Forming Insoluble Substance In Liquid Patents (Class 423/50)
  • Patent number: 6495050
    Abstract: A treating method and apparatus for treating a manganese containing water by crystalizing and removing a soluble manganese in a water to be treated containing carbonic acid ions by passing the water to be treated as an upward flow through a fluidized bed reaction tower having no support bed and containing manganese sand as a fluidized bed material and by adjusting a pH value of the water to be treated in said fluidized bed. A suspended manganese is also removed together with said soluble manganese in the water to be treated by forming a suspended solid in the water to be treated into a layer on said manganese sand fluidized bed by removing said layer of suspended solid. Further, a desired quantity of the treated water is introduced into the water to be treated for circulatory use.
    Type: Grant
    Filed: December 18, 2000
    Date of Patent: December 17, 2002
    Assignee: Ebara Corporation
    Inventors: Junichi Nomura, Shinichiro Egawa
  • Patent number: 6485629
    Abstract: A process for separating a first source of a heavy metal ion or mixtures of heavy metal ions, (Me1), from a solution comprising a complex of said Me1 and EDDS, (Me1-EDDS), by displacement of said Me1 with a second source of a heavy metal ion Me2 by addition to the solution of a salt of said Me2.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: November 26, 2002
    Assignee: The Procter & Gamble Company
    Inventors: Diederik Rudolf Schowanek, Tom Cornelis Jan Feijtel
  • Patent number: 6485696
    Abstract: Ozone is used to rapidly oxidize specific metallic elements. The insoluble oxidized compounds of the metals formed by the ozonation are then recovered for industrial use in a conventional sedimentation/filtration tank or pool. There is no requirement for pre-treating or neutralizing the acid mine discharge, even when iron is the dominant metal. If the pH of the untreated acid mine discharge is less than about 2.5, metals other than iron precipitated first. After that, the pH is raised and the iron is precipitated as ferric hydroxide. Aluminum is removed as hydrated aluminum compounds after removal of the iron prior to discharging the acid mine discharge to streams. Both the ozonation and neutralization processes are monitored and controlled using electrochemical sensors and feedback controllers.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: November 26, 2002
    Assignee: The United States of America as represented by the Secretary of the Interior
    Inventors: Motoaki Sato, Eleanora I. Robbins
  • Patent number: 6409979
    Abstract: A method for precipitating nickel and cobalt from an acid aqueous solution containing at least dissolved nickel, cobalt and manganese, comprising adding solid caustic calcined magnesium oxide or freshly slurried caustic calcined magnesium oxide to the solution in an amount sufficient to precipitate a substantial proportion of the nickel and cobalt in solution and to precipitate a minor proportion of the manganese in solution; maintaining the magnesium oxide in contact with the solution for a period of about 1 hour to about 9 hours to thereby achieve precipitation of a substantial proportion of the nickel and cobalt in solution and precipitation of a minor proportion of the manganese in solution; and separating solids precipitated in the prior step from the aqueous solution.
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: June 25, 2002
    Assignee: Centaur Nickel Pty Limited
    Inventor: David Thomas White
  • Patent number: 6391270
    Abstract: A method and apparatus for precipitating manganese from acidic sulfate solutions, and more specifically from zinc leach solutions, without removing zinc. A zinc- and manganese-containing solution is treated with an SO2—O2 gas mixture at the appropriate pH and temperature, thereby causing manganese to precipitate as a trivalent and/or tetravalent manganese hydroxides and/or oxides that report to the leach residue or are removed separately from solution by solid/liquid separation. These trivalent and/or tetravalent manganese compounds may be used as oxidants in other parts of the leach circuit.
    Type: Grant
    Filed: December 23, 1999
    Date of Patent: May 21, 2002
    Assignees: Noranda Inc., McGill University
    Inventors: George P. Demopoulos, Lucy Rosato, Qiankun Wang
  • Patent number: 6352675
    Abstract: The present invention provides both reagents and a process for removing heavy metals from a caustic fluid stream by the addition of reagents which are not corrosive or deleterious. Specifically, the present invention is directed to removing heavy metals from a Bayer liquor in an aluminum processing plant. The reagents, dithiocarbamate and dithocarbonate groups, are added individually or in combination thereof to the Bayer liquor for the removal of heavy metals, such as zinc. The reagents form a complex with the heavy metal for the precipitation of the metal from the fluid stream. Once a complex is formed, the Bayer liquor is held in a quiescent state for a period of time sufficient for settling out of solution the precipitate. After settling out of solution, the precipitate is separated and removed and the Bayer liquor is then further processed into alumina.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: March 5, 2002
    Assignee: Nalco Chemical Company
    Inventor: John T. Malito
  • Patent number: 6328938
    Abstract: A method for the integration of a manufacturing facility with a salt dome, which manufacturing facility is one for the production of high purity titanium dioxide using chlorine as a reactant. The metal chlorides produced as a by-product of titanium dioxide production are reacted with sodium hydroxide to produce metal hydroxide precipitates in an aqueous sodium chloride solution, which is then conducted into a reservoir of brine in a salt dome. The metal hydroxide precipitates are allowed to settle and the sodium chloride solution mixes with the brine. A portion of the brine is conducted to the surface where it is decomposed to produce chlorine, hydrogen, and sodium hydroxide. The chlorine and sodium hydroxide are recycled for use in the overall integrated process.
    Type: Grant
    Filed: May 23, 2000
    Date of Patent: December 11, 2001
    Inventors: Timothy L. Taylor, Tommy G. Taylor
  • Patent number: 6274104
    Abstract: The invention relates to a method for recovering non-ferrous metals, particularly nickel, cobalt, copper, zinc, manganese and magnesium, from materials containing said metals by converting said non-ferrous metals into sulphates by means of melt and melt coating sulphation, i.e. by a thermal treatment under oxidizing conditions within a temperature range of 400 to 800° C., during which a reaction mixture is formed containing at least one said non-ferrous metal, iron(III)sulphate and alkali metal sulphate, and appropriate reaction conditions are selected to substantially prevent iron(III)sulphate from thermally decomposing to hematite, and finally, said non-ferrous metals are recovered as metallic compounds. In the method of the invention, a process is formed around the melt and melt coating sulphation, which comprises nine steps.
    Type: Grant
    Filed: June 3, 1999
    Date of Patent: August 14, 2001
    Inventors: Jussi Rastas, Pekka Saikkonen
  • Patent number: 6270738
    Abstract: The invention relates to a process for preparing a usable product, in particular a water treatment solution which contains ferric iron, from an impure ferric sulfate solution which contains as an impurity at least one other metal, the process comprising a first precipitation step in which a base is added to the said impure ferric sulfate solution in order to raise the pH to approx. 2-5, preferably approx. 3-4, whereupon ferric hydroxide precipitates; following the first precipitation step, a second precipitation step in which there are added to the solution an oxidant and a base to raise the pH to approx. 6-10, preferably approx. 8-9, whereupon the said impurity metal precipitates; and one or more separation steps to separate from the sulfate solution the solids precipitated in the first and the second precipitation steps; as well as possibly an additional step in which the said separated solids, or a portion thereof, are treated further in order to form a usable product.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: August 7, 2001
    Assignee: Kemira Chemicals OY
    Inventors: Simo Jokinen, Stefan Jäfverström, Timo Kenakkala
  • Patent number: 6261712
    Abstract: Disclosed is a method of reclaiming a cathodic active material of lithium ion secondary batteries. The lithium ion secondary battery is broken and the casing and the content are separated to remove the casing from the content. The content is dissolved into a mineral acid to separate remaining non-dissolved content from the mineral acid to obtain a liquid containing the cathodic active material represented by the formula: LiMO2, where M is a transition metal element: cobalt, nickel and manganese. A lithium salt is added to the liquid, and the cathodic active material is recovered from the liquid in the form of a mixture of lithium compound and the transition metal compound, which is calcined and reclaimed into the cathodic active material.
    Type: Grant
    Filed: June 23, 1999
    Date of Patent: July 17, 2001
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Masaru Hayashi, Fuminobu Tezuka, Yuki Tomioka, Kunihiko Sasaki, Tetsuya Tachibe
  • Patent number: 6245240
    Abstract: Provided herein is a process for treatment of solutions which contain ferrous, ferric and soluble manganese species which process comprises addition of an oxidizing agent to such a solution to cause formation of manganese dioxide particles and adding manganese dioxide seed particles so as to cause nascent manganese dioxide agglomerates formed from the action of the addition of the oxidizing agent on the soluble manganese species to adhere to the manganese dioxide seed particles. By a process according to the invention, it is possible to effectively remove the soluble manganese species as solid manganese dioxide by having effective control over the size of the manganese dioxide particles to enable their subsequent removal using ordinary filtration techniques.
    Type: Grant
    Filed: November 15, 1999
    Date of Patent: June 12, 2001
    Assignee: Tioxide Group Services Limited
    Inventor: Brian Cameron Noble
  • Patent number: 6117408
    Abstract: A method for producing zinc bromide from zinc hydroxide contaminated with iron and manganese compounds. The method comprises the step of mixing zinc hydroxide feedstock containing metal impurities with a hydrobromic acid comprising elemental bromine in the presence of a reducing agent to produce an impure zinc bromide solution. The metal impurities are removed from the zinc bromide solution in a two-stage process: the first stage comprises the steps of precipitating iron by maintaining the pH within a range of from about 3.6 to 4.15 and filtering out the insoluble iron compounds. The second stage comprises the steps of acidifying the zinc hydroxide solution and adjusting the pH to a range of 3.8 to 4.3 with a alkalinity source from metal oxide, hydroxide or carbonate to precipitate the manganese compounds. The resulting mixture is filtered and concentrated to form a solution comprising zinc bromide essentially free of iron and manganese compounds.
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: September 12, 2000
    Assignee: Tetra Technologies, Inc.
    Inventors: Lyle H. Howard, John A. Bain
  • Patent number: 5961879
    Abstract: The present invention discloses a process for the manufacture of liquid aqueous bleaching compositions comprising hypochlorite, a strong source of alkalinity and water, said process comprising the steps of: mixing said alkali metal hypochlorite, said strong source of alkalinity and said water, adding a precipitating agent, or mixtures thereof; and thereafter separating the precipitates formed from said composition. The compositions provided by the process according the present invention are substantially free of heavy metal ions, thereby providing improved whiteness performance and/or fabric safety performance.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: October 5, 1999
    Assignee: Procter & Gamble Company
    Inventor: Giuseppe Trigiante
  • Patent number: 5951954
    Abstract: A method for utilization of zinc byproducts in the manufacture of clear brine fluids comprising the step of mixing zinc feedstock containing metal impurities with a halogenic acid to produce an impure zinc halide solution. The metal impurities are removed from the zinc halide solution in a two-stage process: the first stage comprises the steps of precipitating and filtering out manganese and iron and the second stage comprises the steps of contacting the zinc halide solution with elemental zinc to cement out the remaining metals comprising nickel, lead, cadmium, copper, mercury and cobalt. Preferably, the zinc halide solution is contacted with zinc shot in multiple passes through zinc-filled column systems. The pH is adjusted between each step, if necessary, to maintain the pH in the first stage within a range of from about 3.5 to 4.5 and the alkalinity during the second stage at less than 1.0% zinc oxide.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: September 14, 1999
    Assignee: Tetra Technologies, Inc.
    Inventors: Russell A. Fisher, Paul Wayland, David J. Hanlon
  • Patent number: 5928559
    Abstract: The present invention discloses a process for the manufacture of liquid aqueous bleaching compositions comprising alkali metal hypochlorite, a strong source of alkalinity and water; said process comprising the steps of: mixing alkali metal hypochlorite, strong source of alkalinity and said water, separating the insoluble species formed in the first step, and thereafter adding a chelating agent capable of chelating heavy metal ions. The compositions provided by the process according to the present invention are substantially free of heavy metal ions, thereby providing improved whiteness performance and/or fabric safety performance.
    Type: Grant
    Filed: November 17, 1997
    Date of Patent: July 27, 1999
    Assignee: The Procter & Gamble Company
    Inventors: Mauririo Marchesini, Giuseppe Trigiante
  • Patent number: 5858324
    Abstract: A process for preparing a compound that includes the steps of: (a) preparing a solution comprising (i) a chromium source, (ii) a manganese source, (iii) a lithium source, and (iv) an oxygen source, where the relative amounts of each of the sources is selected to yield, following step (c), a compound having the formula Li.sub.y Cr.sub.x Mn.sub.2-x O.sub.4+z where y.gtoreq.2, 0.25<x<2, and z.gtoreq.0; (b) treating the solution to form a gel; and (c) heating the gel under an inert atmosphere for a time and at a temperature sufficient to yield a compound having the formula Li.sub.y Cr.sub.x Mn.sub.2-x O.sub.4+z where y.gtoreq.2, 0.25<x<2, and z.gtoreq.0. The invention also features a compound having the formula Li.sub.y Cr.sub.x Mn.sub.2-x O.sub.4+z where y>2, 0.25<x<2, and z.gtoreq.0, and an electrode composition containing this compound.
    Type: Grant
    Filed: April 17, 1997
    Date of Patent: January 12, 1999
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Jeffrey R. Dahn, Tao Zheng
  • Patent number: 5702674
    Abstract: Manganese oxide octahedral molecular sieves are provided in which a portion of the framework manganese is substituted by at least one other metal, e.g., a transition metal.
    Type: Grant
    Filed: June 24, 1996
    Date of Patent: December 30, 1997
    Assignee: Texaco Inc.
    Inventors: Chi Lin O'Young, Yan-Fei Shen, Roberto Nguyen Dequzman, Steven Lawrence Suib
  • Patent number: 5641465
    Abstract: A method for manufacturing Li.sub.2 Mn.sub.2 O.sub.4 comprising the steps of providing .beta.-MnO.sub.2 or .lambda.-MnO.sub.2 ; providing a source of lithium; dissolving lithium from the lithium source in a liquid medium in which lithium generates solvated electrons or the reduced form of an electron-transfer catalyst; and contacting the .beta.-MnO.sub.2 or .lambda.-MnO.sub.2 with the liquid medium containing the dissolved lithium and the solvated electrons or the reduced form of the electron-transfer catalyst.
    Type: Grant
    Filed: September 7, 1995
    Date of Patent: June 24, 1997
    Assignee: Kerr-McGee Chemical Corporation
    Inventors: Paul C. Ellgen, Terrell N. Andersen
  • Patent number: 5599436
    Abstract: The present invention relates to a process for the preparation of manganese(III)-containing nickel(II) hydroxide powders, more than 50 mole % of the manganese being present in the trivalent oxidation state, by co-precipitation of nickel(II) and manganese salt solutions with alkali liquors.
    Type: Grant
    Filed: October 25, 1995
    Date of Patent: February 4, 1997
    Assignee: H. C. Starck GmbH & Co. KG
    Inventor: Peter Axmann
  • Patent number: 5597664
    Abstract: A method for manufacturing Li.sub.2 Mn.sub.2 O.sub.4 which comprises the steps of providing LiMn.sub.2 O.sub.4 ; providing a lithium salt; forming a solution or suspension of the LiMn.sub.2 O.sub.4 and lithium salt in a liquid medium; and adding a reducing agent to the solution or suspension.
    Type: Grant
    Filed: September 7, 1995
    Date of Patent: January 28, 1997
    Assignee: Kerr-McGee Corporation
    Inventor: Paul C. Ellgen
  • Patent number: 5578282
    Abstract: A new class of manganese oxide octahedral molecular sieves possess a (4.times.4) tunnel structure. The molecular sieves possess the general compositionA.sub.a M.sub.b Mn.sub.16-b O.sub.32 n.multidot.H.sub.2 Owherein A is +1, +2, +3 or +4 tunnel cation or combination thereof, 0.ltoreq.a.ltoreq.8, M is +1, +2, +3 or +4 framework-substituting metal cation or combination thereof, 0.ltoreq.b.ltoreq.16 and n.gtoreq.0.A method of producing the molecular sieves includes the steps of dissolving a manganese salt in an organic solvent, e.g., ethanol, adding a permanganate salt to the resulting solution to provide a solid intermediate which is recovered and heated to a temperature which results in producing an octahedral molecular sieve having a (4.times.4) tunnel structure.The molecular sieves are useful in such applications as oxidation catalysis, hydrocarbon conversion, adsorption and electrochemical sensors.
    Type: Grant
    Filed: November 7, 1994
    Date of Patent: November 26, 1996
    Assignee: Texaco Inc.
    Inventors: Chi-Lin O'Young, Steven L. Suib
  • Patent number: 5534234
    Abstract: Methods of recovering manganese in the form of manganese carbonate from ores containing manganese and iron while also removing substantially all of the iron contained in the sulfurous acid leach solution are disclosed.
    Type: Grant
    Filed: November 14, 1994
    Date of Patent: July 9, 1996
    Inventors: Lorin D. Reddin, Malcolm T. Hepworth, Rachid Ben-Slimane, Glenn D. Welch
  • Patent number: 5458745
    Abstract: Technetium is separated from radio-contaminated metal in a three-step process. The contaminated metal is dissolved in an acid solution; the technetium, present in the resultant solution as pertechnetate ions, is quantitatively reduced to its metallic state through a metal displacement (cementation) reaction with a base metal of lower reduction potential; and the desired metal is electrolytically recovered from the solution, substantially free from technetium contamination.
    Type: Grant
    Filed: January 23, 1995
    Date of Patent: October 17, 1995
    Assignee: Covofinish Co., Inc.
    Inventor: George Hradil
  • Patent number: 5429887
    Abstract: A process for treating an AB.sub.5 Ni--MH battery to recover purified positive and negative electrode components of the battery is disclosed. An AB.sub.5 Ni--MH battery is placed in a mineral acid leach solution to cause the positive and negative electrode components of the battery to separate. The positive and negative electrode components are maintained in the leach solution until the negative electrode component breaks down into its dissolved rare earth metal constituents and metallic solids. The metallic solids remaining from the negative electrode component and the positive electrode components are separated from the mineral acid leach solution and subjected to an elutriation process and thereafter to ball milling to obtain Ni rich powder and Fe. The mineral acid leach solution containing the completely dissolved rare earth metals is subjected to a phosphate precipitation process to recover La and Ce in precipitate, and then subjected to a second precipitation process to recover Ni, Co, Mn and Al.
    Type: Grant
    Filed: May 16, 1994
    Date of Patent: July 4, 1995
    Assignee: The United States of America as represented by the Secretary of the Interior
    Inventors: Jane W. Lyman, Glenn R. Palmer
  • Patent number: 5419986
    Abstract: A method of making a rechargeable battery electrode material containing manganese oxide is provided. The method includes preparing an aqueous solution of manganese nitrate and dissolving bismuth nitrate into the solution. The mixture is heated to evaporate the water contained in the mixture and is further heated to facilitate decomposition of the nitrates in the mixture to form a compound containing manganese oxide and bismuth oxide. The compound is maintained at a temperature of between about 200 to 300 degrees Celsius for an additional 12 hours. Thereafter, the compound is cooled and ground to a desired particle size for use as a rechargeable battery electrode material. The compound may alto be mixed with commercially prepared electrolytic or chemical manganese dioxide to obtain a highly rechargeable battery electrode material. A related battery cell is also disclosed.
    Type: Grant
    Filed: October 15, 1993
    Date of Patent: May 30, 1995
    Assignee: Rechargeable Battery Corporation
    Inventors: Ramesh C. Kainthla, David J. Manko, A. John Appleby
  • Patent number: 5411643
    Abstract: A process for producing manganese dioxide and zinc metal comprising the steps of:(1) reacting a mixture of zinc oxide and manganese oxide with an aqueous chloric acid solution wherein the chloric acid is in molar excess of the manganese oxide in a reaction zone to form a reaction mixture in the zone comprising chlorine gas, a solid phase containing manganese dioxide, and a liquid phase containing zinc oxide, chloric acid and water; the concentration of chloric acid in the liquid phase is greater than about 1% by weight of the liquid phase upon leaving the reaction zone;(2) separating the chlorine gas from the solid phase and the liquid phase;(3) separating the solid phase containing manganese dioxide from the liquid phase containing zinc ions, chlorate ions, chloric acid, and water thereby forming a separated solid phase and a separated liquid phase;(4) subjecting the separated liquid phase to electrolysis in an electrochemical cell, thereby producing zinc metal at the cathode and oxygen at the anode;(5) remo
    Type: Grant
    Filed: April 18, 1994
    Date of Patent: May 2, 1995
    Assignee: Olin Corporation
    Inventors: David W. Cawlfield, Leslie R. Ward
  • Patent number: 5407650
    Abstract: A process for purifying an acidic technical-grade iron chloride solution formed from cyclone dust from the production of TiO.sub.2 in accordance with the chloride process by adjusting the pH with a first neutralizing agent and thereafter introducing the pH adjusted solution in a controlled manner into a solution containing a second neutralizing agent. In this process undesired ions which are to be separated, such as chromium, vanadium, zirconium and/or niobium, precipitate in the form of efficiently filterable hydroxides which can be separated industrially under economical conditions by filtration. The filter cake is non-hazardous and can safely be disposed of by dumping. Calcium carbonate is the preferred neutralizing agent, and the pH adjustment may also advantageously be effected by using scrap iron or by using iron sinters with reduction of any Fe(III) ions before the second neutralization step.
    Type: Grant
    Filed: December 21, 1993
    Date of Patent: April 18, 1995
    Assignee: Kronos, Inc.
    Inventors: Achim Hartmann, Ulrich Rothe, Dieter Schinkitz
  • Patent number: 5401477
    Abstract: A process for producing manganese dioxide comprising the steps of:(1) reacting manganese oxide with a molar excess of an aqueous chloric acid solution in a reaction zone to form a reaction mixture in said zone comprising chlorine gas, a solid phase containing manganese dioxide, and a liquid phase containing chloric acid and water; the concentration of chloric acid in said liquid phase is greater than about 5% by weight of said liquid phase upon leaving the reaction zone;(2) separating said chlorine gas from said solid phase and said liquid phase;(3) separating said solid phase containing manganese dioxide from liquid phase containing chloric acid and water;(4) removing water from said separated liquid phase to concentrate said chloric acid in said separated liquid phase; and(5) returning said separated and concentrated liquid phase back to said reaction zone for further reaction with manganese oxide.
    Type: Grant
    Filed: January 12, 1994
    Date of Patent: March 28, 1995
    Assignee: Olin Corporation
    Inventors: David W. Cawlfield, Leslie R. Ward
  • Patent number: 5391365
    Abstract: The invention relates to the manufacture of manganese dioxide by a chemical process. The resulting manganese dioxide product takes the form of particles characterized by filament-like protrusions jutting out from its surface. The manganese dioxide particles having such surface features can be manufactured by reacting manganese sulfate with sodium peroxodisulfate in an aqueous solution. The process can be controlled to yield manganese dioxide of varying density and surface area. The manganese dioxide formed in the process can be deposited directly onto the surface of electrolytic manganese dioxide (EMD) or onto the surface of other particles. The manganese dioxide product is particularly suitable for use as a cathode active material in electrochemical cells.
    Type: Grant
    Filed: November 16, 1993
    Date of Patent: February 21, 1995
    Assignee: Duracell Inc.
    Inventors: Enoch I. Wang, William L. Bowden, Paul Gionet
  • Patent number: 5348726
    Abstract: The invention relates to the manufacture of manganese dioxide by a chemical process. The resulting manganese dioxide product takes the form of particles characterized by filament-like protrusions jutting out from its surface. The manganese dioxide particles having such surface features can be manufactured by reacting manganese sulfate with sodium peroxodisulfate in an aqueous solution. The process can be controlled to yield high density manganese dioxide. The manganese dioxide formed in the process can be deposited directly onto the surface of electrolytic manganese dioxide (EMD). The manganese dioxide product the is particularly suitable for use as a cathode active material in electrochemical cells.
    Type: Grant
    Filed: September 20, 1993
    Date of Patent: September 20, 1994
    Assignee: Duracell Inc.
    Inventors: Enoch I. Wang, Lifun Lin, William L. Bowden
  • Patent number: 5277890
    Abstract: The invention relates to the manufacture of manganese dioxide by a chemical process. The resulting manganese dioxide product takes the form of particles characterized by filament-like protrusions jutting out from its surface. The manganese dioxide particles having such surface features can be manufactured by reacting manganese sulfate with sodium peroxodisulfate in an aqueous solution. The process can be controlled to yield high density manganese dioxide. The manganese dioxide formed in the process can be deposited directly onto the surface of electrolytic manganese dioxide (EMD). The manganese dioxide product the is particularly suitable for use as a cathode active material in electrochemical cells.
    Type: Grant
    Filed: September 28, 1992
    Date of Patent: January 11, 1994
    Assignee: Duracell Inc.
    Inventors: Enoch I. Wang, Lifun Lin, William L. Bowden
  • Patent number: 5183541
    Abstract: Technetium is separated from nickel by electro-refining contaminated nickel. Electrorefining controls the electrolyte solution oxidation potential to selectively reduce the technetium from the metallic feedstock solution from Tc(VII) to Tc(IV) forcing it to report to the anodic slimes and thereby preventing it from reporting to the cathodic metal product. This method eliminates the need for peripheral decontamination processes such as solvent extraction to remove the technetium prior to nickel electrorefining. These methods are particularly useful for remediating nickel contaminated by radio-contaminants such as technetium and actinides.
    Type: Grant
    Filed: October 2, 1991
    Date of Patent: February 2, 1993
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, William R. Gass, Samuel A. Worcester, Laura J. Ayers, Gregory F. Boris
  • Patent number: 5180563
    Abstract: A process for treating a sludge comprises digesting the waste material with a mixture of sulfuric acid and hydrogen peroxide to form an acidic digestion solution and a digestion residue. The digestion residue containing the major portion of tungsten and other refractory metals is reacted with NaOH to solubilize the major portion of tungsten values to a liquid concentrate that is separated from the insoluble solid that contains the major portion of the other refractory metals such as tantalum and niobium. The digestion solution containing the major portion of the transition and rare metals is treated with a base to selectively recover iron as a solid iron hydroxide precipitate which is separated from the resulting liquor. The liquor is then treated again with a base to selectively recover the other metals such as Sc, Cr, rare earths, but not Mn, as a solid metal hydroxide precipitate that is separated from the solution.
    Type: Grant
    Filed: October 24, 1989
    Date of Patent: January 19, 1993
    Assignee: GTE Products Corporation
    Inventors: Wen-Chao Lai, William J. Rourke, Samuel Natansohn
  • Patent number: 5135732
    Abstract: Method is described for the low temperature preparation of the spinel LiMn.sub.2 O.sub.4 phase which is an intercalable compound of interest for use in lithium secondary batteries. This phase can be prepared in bulk or thick film form at temperatures less than 400.degree. C. using acetate precursors.
    Type: Grant
    Filed: April 23, 1991
    Date of Patent: August 4, 1992
    Assignee: Bell Communications Research, Inc.
    Inventors: Philippe Barboux, Frough K. Shokoohi, Jean-Marie Tarascon
  • Patent number: 5098578
    Abstract: A method of precipitating metals from a spent geothermal brine containing the same comprises admixing the geothermal brine with a condensate of steam, derived from the brine, in a volume ratio of brine to condensate of 1:2 to 1:10. The invention is particularly applicable to geothermal brine processes for the production of electric power, such as are practiced at the Salton Sea.
    Type: Grant
    Filed: May 30, 1990
    Date of Patent: March 24, 1992
    Assignee: Union Oil Company of California
    Inventors: Darrell L. Gallup, John L. Featherstone
  • Patent number: 5082638
    Abstract: The invention relates to a process for recovering non-ferrous metal values such as nickel, cobalt, copper, zinc, manganese and magnesium from material containing said metals, by converting the non-ferrous metal values into sulphates by using melt and melt coating sulphation and recovering them as metal compounds by a process entity based on a melt and melt coating sulphation.
    Type: Grant
    Filed: November 30, 1990
    Date of Patent: January 21, 1992
    Inventors: Pekka J. Saikkonen, Jussi K. Rastas
  • Patent number: 5009793
    Abstract: A process for the heavy-metal decontamination of contaminated substances such as natural and industrial sludges, thermal residues and soils. The contaminated starting substance is treated with an acid and the dissolved metal salts are precipitated as metal hydroxides in the pH range of about 3.5-11. The exact control of the pH value makes it possible to isolate individual metal fractions which can be used as raw materials in the metallurgical industry.
    Type: Grant
    Filed: January 9, 1990
    Date of Patent: April 23, 1991
    Assignee: Industrie Automation Sondertechnik GmbH & Co.
    Inventor: German Muller
  • Patent number: 4988487
    Abstract: A process for eliminating an industrial waste sludge by converting its metal values into useful products involves the selective leaching of Mn, divalent Fe, and other valuable metals, such as Sc, Co, Cr, Ni, Th, rare earths, etc. with a mixture of dilute sulfuric acid and a reductant at ambient temperature. Scandium is recovered by passing the leachate through an ion exchange column which is packed with a weakly cationic resin. The retention of other metals on the resin column is negligible. The scandium is eluted from the resin column and converted to a solid product. The raffinate from the ion exchange column is titrated with an alkali solution to convert the metals, except divalent Mn and Fe, to a solid metal hydroxide. After the separation the filtrate is treated with an alkali and an oxidant to recover iron as a solid product of iron oxide which is separated from the solution.
    Type: Grant
    Filed: October 24, 1989
    Date of Patent: January 29, 1991
    Assignee: GTE Laboratories Incorporated
    Inventors: Wen-Chao Lai, William J. Rourke, Samuel Natansohn
  • Patent number: 4943418
    Abstract: In a method of preparing high-purity manganese compounds, wherein the method comprises adding a member selected from ferromanganese and metallic manganeses to an aqueous electrolyte-containing solution, dissolving said member while stirring and maintaining a pH of 2 to 9, and then removing insolubles by filtration and recovering solubles by precipitation, heavy metal elements as well as non-metllic elements, such as P, Si, etc. can be removed efficiently, and high-purity manganese compounds of stable quality can be prepared.
    Type: Grant
    Filed: May 30, 1989
    Date of Patent: July 24, 1990
    Assignee: Japan Metals & Chemicals Co., Ltd.
    Inventors: Koichi Kambe, Kiyoshi Matsuura, Tatsuo Seino, Yoshiyuki Kimura, Hiroshi Kemmochi, Koichi Yoshioka, Hideaki Hohnoki
  • Patent number: 4942024
    Abstract: Refining of either niobium hydroxide or tantalum hydroxide containing transition metals as impurities is accomplished easily and economically by dissolving the metal hydroxide in an aqueous solution of either hydrofluoric acid or oxalic acid, adjusting the pH of the solution to 1 to 4 and adding ammonium pyrrolidinedithiocarbamate (APDC) to the solution while maintaining the temperature of the solution below 60.degree. C. The addition of APDC causes the transition metals to simultaneously precipitate as coordination compounds. The minimum amount of APDC is 0.05 wt % of Nb.sub.2 O.sub.5 or Ta.sub.2 O.sub.5 that can be formed from Nb or Ta contained in the solution. After the treatment with APDC the pH of the solution is raised to 6 or above to precipitate the refined metal hydroxide.
    Type: Grant
    Filed: June 2, 1989
    Date of Patent: July 17, 1990
    Assignee: Central Glass Company, Limited
    Inventors: Hiromi Sasaki, Tadasi Tanaka, Yasusi Muneno
  • Patent number: 4885098
    Abstract: An elastic bar member is coupled to an orbiting mass oscillator and the entire assembly is suspended from a cable or the like such that the bar member has freedom of lateral motion and is nakedly immersed in a slurry having particulate material contained therein such as a mineral ore reject from which metal has been extracted. The rotor of the orbiting mass oscillator is driven at a speed such as to generate cycloidal sonic energy in the bar preferably at a frequency such as to set up resonant standing wave vibration of the bar in a cycloidal quadrature pattern. The cycloidal vibrational energy tends to set the surrounding fluid material into a whirling rotation or rotary traveling wave which facilitates the agglomeration or coagulation of the particles in the material and enhances the settling operation to make for more complete separation of the particles from the liquid.
    Type: Grant
    Filed: October 21, 1988
    Date of Patent: December 5, 1989
    Inventor: Albert G. Bodine
  • Patent number: 4883532
    Abstract: An elastic bar member is clamped to an orbiting mass oscillator and the entire assembly is suspended from a cable or the like such that the bar member has freedom of lateral motion and is nakedly immersed in a leachant having a material contained therein such as a mineral ore from which metal is to be extracted. The rotor of the orbiting mass oscillator is driven at a speed such as to generate cycloidal sonic energy in the bar preferably at a frequency such as to set up resonant standing wave vibration of the bar in a cycloidal nutating pattern. The cycloidal vibrational energy tends to set the surrounding fluid material into a whirling rotation or rotary traveling wave which facilitates the mixing of the ore and leachant and enhances the leaching operation to make for more complete separation of the mineral from the ore.
    Type: Grant
    Filed: July 22, 1988
    Date of Patent: November 28, 1989
    Inventor: Albert G. Bodine
  • Patent number: 4816235
    Abstract: A method for obtaining silver and manganese metal from a silver-manganese ore includes the step of leaching the ore with acidified thiourea. More specifically, the method includes the step of leaching the ore with an acidic thiourea solution to form a leach liquor containing compounds of silver and manganese and an insoluble ore residue. The leach liquor is contacted with a quantity of activated carbon to adsorb the silver thiourea complexes on the carbon and to form an extract solution containing the manganese compounds. Next, the carbon which contains adsorbed silver thiourea complexes is contacted with an eluant to desorb the silver complexes from the carbon. The silver metal is recovered from the silver complexes obtained from desorbing the carbon. The manganese metal is recovered from the extract solution. The ore subjected to acidic thiourea leaching is selected from the group consisting of in situ ore, mined ore, comminuted ore, and ore concentrate.
    Type: Grant
    Filed: February 24, 1987
    Date of Patent: March 28, 1989
    Inventor: Batric Pesic
  • Patent number: 4812302
    Abstract: A process for the preparation of high purity manganous-manganic oxide (Mn.sub.3 O.sub.4) is provided, wherein particulate manganese metal suspended in an aqueous solution containing a water soluble ammonium salt is oxidized in the presence of an oxidizing agent at a temperature of at least 30.degree. C.
    Type: Grant
    Filed: June 15, 1987
    Date of Patent: March 14, 1989
    Assignee: Kerr-McGee Chemical Corporation
    Inventors: William C. Laughlin, Dwight A. Schulke
  • Patent number: 4762694
    Abstract: A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500.degree. C., electrolysis at a voltage not more negative than about -1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.
    Type: Grant
    Filed: August 21, 1987
    Date of Patent: August 9, 1988
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Victor A. Maroni, Samuel von Winbush
  • Patent number: 4654173
    Abstract: High efficiency removal of technetium values from a nuclear waste stream is achieved by addition to the waste stream of a precipitant contributing tetraphenylphosphonium cation, such that a substantial portion of the technetium values are precipitated as an insoluble pertechnetate salt.
    Type: Grant
    Filed: November 21, 1985
    Date of Patent: March 31, 1987
    Inventors: Darrel D. Walker, Martha A. Ebra
  • Patent number: 4620964
    Abstract: A process for the treatment of a complex manganese ore, wherein it comprises the following stages:(a) crushing the ore,(b) subdividing the crushed ore into a first part and a second part,(c) preparing the first pulp from the first part of the crushed ore,(d) reacting the first pulp with a reducing agent to obtain a manganous sulphate solution,(e) separating the liquid phase constituted by the thus obtained manganous sulphate solution from the solid phase of the thus treated first pulp,(f) preparing a second pulp from the second part of the crushed ore,(g) subjecting the second pulp to a solubilization treatment of the nickel, copper and cobalt by reacting it hot with sulphuric acid and the manganous sulphate solution obtained in stage (e),(h) separating the liquid phase and the solid phase of the thus treated second pulp, and(i) recovering the nickel, copper and cobalt from the liquid phase separated in stage (h).
    Type: Grant
    Filed: June 6, 1985
    Date of Patent: November 4, 1986
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Odile Pinto, Henri Scoazec
  • Patent number: 4600565
    Abstract: Manganese(II)salt solutions containing ammonium salt are made by subjecting a manganese-containing compound to processing treatment with an ammonium salt solution. A boiling temperature of 57.degree.-68.degree. C. is established in the suspension to be subjected to the processing treatment, by application of a vacuum. The ammonium salt solution used contains 0.5-2.5 mol/l diammonium sulfate or 1.0-5.0 mol/l ammonium nitrate.
    Type: Grant
    Filed: March 5, 1985
    Date of Patent: July 15, 1986
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Klaus Lehr, Bernhard Hofmann, Gero Heymer
  • Patent number: 4599223
    Abstract: A process is disclosed for separating tungsten from a solution containing tungstate and perrhenate ions. The process involves reacting a sufficient amount of hydrochloric acid with the solution at a sufficient temperature to form a solid containing essentially all of the tungsten and a liquor containing essentially all of the rhenium, and separating the solid from the liquor.
    Type: Grant
    Filed: May 28, 1985
    Date of Patent: July 8, 1986
    Assignee: GTE Products Corporation
    Inventors: Alan D. Douglas, Kenneth T. Reilly, Martin B. MacInnis, John A. Powers, James N. Christini
  • Patent number: 4599222
    Abstract: A process is disclosed for recovering tungsten and rhenium from a relatively impure tungsten and rhenium solution. The process involves adjusting the pH of the solution to from about 9.0 to about 10.0 to precipitate impurities, and removing the impurities. The purified solution is adjusted to a pH of from about 0.5 to about 7.0 with a mineral acid. To the purified solution is added a solution containing sufficient hexamine to subsequently form a first hexamine tungsten solid containing the major portion of the tungsten. The hexamine solution is at essentially at the same pH as that of the pH adjusted purified solution. The resulting hexamine-tungsten-rhenium mixture is agitated at a sufficiently low temperature for a sufficient time to form the first solid and a first mother liquor containing the major portion of the rhenium. The first solid is separated from the first mother liquor.
    Type: Grant
    Filed: April 29, 1985
    Date of Patent: July 8, 1986
    Assignee: GTE Products Corporation
    Inventors: Alan D. Douglas, Martin B. MacInnis, Kenneth T. Reilly