH
    Inventors: Enyi Ye, Yin Win Khin, Mingyong Han
  • Patent number: 7875957
    Abstract: Provided is a semiconductor substrate for epitaxial growth which does not require any etching treatment as a pretreatment in the stage of performing an epitaxial growth of HgCdTe film. A CdTe system compound semiconductor substrate for the epitaxial growth of the HgCdTe film is housed in an inactive gas atmosphere, in a predetermined period of time (for example, 10 hours) after mirror finish treatment thereof, to thereby regulate the proportion of Te oxide of the total amount of Te on the substrate surface which is obtained by XPS measurement so as to be not more than 30%.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: January 25, 2011
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Kenji Suzuki, Ryuichi Hirano, Hideki Kurita
  • Publication number: 20110014115
    Abstract: Method and apparatus for sputter depositing silver selenide and controlling defect formation in and on a sputter deposited silver selenide film are provided. A method of forming deposited silver selenide comprising both alpha and beta phases is further provided. The methods include depositing silver selenide using sputter powers of less than about 200 W, using sputter power densities of less than about 1 W/cm2, using sputter pressures of less than about 40 mTorr and preferably less than about 10 mTorr, using sputter gasses with molecular weight greater than that of neon, using cooling apparatus having a coolant flow rate at least greater than 2.5 gallons per minute and a coolant temperature less than about 25° C., using a magnetron sputtering system having a magnetron placed a sufficient distance from a silver selenide sputter target so as to maintain a sputter target temperature of less than about 350° C. and preferably below about 250° C.
    Type: Application
    Filed: July 21, 2010
    Publication date: January 20, 2011
    Inventors: Jiutao Li, Allen McTeer
  • Publication number: 20110008244
    Abstract: A method of synthesizing metal chalcogenide nanocrystals involving the steps of combining an organodichalcogenide, a metal salt and a ligand compound to form a mixture; degassing the mixture to remove air and water from the mixture; heating the mixture at a temperature below the decomposition temperature of the organodichalcogenide for a period of time sufficient to form a metal chalcogenide nanocrystal.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 13, 2011
    Applicant: UNIVERSITY OF SOUTHERN CALIFORNIA
    Inventors: Richard L. Brutchey, Matthew A. Franzman, David H. Webber
  • Patent number: 7833506
    Abstract: The invention relates to a process for producing morphologically uniform and virtually monodisperse metal-containing nanoparticles, characterized in that the separation both in time and space of the nucleation and growth processes is achieved by regulation of the temperature and volume flows, with the reaction and particle formation preferably being initiated and carried out in a suitable microstructured modular reactor system. Modularization of the microreaction plant (micro heat exchanger, residence reactor, micromixer, etc.) allows optimal setting of the respective chemical and process-engineering process parameters and thus the preparation of virtually monodisperse and morphologically uniform nanoparticles.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: November 16, 2010
    Assignee: Bayer Technology Services GmbH
    Inventors: Frank Rauscher, Verena Haverkamp, Björn Henninger, Leslaw Mleczko
  • Patent number: 7829059
    Abstract: A method for synthesizing a chalcogenide nanoparticle is provided. The method comprises reacting a metal component with an elemental chalcogen precursor in the presence of an organic solvent. The chalcogenide nanoparticles include ternary, binary and/or multinary chalcogenide nanoparticles and the metal component comprises metal halides or elemental metal precursors. The alkylamine solvent has a normal boiling temperature of above about 220° C. and an average particle size of from about 5 nm to about 1000 nm.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: November 9, 2010
    Assignee: Purdue Research Foundation
    Inventors: Qijie Guo, Rakesh Agrawal, Hugh W. Hillhouse
  • Publication number: 20100278718
    Abstract: A method for making monodisperse silver nanocrystals includes the following step: (1) mixing a silver nitrate with octadecyl amine as a solvent, and achieving a mixture; (2) agitating and reacting the mixture at a reaction temperature for a reaction period; (3) cooling the mixture to a cooling temperature, and achieving a deposit; and (4) washing the deposit with an organic solvent, drying the deposit at a drying temperature, and achieving monodisperse silver nanocrystals. After step (2), the method can further include a step of mixing a sulfur or selenium into the reactant to achieve monodisperse silver sulfide or silver selenide nanocrystals.
    Type: Application
    Filed: December 14, 2007
    Publication date: November 4, 2010
    Applicants: Tsinghua University, HON HAI Precision Industry CO., LTD.
    Inventors: Ya-Dong Li, Ding-Sheng Wang
  • Publication number: 20100270517
    Abstract: The present disclosure provides a solid dopant for doping a conductive polymer, which has a high dispersibility in a solvent by a plasma treatment, a method and an apparatus for preparing the solid dopants, a solid doping method of a conductive polymer using the solid dopants, and a solid doping method of a conductive polymer using plasma.
    Type: Application
    Filed: April 23, 2010
    Publication date: October 28, 2010
    Applicants: ELPANI CO., LTD., AJOU UNIVERSITY INDUSTRY-ACADEMIC COOPERATION FOUNDATION
    Inventors: Yong Cheol Hong, Suck Hyun Lee, O. Pil Kwon, Tae Ja Kim
  • Patent number: 7811543
    Abstract: A method and apparatus for producing surface stabilized nanometer-sized particles includes the steps of mixing reactants, a surface-stabilizing surfactant, and a high boiling point liquid to form a mixture, continuously passing the mixture through an ultrasonic spray nozzle to form a mist of droplets of the mixture, injecting the mist directly into a furnace to cause a reaction between species of the mixture, and collecting the nanometer-sized products. The ultrasonic nozzle is positioned directly at one end of the heating furnace, preferably the top end, for travel of the droplets through the furnace. The continuous liquid-flow process, along with certain operating parameters, eliminates the need for dilution of the high boiling point liquid with a low boiling point solvent as in the prior art, significantly increases the yield, improves the quality of the product, and makes the process scalable.
    Type: Grant
    Filed: October 9, 2008
    Date of Patent: October 12, 2010
    Assignee: Irilliant, Inc.
    Inventors: Yuri T. Didenko, Yuhua Ni
  • Publication number: 20100227066
    Abstract: A multi-element metal chalcogenide and a method for preparing the same are provided. According to the present invention, the multi-element metal chalcogenide includes multiple metal elements. According to the present invention, a multi-element metal chalcogenide powder is prepared, and all of the multiple metal elements of the multi-element metal chalcogenide are derived from simple substance powders of the metal elements, and/or one or more alloy powders mixed in accordance with a mole ratio. Then, a solution phase synthesis of the powder of the multi-element metal chalcogenide is conducted under the normal pressure to prepare the multi-element metal chalcogenide. The multi-element metal chalcogenide can be coated to obtain a film or used to make a target and then bombard the target for sputtering a film. In such a way, a selenization process which is conventional in fabricating the semiconductor solar cell is eliminated, thus improving the production yield and efficiency.
    Type: Application
    Filed: March 2, 2010
    Publication date: September 9, 2010
    Inventor: Jun-Wen CHUNG
  • Publication number: 20100226849
    Abstract: A method for producing a high yield of high quality, low size distribution, and size tunable semiconductor nanocrystals. The method produces III-V, II-VI, II-V, IV-VI, IV, ternary, quarternary, and quinary semiconductor nanocrystals (quantum dots) using a catalyst assisted two-phase reaction.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 9, 2010
    Applicant: EVIDENT TECHNOLOGIES
    Inventor: Adam Peng
  • Patent number: 7790137
    Abstract: A process for synthesizing a metal telluride is provided that includes the dissolution of a metal precursor in a solvent containing a ligand to form a metal-ligand complex soluble in the solvent. The metal-ligand complex is then reacted with a telluride-containing reagent to form metal telluride domains having a mean linear dimension of from 2 to 40 nanometers. NaHTe represents a well-suited telluride reagent. A composition is provided that includes a plurality of metal telluride crystalline domains (PbTe)1-x-y(SnTe)x(Bi2Te3)y??(I) having a mean linear dimension of from 2 to 40 nanometers inclusive where x is between 0 and 1 inclusive and y is between 0 and 1 inclusive with the proviso that x+y is less than or equal to 1. Each of the metal telluride crystalline domains has a surface passivated with a saccharide moiety or a polydentate carboxylate.
    Type: Grant
    Filed: August 14, 2006
    Date of Patent: September 7, 2010
    Assignees: Toyota Motor Engineering & Manufacturing North America, Inc., The Administrators of the Tulane Educational Fund
    Inventors: Qiangfeng Xiao, Yunfeng Lu, Minjuan Zhang
  • Publication number: 20100222482
    Abstract: Disclosed is a process for exfoliating a layered material to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The process comprises: (a) charging a layered material to an intercalation chamber comprising a gaseous environment at a first temperature and a first pressure sufficient to cause gas species to penetrate into the interstitial space between layers of the layered material, forming a gas-intercalated layered material; and (b) operating a discharge valve to rapidly eject the gas-intercalated layered material through a nozzle into an exfoliation zone at a second pressure and a second temperature, allowing gas species residing in the interstitial space to exfoliate the layered material to produce the platelets. The gaseous environment preferably contains only environmentally benign gases that are reactive (e.g., oxygen) or non-reactive (e.g., noble gases) with the layered material.
    Type: Application
    Filed: September 26, 2006
    Publication date: September 2, 2010
    Inventors: Bor Z. Jang, Aruna Zhamu, Jiusheng Guo
  • Patent number: 7758843
    Abstract: The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: July 20, 2010
    Assignee: U.S. Department of Energy
    Inventors: Aleskey E. Bolotnikov, Ralph B. James
  • Patent number: 7749480
    Abstract: A method for producing cadmium telluride from elemental cadmium and elemental tellurium is disclosed. For example, the method disclosed can be used for producing multi-kilogram batches of cadmium telluride in a few hours.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: July 6, 2010
    Assignee: 5N Plus Inc.
    Inventors: Nicholas Audet, Blagovest Levitcharsky
  • Publication number: 20100159135
    Abstract: The present disclosure relates to novel methods and apparatuses for generating hydrogen sulfide or hydrogen selenide gas from decomposition of a solid precursor. In some embodiments, the generated gas is cooled so as to condense a by-product of the decomposition and thereby increasing the purity of the gas. In some embodiments, the generated hydrogen sulfide or hydrogen selenide gas is used to prepare metal sulfide or metal selenide films.
    Type: Application
    Filed: December 18, 2009
    Publication date: June 24, 2010
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Stacey Bent, Jeffrey S. King, Jonathan R. Bakke
  • Patent number: 7731932
    Abstract: Methods of processing nanocrystals to remove excess free and bound organic material and particularly surfactants used during the synthesis process, and resulting nanocrystal compositions, devices and systems that are physically, electrically and chemically integratable into an end application.
    Type: Grant
    Filed: August 4, 2008
    Date of Patent: June 8, 2010
    Assignee: Nanosys, Inc.
    Inventors: Erik C. Scher, Mihai A. Buretea, Jeffery A. Whiteford, Andreas P. Meisel
  • Patent number: 7727500
    Abstract: Disclosed are adhesive coating compositions containing a metal peroxide for producing clear colorless adhesive coatings on substrates, particularly micro particulate substrates. In one preferred embodiment the nanoparticle coatings are chemically active and function at a high level of efficiency due to the high total surface area of the micro particulate substrate. Also disclosed are coated substrates and compositions having nanoparticles bound to a substrate by the coating compositions.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: June 1, 2010
    Assignee: PURETI, Inc.
    Inventor: John W. Andrews
  • Publication number: 20100108530
    Abstract: A method is described for the manufacture of semiconductor nanoparticles. Improved yields are obtained by use of a reducing agent or oxygen reaction promoter.
    Type: Application
    Filed: December 23, 2009
    Publication date: May 6, 2010
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Donald A. ZEHNDER, Joseph A. Treadway
  • Publication number: 20100080750
    Abstract: A method for producing cadmium telluride from elemental cadmium and elemental tellurium is disclosed. For example, the method disclosed can be used for producing multi-kilogram batches of cadmium telluride in a few hours.
    Type: Application
    Filed: February 6, 2009
    Publication date: April 1, 2010
    Inventors: Nicholas AUDET, Blagovest LEVITCHARSKY
  • Publication number: 20100059713
    Abstract: A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of the thus-prepared nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A. The nanoparticles so prepared can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone; this method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum.
    Type: Application
    Filed: June 15, 2009
    Publication date: March 11, 2010
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Marc Schrier, Donald A. Zehnder, Joseph A. Treadway, Joseph A. Bartel
  • Patent number: 7670584
    Abstract: Methods for forming colloidal metal chalcogenide nanoparticles generally include forming soluble inorganic metal chalcogen cluster precursors, which are then mixed with a surfactant and heated to form the colloidal metal chalcogenide nanoparticles. The soluble inorganic metal chalcogen cluster precursors are generally formed using a hydrazine-based solvent. The methods can be used with main group and transition metals.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: March 2, 2010
    Assignees: International Business Machines Corporation, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Marissa A. Caldwell, Delia J. Milliron
  • Publication number: 20100028249
    Abstract: A method and apparatus for producing surface stabilized nanometer-sized particles includes the steps of mixing reactants, a surface-stabilizing surfactant, and a high boiling point liquid to form a mixture, continuously passing the mixture through an ultrasonic spray nozzle to form a mist of droplets of the mixture, injecting the mist directly into a furnace to cause a reaction between species of the mixture, and collecting the nanometer-sized products. The ultrasonic nozzle is positioned directly at one end of the heating furnace, preferably the top end, for travel of the droplets through the furnace. The continuous liquid-flow process, along with certain operating parameters, eliminates the need for dilution of the high boiling point liquid with a low boiling point solvent as in the prior art, significantly increases the yield, improves the quality of the product, and makes the process scalable.
    Type: Application
    Filed: October 9, 2008
    Publication date: February 4, 2010
    Inventors: Yuri T. Didenko, Yuhua Ni
  • Publication number: 20100025637
    Abstract: Embodiments of the invention provide a method of making non-spherical nanoparticles that includes (a) combining a source of a Group 12, 13, 14, or 15 metal or metalloid; a source of a Group 15 or 16 element; and a source of a quaternary ammonium compound or phosphonium compound; and (b) isolating non-spherical nanoparticles from the resulting reaction mixture. Other embodiments of the invention provide non-spherical nanoparticle compositions, that are the reaction product of a source of a Group 12, 13, 14, or 15 metal or metalloid; a source of a Group 15 or 16 element; and a source of a quaternary ammonium compound or phosphonium compound; wherein nanoparticle tetrapods comprise 75-100 number percent of the nanoparticle products.
    Type: Application
    Filed: April 11, 2008
    Publication date: February 4, 2010
    Applicant: Rice University
    Inventors: Subashini Asokan, Michael Sha-nang Wong
  • Publication number: 20100003187
    Abstract: A method for synthesizing a chalcogenide nanoparticle is provided. The method comprises reacting a metal component with an elemental chalcogen precursor in the presence of an organic solvent. The chalcogenide nanoparticles include ternary, binary and/or multinary chalcogenide nanoparticles and the metal component comprises metal halides or elemental metal precursors. The alkylamine solvent has a normal boiling temperature of above about 220° C. and an average particle size of from about 5 nm to about 1000 nm.
    Type: Application
    Filed: May 21, 2007
    Publication date: January 7, 2010
    Inventors: Qijie Guo, Rakesh Agrawal, Hugh W. Lane
  • Patent number: 7641869
    Abstract: A process and apparatus are presented for obtaining inorganic fullerene-like nanostructures. A metal oxide is evaporated at predetermined temperature conditions, and is swept towards a reacting zone, to which first and second gas phase reacting agents are concurrently swept. The evaporated metal oxide thus interacts with the first reacting agent and is converted into metal suboxide nanoparticles in the gas phase. The condensing metal suboxide nanoparticles interact with the second reacting agent in the gas phase resulting in substantially pure phase of the inorganic fullerene-like nanoparticles.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: January 5, 2010
    Assignee: Yeda Research and Development Company Ltd.
    Inventors: Reshef Tenne, Yishay Feldman, Alla Zack, Rita Rosentsveig
  • Patent number: 7641886
    Abstract: The present invention provides a process for obtaining fullerene-like metal chalcogenide nanoparticles, comprising feeding a metal precursor (INi) selected from metal halide, metal carbonyl, organo-metallic compound and metal oxyhalide vapor into a reaction chamber (12) towards a reaction zone to interact with a flow of at least one chalcogen material (IN2) in gas phase, the temperature conditions in said reaction zone being such to enable the formation of the fullerene-like metal chalcogenide nanoparticles product. The present invention further provides novel IF metal chalcogenides nanoparticles with spherical shape and optionally having a very small or no hollow core and also exhibiting excellent tribological behavior. The present invention further provides an apparatus for preparing various IF nanostructures.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: January 5, 2010
    Assignees: Yeda Research & Development Company Ltd., A.Y.Y.T. - Technological Application and Data Update Ltd.
    Inventors: Reshef Tenne, Alexander Margolin, Ronit Popovitz-Biro, Lev Rapoport
  • Publication number: 20090289233
    Abstract: Disclosed herein is a method for synthesizing a nanoparticle using a carbene derivative. More specifically, provided is a method for synthesizing a nanoparticle by adding one or more precursors to an organic solvent to grow a crystal, wherein a specific carbene derivative is used as the precursor.
    Type: Application
    Filed: December 5, 2008
    Publication date: November 26, 2009
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Eun Joo JANG, Seung Uk SON