Binary Compound Patents (Class 423/509)
  • Publication number: 20090272416
    Abstract: A method for increasing the Seebeck coefficient of a semiconductor involves creating a reaction cell including a semiconductor in a pressure-transmitting medium, exposing the reaction cell to elevated pressure and elevated temperature for a time sufficient to increase the Seebeck coefficient of the semiconductor, and recovering the semiconductor with an increased Seebeck coefficient.
    Type: Application
    Filed: June 26, 2007
    Publication date: November 5, 2009
    Applicant: DIAMOND INNOVATIONS, INC.
    Inventor: Abds-Sami Malik
  • Publication number: 20090269271
    Abstract: Provided is a semiconductor substrate for epitaxial growth which does not require any etching treatment as a pretreatment in the stage of performing an epitaxial growth of HgCdTe film. A CdTe system compound semiconductor substrate for the epitaxial growth of the HgCdTe film is housed in an inactive gas atmosphere, in a predetermined period of time (for example, 10 hours) after mirror finish treatment thereof, to thereby regulate the proportion of Te oxide of the total amount of Te on the substrate surface which is obtained by XPS measurement so as to be not more than 30%.
    Type: Application
    Filed: August 17, 2007
    Publication date: October 29, 2009
    Inventors: Kenji Suzuki, Ryuichi Hirano, Hideki Kurita
  • Patent number: 7608237
    Abstract: A process for synthesizing nanostructures is disclosed. The process involves forming a liquid crystalline template by combining a block copolymer, a first reactant in a polar phase, and a nonpolar phase, then contacting the template with a gas phase composed of a second reactant, under conditions effective to form nanostructures.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: October 27, 2009
    Assignee: The Research Foundation of State University of New York
    Inventors: Paschalis Alexandridis, Georgios N. Karanikolos, Triantafillos J. Mountziaris
  • Patent number: 7608230
    Abstract: A sample conditioning system removes selenium from a flue gas sample to provide more accurate measure of mercury in the gas stream. Ammonia or another basic reagent is added to the sampled gas stream to increase the pH of the condensate, and thereby ensuring the removal of hydrogen selenide.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: October 27, 2009
    Assignee: Apogee Scientific, Inc
    Inventors: Scott E. McLaren, Kevin M. Fisher
  • Publication number: 20090236594
    Abstract: An inorganic nanocomposite is prepared by obtaining a solution of a soluble hydrazine-based metal chalcogenide precursor; dispersing a nanoentity in the precursor solution; applying a solution of the precursor containing the nanoentity onto a substrate to produce a film of the precursor containing the nanoentity; and annealing the film of the precursor containing the nanoentity to produce the metal chalcogenide nanocomposite film comprising at least one metal chalcogenide and at least one molecularly-intermixed nanoentity on the substrate. The process can be used to prepare field-effect transistors and photovoltaic devices.
    Type: Application
    Filed: April 14, 2009
    Publication date: September 24, 2009
    Applicant: International Business Machines Corporation
    Inventors: David B. Mitzi, Christopher B. Murray, Dmitri V. Talapin
  • Patent number: 7591990
    Abstract: There is provided a process for preparing compounds of formula M3M1A2. The process comprises reacting a compound of formula M2M1A2 with a compound of formula M3X2, in the presence of at least one coordinating solvent. M1 can be chosen from B3+, Al3+, Ga3+, In3+, Tl3+, Fe3+, and Au3+; M2 can be chosen from Li+, Na+, K+, Cs+, (T1)3Si—, and N(T2)4+; M3 can be chosen from Cu+, Ag+, Li+, Na+, K+, Cs+, Rb+, Fr+, Au+, and Hg+; A can be chosen from S and Se; and X2 can be chosen from Cl?, Br?, I?, F?, CH3COO?, NO3?, and CN?. Such compounds can be used for various purposes in the field of electrochemistry.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: September 22, 2009
    Assignee: Transfert Plus, S.E.C. Inc.
    Inventors: Amer Hammami, Benoit Marsan, Fabrice Courtel, Mario Morin
  • Publication number: 20090203195
    Abstract: Hybrid semiconductor materials have an inorganic semiconductor incorporated into a hole-conductive fluorene copolymer film. Nanometer-sized particles of the inorganic semiconductor may be prepared by mixing inorganic semiconductor precursors with a steric-hindering coordinating solvent and heating the mixture with microwaves to a temperature below the boiling point of the solvent.
    Type: Application
    Filed: July 11, 2006
    Publication date: August 13, 2009
    Inventors: Farid Bensebaa, Pascal L'Ecuyer, Jianfu Ding, Andrea Firth
  • Patent number: 7566435
    Abstract: A method for preparing nanowires is disclosed, which comprises the following steps: (a) providing a first precursor solution containing IIB group elements, and a second precursor solution containing VIA group elements; (b) mixing and heating the first precursor solution and the second precursor solution to form a mixed solution; and (c) cooling the mixed solution and filtering the mixed solution to obtain nanowires. The first precursor solution includes compounds of IIB group elements and a surfactant. The second precursor solution includes compounds of VIA group elements. Besides, the surfactant is an organic acid having an aromatic group or a salt thereof.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: July 28, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Hsueh-Shih Chen, Shu-Ru Chung, Gwo-Yang Chang, Shih-Jung Tsai
  • Patent number: 7563430
    Abstract: Methods for forming colloidal metal chalcogenide nanoparticles generally include forming soluble inorganic metal chalcogen cluster precursors, which are then mixed with a surfactant and heated to form the colloidal metal chalcogenide nanoparticles. The soluble inorganic metal chalcogen cluster precursors are generally formed using a hydrazine-based solvent. The methods can be used with main group and transition metals.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: July 21, 2009
    Assignees: International Business Machines Corporation, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Marissa A. Caldwell, Delia J. Milliron
  • Patent number: 7563429
    Abstract: A process for reclaiming spent selenium filter mass containing an inert material. The spent mass is treated with a hydrogen peroxide solution for leaching out selenium content from unspent active substance present in the filter mass to form selenious acid. The filter mass is treated with aqua regia solution to dissolve mercury selenide present in the mass. The aqua regia solution is separated from the mass and isolated. Suitably, the filter mass, which now contains inert carrier material, is transferred with the isolated selenious acid, to production of new selenium filter mass. After partial neutralization of the aqua regia solution, mercury is precipitated out for disposal. Before this, elemental selenium can be separated from the aqua regia solution by adjusting the pH level and used advantageously for production of new filter mass. Thusly, reclaimed selenium content and inert carrier material can be advantageously used for production of new selenium filters.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: July 21, 2009
    Assignee: Outotec Oyj
    Inventor: Yngve Lundgren
  • Patent number: 7547425
    Abstract: A method is provided for compounding, homogenizing and consolidating compounds. In one embodiment, the charge components are mixed in a controlled addition process, then the newly-formed compound is heated to become totally molten, followed by a rapid quench at room temperature. In an alternate embodiment, the components are supplied with an excess of one component acting as a solvent, heated to dissolve additional components, and then the solvent is separated from the compound to produce homogeneous consolidated compounds. The methods herein are advantageously applied to provide an economical and fast process for producing CdTe, CdZnTe and ZnTe compounds.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: June 16, 2009
    Assignee: Redlen Technologies
    Inventors: Robert Francis Redden, Weidong Huang, Troy Oran Hasanen
  • Patent number: 7544343
    Abstract: It is to define the resistivity and the contained amount of impurities of a CdTe system compound semiconductor single crystal and to provide a CdTe system compound semiconductor single crystal which is useful as a substrate for optical devices such as an infrared sensor and the like. In a CdTe system compound semiconductor single crystal for an optical device, a Group 1 (1A) element is included in a range of 5×1014 to 6×1015 cm?3 in the crystal, a total amount of a Group 13 (3B) element and a Group 17 (7B) element included in the crystal is less than 2×1015 cm?3 and less than a total amount of the Group 1 (1A) element, and resistivity of the crystal is in a range of 10 to 104 ?cm.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: June 9, 2009
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Atsutoshi Arakawa, Ryuichi Hirano
  • Publication number: 20090142522
    Abstract: Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.
    Type: Application
    Filed: October 12, 2004
    Publication date: June 4, 2009
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: A. Paul Alivisatos, Yadong Yin, Can Kerem Erdonmez
  • Publication number: 20090074653
    Abstract: A ZnX, X is S, Se, Te or a combination thereof, quantum dot preparation method. This method comprises the following steps: dissolving S powder, Se powder, Te powder or a combination thereof into an organic alkali to form a first complex solution; dissolving ZnO into an organic acid and a co-solvent to form a second complex solution; and mixing the first complex solution and the second complex solution to obtain the ZnX quantum dot.
    Type: Application
    Filed: December 9, 2004
    Publication date: March 19, 2009
    Inventors: Hsueh-Shih Chen, Gwo-Yang Chang, Chien-Ming Chen
  • Publication number: 20090060829
    Abstract: A method is provided for compounding, homogenizing and consolidating compounds. In one embodiment, the charge components are mixed in a controlled addition process, then the newly-formed compound is heated to become totally molten, followed by a rapid quench at room temperature. In an alternate embodiment, the components are supplied with an excess of one component acting as a solvent, heated to dissolve additional components, and then the solvent is separated from the compound to produce homogeneous consolidated compounds. The methods herein are advantageously applied to provide an economical and fast process for producing CdTe, CdZnTe and ZnTe compounds.
    Type: Application
    Filed: September 11, 2008
    Publication date: March 5, 2009
    Inventors: Robert Francis Redden, Weidong Huang, Troy Oran Hasanen
  • Patent number: 7479262
    Abstract: One object of the present invention is to provide a separation process that enables the efficient separation of selenium, tellurium, and platinum group elements from a material containing selenium/tellurium and platinum group elements. In order to achieve this object, the invention provides a separation process for platinum group elements comprising: a step (A) for treating a material containing selenium/tellurium and platinum group elements with alkali, a step (B) for leaching selenium/tellurium, and a step (C) for separating the platinum group element-containing leaching residue and the selenium/tellurium leachate.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: January 20, 2009
    Assignee: Mitsubishi Materials Corporation
    Inventors: Satoshi Okada, Takahiro Uno, Kazusuke Sato, Shoji Ishiwata
  • Patent number: 7468146
    Abstract: A metal chalcogenide composite nano-particle comprising a metal capable of forming p-type semiconducting chalcogenide nano-particles and a metal capable of forming n-type semiconducting chalcogenide nano-particles, wherein at least one of the metal chalcogenides has a band-gap between 1.0 and 2.9 eV and the concentration of the metal capable of forming p-type semiconducting chalcogenide nano-particles is at least 5 atomic percent of the metal and is less than 50 atomic percent of the metal; a dispersion thereof; a layer comprising the nano-particles; and a photovoltaic device comprising the layer.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: December 23, 2008
    Assignee: Agfa-Gevaert
    Inventor: Hieronymus Andriessen
  • Publication number: 20080241051
    Abstract: Methods of processing nanocrystals to remove excess free and bound organic material and particularly surfactants used during the synthesis process, and resulting nanocrystal compositions, devices and systems that are physically, electrically and chemically integratable into an end application.
    Type: Application
    Filed: September 2, 2004
    Publication date: October 2, 2008
    Applicant: NANOSYS, Inc.
    Inventors: Erik Scher, Mihai Buretea, Jeffery A. Whiteford, Andreas Meisel
  • Patent number: 7427382
    Abstract: A method is provided for compounding, homogenizing and consolidating compounds. In one embodiment, the charge components are mixed in a controlled addition process, then the newly-formed compound is heated to become totally molten, followed by a rapid quench at room temperature. In an alternate embodiment, the components are supplied with an excess of one component acting as a solvent, heated to dissolve additional components, and then the solvent is separated from the compound to produce homogeneous consolidated compounds. The methods herein are advantageously applied to provide an economical and fast process for producing CdTe, CdZnTe and ZnTe compounds.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: September 23, 2008
    Assignee: Redlen Technologies
    Inventors: Robert Francis Redden, Weidong Huang, Troy Oran Hasanen
  • Publication number: 20080226890
    Abstract: Layered materials are provided that have surprisingly low thermal conductivities. A plurality of layers of a selected material such as, for example, tungsten diselenide, is formed by a modulated elemental reactants method to produce a low thermal conductivity material. The layers are generally stacked but substantially randomly arranged as stacked.
    Type: Application
    Filed: October 20, 2006
    Publication date: September 18, 2008
    Inventors: David C. Johnson, Ngoc Nguyen
  • Patent number: 7419606
    Abstract: A process for removing selenium from an aqueous stream using a supported sulfur material, and optionally the addition of an activating agent for enhanced removal of selenite, is disclosed.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: September 2, 2008
    Assignee: ConocoPhillips Company
    Inventors: Marvin Johnson, Charles J. Lord, III, Larry E. Reed, Kenneth C. McCarley, Glenn W. Dodwell, Tin Tack Peter Cheung, John Cruze, Richard Anderson
  • Patent number: 7419602
    Abstract: A process for removing selenium from a water stream, in particular a waste water stream, by: 1) the addition thereto of a ferric salt, followed by 2) the addition of a cupric salt and pH adjustment to a pH value in the range of from about 6.5 to about 8.0, thereby forming a copper-and-selenium-containing precipitate, and 3) removing the copper-and-selenium-containing precipitate to thereby form a treated water stream, is disclosed. The optional precipitation and removal of excess copper ions is also disclosed.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: September 2, 2008
    Assignee: ConocoPhillips Company
    Inventors: Roosevelt Alexander, Charles J. Lord, Steven C. Mitchell
  • Publication number: 20080206124
    Abstract: Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets.
    Type: Application
    Filed: February 22, 2007
    Publication date: August 28, 2008
    Inventors: Bor Z. Jang, Aruna Zhamu
  • Patent number: 7413664
    Abstract: A process for removing selenium from an aqueous stream using a supported sulfur material, to convert selenocyanate to selenite, followed by removal of the selenite from the aqueous stream.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: August 19, 2008
    Assignee: ConocoPhillips Company
    Inventors: Charles J. Lord, III, Larry E. Reed
  • Patent number: 7410631
    Abstract: Disclosed are metal phosphate sols made by mixing at least one metal oxide, at least one phosphate precursor, at least one organosilane, and a liquid. Also disclosed are nanocomposites containing the metal phosphate sols and at least one of metal nanoparticle and metal-chalcogenide nanoparticle. The nanocomposites containing metal nanoparticles may be chalcogenized to provide nanocomposites containing metal-chalcogenide nanoparticles. Also disclosed are composites containing a dielectric material such as a polymer and at least one of the metal phosphate sol and the nanocomposite.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: August 12, 2008
    Assignee: APS Laboratory
    Inventor: Hong-Son Ryang
  • Publication number: 20080170984
    Abstract: The present invention provides a process for obtaining fullerene-like metal chalcogenide nanospheres, comprising: (a) feeding a metal halide, metal carbonyl, organo-metallic compound or metal oxyhalide vapor into a reacting chamber towards a reacting zone to interact with a flow of at least one chalcogen material in gas phase, the temperature conditions in said reacting zone being such enabling the immediate formation of spherical nucleation seeds of the product; (b) controllably varying the flow of said metal halide, metal carbonyl, organo-metallic compound or metal oxyhalide vapor into said reacting chamber thereby controlling the amount, morphology and size of the so-produced nanospheres, to obtain substantially non-hollow fullerene-like metal calcogenide nanospheres in solid form. The present invention further provides novel IF metal chalcogenides with substantially non-hollow, spherical shape, and having excellent tribological behaviour.
    Type: Application
    Filed: April 6, 2006
    Publication date: July 17, 2008
    Inventors: Reshef Tenne, Alexander Margolin, Ronit Popovitz-Biro, Lev Rapoport
  • Publication number: 20080157031
    Abstract: A method for the non-catalytic growth of nanowires is provided. The method includes a reaction chamber with the chamber having an inlet end, an exit end and capable of being heated to an elevated temperature. A carrier gas with a flow rate is allowed to enter the reaction chamber through the inlet end and exit the chamber through the exit end. Upon passing through the chamber the carrier gas comes into contact with a precursor which is heated within the reaction chamber. A collection substrate placed downstream from the precursor allows for the formation and growth of nanowires thereon without the use of a catalyst. A second embodiment of the present invention is comprised of a reaction chamber, a carrier gas, a precursor target, a laser beam and a collection substrate. The carrier gas with a flow rate and a gas pressure is allowed to enter the reaction chamber through an inlet end and exit the reaction chamber through the exit end.
    Type: Application
    Filed: January 3, 2007
    Publication date: July 3, 2008
    Applicants: Toyota Engineering & Manufacturing North America, Inc.
    Inventors: Joshua Goldberger, Melissa Fardy, Oded Rabin, Allon Hochbaum, Minjuan Zhang, Peidong Yang
  • Patent number: 7393516
    Abstract: A method of preparing metal chalcogenides from elemental metal or metal compounds has the following steps: providing at least one elemental metal or metal compound; providing at least one element from periodic table groups 13-15; providing at least one chalcogen; and combining and heating the chalcogen, the group 13-15 element and the metal at sufficient time and temperature to form a metal chalcogenide. A method of functionalizing the surface of semiconducting nanoparticles has the following steps: providing at least one metad compound; providing one chalcogenide having a cation selected from the group 13-15 (B, Al, Ga, In, Si, Ge, Sn, Pb, P, As, Sb and Bi); dissolving the chalcogenide in a first solution; dissolving the metal compound in a second solution; providing and dissolving a functional capping agent in at least one of the solutions of the metal compounds and chalcogenide; combining all solutions; and maintaining the combined solution at a proper temperature for an appropriate time.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: July 1, 2008
    Inventors: Dong-Kyun Seo, Nora Iancu, Liming Wu
  • Publication number: 20080112878
    Abstract: A chalcogenide compound synthesis method includes homogeneously mixing solid particles and, during the mixing, imparting kinetic energy to the particle mixture, heating the particle mixture, alloying the elements, and forming alloyed particles containing the compound. Another chalcogenide compound synthesis method includes, under an inert atmosphere, melting the particle mixture in a heating vessel, removing the melt from the heating vessel, placing the melt in a quenching vessel, and solidifying the melt. The solidified melt is reduced to alloyed particles containing the compound. An alloy casting apparatus includes an enclosure, a heating vessel, a flow controller, a collection pan and an actively cooled quench plate. The heating vessel has a bottom-pouring orifice and a pour actuator. The flow controller operates the pour actuator from outside the enclosure. The quench plate is positioned above a bottom of the collection pan and below the bottom-pouring orifice.
    Type: Application
    Filed: November 9, 2006
    Publication date: May 15, 2008
    Inventors: Janine K. Kardokus, Michael R. Pinter, Ravi Rastogi, Diana L. Morales, Michael D. Bayton, Norman L. Sand, Bryan E. Powers
  • Publication number: 20080112877
    Abstract: A process for synthesizing a metal telluride is provided that includes the dissolution of a metal precursor in a solvent containing a ligand to form a metal-ligand complex soluble in the solvent. The metal-ligand complex is then reacted with a telluride-containing reagent to form metal telluride domains having a mean linear dimension of from 2 to 40 nanometers. NaHTe represents a well-suited telluride reagent. A composition is provided that includes a plurality of metal telluride crystalline domains (PbTe)1-x-y(SnTe)x(Bi2Te3)y ??(I) having a mean linear dimension of from 2 to 40 nanometers inclusive where x is between 0 and 1 inclusive and y is between 0 and 1 inclusive with the proviso that x+y is less than or equal to 1. Each of the metal telluride crystalline domains has a surface passivated with a saccharide moiety or a polydentate carboxylate.
    Type: Application
    Filed: November 14, 2006
    Publication date: May 15, 2008
    Applicant: Toyota Engineering & Manufacturing North America, Inc.
    Inventors: Qiangfeng Xiao, Yunfeng Lu, Minjuan Zhang
  • Patent number: 7357910
    Abstract: Method for producing metal oxide nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone into metal vapor. The metal vapor is directed away from the hot zone and into the cooler plasma afterglow where it oxidizes, cools and condenses to form solid metal oxide nanoparticles.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: April 15, 2008
    Assignee: Los Alamos National Security, LLC
    Inventors: Jonathan Phillips, Daniel Mendoza, Chun-Ku Chen
  • Patent number: 7329399
    Abstract: A hydrogen-trapping compound is provided, along with a process for manufacturing the compound, and its uses, wherein the hydrogen-trapping compound is characterized in that it contains at least one metal salt of formula MX(OH), in which M represents a divalent transition element, for example Co or Ni; O represents an oxygen atom; X represents an atom of group 16 of the Periodic Table of the Elements, excluding O, for example a sulphur atom; and H represents a hydrogen atom, and wherein the hydrogen-trapping compound is effective for trapping hydrogen, hydrogen within a material and free hydrogen and is applicable in situations in which hydrogen is evolved and in which it has to be trapped, especially for safety reasons.
    Type: Grant
    Filed: August 25, 2004
    Date of Patent: February 12, 2008
    Assignees: Commissariat a l'Energie Atomique, Compagnie Generale des Matieres Nucleaires
    Inventors: Sylvie Camaro, Quentin Ragetly, Chantal Riglet-Martial
  • Patent number: 7276622
    Abstract: It is provided that a method for producing an oxygen-containing compound, characterized in that an olefin compound having a carbon-carbon double bond which is bonded to a methyl or methylene group is reacted with an organic hydroperoxide in the presence of an ionic liquid and a selenium compound.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: October 2, 2007
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Koji Hagiya
  • Patent number: 7273904
    Abstract: Dendron ligands or other branched ligands with cross-linkable groups were coordinated to colloidal inorganic nanoparticles, including nanocrystals, and substantially globally cross-linked through different strategies, such as ring-closing metathesis (RCM), dendrimer-bridging methods, and the like. This global cross-linking reaction sealed each nanocrystal within a dendron box to yield box-nanocrystals which showed dramatically enhanced stability against chemical, photochemical and thermal treatments in comparison to the non-cross-linked dendron-nanocrystals. Empty dendron boxes possessing a very narrow size distribution were formed by the dissolution of the inorganic nanocrystals contained therein upon acid or other etching treatments.
    Type: Grant
    Filed: October 3, 2003
    Date of Patent: September 25, 2007
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: Xiaogang Peng, Haiyan Chen, Wenzhou Guo, Y. Andrew Wang
  • Patent number: 7267810
    Abstract: A method of making nanocrystals involves adding a chalocogen source to a hot solution of a metal-containing non-organometallic compound, such as CdO, in a first ligand solvent, such as TOP, and preferably subsequently cooling the resulting mixture to a lower temperature to grow the nanocrystals at said lower temperature. The method can involve either one ligand or two-ligand systems.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: September 11, 2007
    Assignee: National Research Council of Canada
    Inventors: Kui Yu, John Ripmeester
  • Patent number: 7255846
    Abstract: The present invention provides methods for synthesis of IV–VI nanostructures, and thermoelectric compositions formed of such structures. In one aspect, the method includes forming a solution of a Group IV reagent, a Group VI reagent and a surfactant. A reducing agent can be added to the solution, and the resultant solution can be maintained at an elevated temperature, e.g., in a range of about 20° C. to about 360° C., for a duration sufficient for generating nanoparticles as binary alloys of the IV–VI elements.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: August 14, 2007
    Assignees: Massachusetts Institute of Technology, The Trustees of Boston College
    Inventors: Zhifeng Ren, Gang Chen, Bed Poudel, Shankar Kumar, Wenzhong Wang, Mildred Dresselhaus
  • Patent number: 7229602
    Abstract: A method of preparing metal chalcogenide particles. The method comprising the step of reacting an amine and metal complex precursors. The metal complex precursors comprising a chalcogenide and an electrophilic group. The reaction forming metal chalcogenide particles substantially free of the electrophilic group.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: June 12, 2007
    Assignee: National University of Singapore
    Inventors: Wee Shong Chin, Zhihua Zhang, Wen Pei Lim
  • Patent number: 7208133
    Abstract: A high temperature non-aqueous synthetic procedure for the preparation of substantially monodisperse IV-VI semiconductor nanoparticles is provided. The procedure includes introducing a first precursor selected from the group consisting of a molecular precursor of a Group IV element and a molecular precursor of a Group VI element into a reaction vessel that comprises at least an organic solvent to form a mixture. Next, the mixture is heated and thereafter a second precursor of a molecular precursor of a Group IV element or a molecular precursor of a Group VI element that is different from the first is added. The reaction mixture is then mixed to initiate nucleation of IV-VI nanocrystals and the temperature of the reaction mixture is controlled to provide nanoparticles having a diameter of about 20 nm or less.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: April 24, 2007
    Assignee: International Business Machines Corporation
    Inventors: Kyung-Sang Cho, Wolfgang Gaschler, Christopher B. Murray, Dmitri Talapin
  • Patent number: 7138098
    Abstract: A method of manufacturing a nanocrystallite from a M-containing salt forms a nanocrystallite. The nanocrystallite can be a member of a population of nanocrystallites having a narrow size distribution and can include one or more semiconductor materials. Semiconducting nanocrystallites can photoluminesce and can have high emission quantum efficiencies.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: November 21, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Moungi Bawendi, Nathan E. Stott
  • Patent number: 7125820
    Abstract: Non-noble metal transition metal catalysts can replace platinum in the oxidation reduction reaction (ORR) used in electrochemical fuel cells. A RuxSe catalyst is prepared with comparable catalytic activity to platinum. An environmentally friendly aqueous synthetic pathway to this catalyst is also presented. Using the same aqueous methodology, ORR catalysts can be prepared where Ru is replaced by Mo, Fe, Co, Cr, Ni and/or W. Similarly Se can be replaced by S.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: October 24, 2006
    Assignee: Ballard Power Systems Inc.
    Inventor: Stephen A Campbell
  • Patent number: 7067733
    Abstract: Thermoelectric material is produced through a process sequence including a liquid quenching, a primary solidification such as a hot pressing or extrusion and an upset forging; although the C-planes of the crystal grains are directed in parallel to the direction in which the force is exerted on flakes during the hot pressing/extrusion, the a-axes are randomly directed; the a-axes are oriented in a predetermined direction through the upset forging; this results in improvement of electric resistivity without reduction in the figure of merit.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: June 27, 2006
    Assignee: Yamaha Corporation
    Inventors: Yuma Horio, Junya Suzuki
  • Patent number: 7049009
    Abstract: A method of sputter depositing silver selenide and controlling the stoichiometry and nodular defect formations of a sputter deposited silver-selenide film. The method includes depositing silver-selenide using a sputter deposition process at a pressure of about 0.3 mTorr to about 10 mTorr. In accordance with one aspect of the invention, an RF sputter deposition process may be used preferably at pressures of about 2 mTorr to about 3 mTorr. In accordance with another aspect of the invention, a pulse DC sputter deposition process may be used preferably at pressures of about 4 mTorr to about 5 mTorr.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: May 23, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Jiutao Li, Keith Hampton, Allen McTeer
  • Patent number: 7018606
    Abstract: A process and apparatus are presented for obtaining inorganic fullerene-like nanostructures. A metal oxide is evaporated at predetermined temperature conditions, and is swept towards a reacting zone, to which first and second gas phase reacting agents are concurrently swept. The evaporated metal oxide thus interacts with the first reacting agent and is converted into metal suboxide nanoparticles in the gas phase. The condensing metal suboxide nanoparticles interact with the second reacting agent in the gas phase resulting in substantially pure phase of the inorganic fullerene-like nanoparticles.
    Type: Grant
    Filed: October 25, 2001
    Date of Patent: March 28, 2006
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Reshef Tenne, Yishay Feldman, Alla Zak, Rita Rosentsveig
  • Patent number: 6875377
    Abstract: A gamma radiation source comprising selenium-75 or a precursor therefore, wherein the selenium is provided in the form of one or more thermally stable compounds, alloys, or mixed metal phases.
    Type: Grant
    Filed: April 20, 2000
    Date of Patent: April 5, 2005
    Assignee: AEA Technology PLC
    Inventor: Mark Golder Shilton
  • Patent number: 6874335
    Abstract: Systems and methods for large scale synthesis of germanium selenide glass and germanium selenide glass compounds are provided. Up to about 750 grams of a germanium selenide glass or a glass compound can be synthesized at a time in about eight hours or less. Stoichiometrically proportional amounts of germanium and selenium are placed in an ampoule. A variable may also be placed in the ampoule. The ampoule is heated to above the softening temperature of the glass or glass compound being synthesized. The ampoule is then rocked for a period of time while the temperature is held constant. The temperature of the ampoule is then brought down to above the softening temperature of the glass or glass compound being synthesized and then quenched.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: April 5, 2005
    Assignee: Micron Technology, Inc.
    Inventor: Stefan Uhlenbrock
  • Patent number: 6869545
    Abstract: The present invention provides new compositions containing colloidal nanocrystals with high photoluminescence quantum yields, new synthetic methods for the preparation of highly luminescent colloidal nanocrystals, as well as methods to control the photoluminescent properties of colloidal nanocrystals. The new synthetic methods disclosed herein allow photoemission brightness (quantum yield) to be correlated with certain adjustable nanocrystal growth parameters associated with a given synthetic scheme.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: March 22, 2005
    Assignee: The Board of Trustees of the University of Arkansas
    Inventors: Xiaogang Peng, Lianhua Qu
  • Patent number: 6861037
    Abstract: The present invention focuses on the method for the removal of impurities, such as tellurium and bismuth, from gold concentrate containing sulfides. According to the present method, the impurities are leached from the gold concentrate with the aid of an acidic aqueous solution, at an elevated temperature, whereby the impurities dissolve and the gold remains in the concentrate.
    Type: Grant
    Filed: August 10, 2000
    Date of Patent: March 1, 2005
    Assignee: Outokumpu Oyj
    Inventors: Raimo Leimala, Olli Hyvärinen
  • Patent number: 6841142
    Abstract: Nanotubes of transition metal chalcogenides as long as 0.2-20 microns or more, perfect in shape and of high crystallinity, are synthesized from a transition metal material, e.g. the transition metal itself or a substance comprising a transition metal such as an oxide, water vapor and a H2X gas or H2 gas and X vapor, wherein X is S, Se or Te, by a two-step or three-step method including first producing nanoparticles of the transition metal as long as 0.3 microns, and then annealing in a mild reducing atmosphere of the aforementioned gas or gas mixture. The transition metal chalcogenide is preferably WS2 or WSe2. Tips for scanning probe microscopy can be prepared from said long transition metal chalcogenide nanotubes.
    Type: Grant
    Filed: May 2, 2000
    Date of Patent: January 11, 2005
    Assignee: Yeda Research and Development Co., Ltd.
    Inventors: Reshef Tenne, Aude Rothschild, Moshe Homyonfer
  • Publication number: 20040086444
    Abstract: A process for preparing a capped metal sulfide, selenide or telluride nanoparticle containing one or a mixture of metals; which process comprises contacting, in an inert organic solvent and in the presence of a polar Lewis base capping ligand, a source of the metal(s) and a source of sulfur, selenium or tellurium, wherein the capping ligand and the source of the metal(s) are soluble in said inert organic solvent. Trialkylphosphine oxide capped mercury sulfide, selenide or telluride nanoparticles may be produced by the process of the invention and are useful as amplifiers in optical cables.
    Type: Application
    Filed: December 18, 2003
    Publication date: May 6, 2004
    Inventor: Mark Green
  • Patent number: 6613926
    Abstract: Novel compounds are provided in the form of nucleoside pyrophosphate and triphosphate analogs. In these analogs, the pyrophosphate or triphosphate group is replaced with a moiety that is isosterically and electronically identical thereto, but is hydrolytically and enzymatically more stable. The compounds are useful as therapeutic agents, e.g., as antiviral agents, anticancer agents, metabolic moderators and the like. The invention also provides pharmaceutical compositions containing a compound of the invention as an active agent, and in addition provides methods of treating disease, including viral infections, cancer, bacterial infections, inflammatory and/or autoimmune diseases, and the like, by administering a compound of the invention to a patient in need of such treatment.
    Type: Grant
    Filed: November 1, 2000
    Date of Patent: September 2, 2003
    Assignee: SRI International
    Inventors: Jeffrey C. Bottaro, Robert J. Schmitt, Mark A. Petrie, Paul E. Penwell