Sulfate Patents (Class 423/544)
  • Publication number: 20090123356
    Abstract: Provided is a semiconductor doped with an increased binding energy hydrogen species and a method of making the doped semiconductor.
    Type: Application
    Filed: June 11, 2008
    Publication date: May 14, 2009
    Inventor: Randell L. Mills
  • Patent number: 7501110
    Abstract: This patent describes the use of barium sulfate as filler for thermosetting and thermoplastic plastics, elastomers, sealants, adhesives, fillers, varnishes, paints, paper, glass and as substrate for colored pigment formulations as well as for single-layer or multilayer coatings consisting of metal oxides, metal oxide mixtures and/or metal compounds, as a nucleus of crystallization for lead sulfate in the negative electrode paste of lead accumulators and as an X-ray contrast medium, the barium sulfate being produced by a continuous process wherein a barium salt solution and a sulfate solution are simultaneously and continuously brought together in equimolar quantities in a precipitating suspension at a temperature of 30 to 90° C., with constant stirring, the precipitating suspension is withdrawn continuously in a steady volume and the barium sulfate precipitate is filtered, washed and optionally dried, wherein the barium salt solution has a concentration of 0.1 to 0.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: March 10, 2009
    Assignee: Sachtleben Chemie GmbH
    Inventors: Djamschid Amirzadeh-Asl, Jürgen Bäuml, Udo Selter
  • Patent number: 7468169
    Abstract: This invention provides a production process, which can stably produce high-quality satin white (calcium trisulfoaluminate) having very small and homogeneous particulate shapes suitable for incorporation into coated paper for printing, and an apparatus for use in said process. In this process for producing calcium trisulfoaluminate, a calcium hydroxide suspension (A) is reacted with an aqueous aluminum sulfate solution (B) to produce calcium trisulfoaluminate (C). The aqueous aluminum sulfate solution (B) is added in plurality of stages to the calcium hydroxide suspension (A). At least any one stage of the plurality of stages addition, addition of the aqueous aluminum sulfate solution (B) to the calcium hydroxide suspension (A) is carried out in such a manner that the aqueous aluminum sulfate solution (B) is continuously added to the calcium hydroxide suspension (A) being continuously transferred.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: December 23, 2008
    Assignee: OJI Paper Co., Ltd.
    Inventors: Takayuki Kishida, Yuichi Ogawa, Yoshiki Kojima, Takuya Ono, Kenichi Mitsui, Tetsuya Hirabayashi, Masaki Nakano
  • Publication number: 20080210444
    Abstract: Methods of reducing smoke levels in smoke-affected areas, reducing the level of toxic compounds produced by fires, fire suppression, and increasing flame retardancy. In particular, methods according to the present invention comprise dispersing nanocrystalline particles in the areas affected by smoke for sorption of smoke particulates and toxic compounds produced from a fire. The nanocrystalline particles are also effective for use in methods of fire suppression and flame retardancy.
    Type: Application
    Filed: August 22, 2007
    Publication date: September 4, 2008
    Inventors: Ravichandra S. Mulukutla, Paul S. Malchesky, Ronaldo Maghirang, John S. Klabunde, Kenneth J. Klabunde, Olga Koper
  • Publication number: 20080118421
    Abstract: The present invention is directed to the microwave treatment of a class of selected metal ores and concentrates, particularly those known as chalcopyrite, in a fluidized bed reactor. The end product is commonly a mixture of copper oxide and copper sulfate, both of which are liquid soluble and directly recoverable by known techniques. The ratio of the oxide-sulfate mixture end product may be controlled by suitable control of microwave parameters.
    Type: Application
    Filed: September 20, 2007
    Publication date: May 22, 2008
    Applicant: HW ADVANCED TECHNOLOGIES, INC.
    Inventor: James Tranquilla
  • Publication number: 20080113102
    Abstract: Agents for surface treatment which can impart excellent corrosion resistance to zinc or zinc alloy products at low cost. The agents for the surface treatment of zinc or zinc alloy products of this invention include at least one water-soluble compound which contains antimony, bismuth, tellurium or tin. Ideally, a nickel salt and/or a manganese salt is also included, and most desirably tannins and/or thioureas are also included. Ideally, the zinc or zinc alloy products which have been immersed and treated in an aqueous solution which contains these agents for surface treatment are immersed in an aqueous solution which includes a sealing treatment agent selected according to the colour of the zinc or zinc alloy product to seal pinholes.
    Type: Application
    Filed: November 13, 2006
    Publication date: May 15, 2008
    Inventors: Takashi Arai, Ro Bo Shin, Takahisa Yamamoto
  • Patent number: 7364717
    Abstract: A preferred embodiment of the present invention provides a process for making nickel sulfate by converting nickel metal into nickel sulfate, which may be converted to nickel hydroxide. Nickel metal is dissolved in sulfuric acid and oxygen containing gas is introduced to produce a nickel sulfate solution having nickel sulfate and water as illustrated in the following chemical equation. Ni+H2SO4+½O2?NiSO4+H2O The nickel sulfate is filtered and sulfuric acid is continually added to maintain stoichiometry within a reactor until the nickel metal is dissolved. The sulfuric acid, oxygen containing gas and nickel metal may be heated to facilitate the desired reaction. Then, the nickel sulfate may be utilized to produce nickel hydroxide.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: April 29, 2008
    Assignee: Ovonic Battery Company, Inc.
    Inventors: Cristian Fierro, Gabriel E. Benet, Avram Zallen, Tim Hicks, Michael A. Fetcenko
  • Patent number: 7357905
    Abstract: The invention relates to a process for direct oxidation into sulfur and/or into sulfate of sulfur-containing compounds that are contained in an amount that is less than 10% by volume in a gas, in which said gas is brought into contact with an oxidation catalyst that comprises a substrate and an active phase that comprises iron in a proportion of between 2 and 5% by weight of the oxidation catalyst at a temperature of less than 200° C. and in the presence of oxygen.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: April 15, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Jean-François Chapat, Christophe Nedez, Jean-Louis Ray
  • Publication number: 20080063594
    Abstract: Rhodium solutions, methods for plating structures using such rhodium solutions, and rhodium plated structures are described. The rhodium solutions can contain an increased concentration of rhodium in the form of a monomer sulfate salt. The rhodium solutions can be formed under conditions of controlled pH and controlled temperatures that increase the uniformity of the chemical composition from one rhodium solution to another. As a result, the shelf life of the rhodium solutions and plating baths using these rhodium solutions can be increased. Rhodium platings formed from these solutions can contain a low degree of dendrites, or even no dendrites. The rhodium platings can also exhibit less internal stress and can be less susceptible to cracking.
    Type: Application
    Filed: September 13, 2006
    Publication date: March 13, 2008
    Inventors: Michael J. Armstrong, Gregory M. Omweg, Murali Ramasubramanian
  • Patent number: 7338647
    Abstract: The present invention relates to a method for preparing an electroactive metal polyanion or a mixed metal polyanion comprising forming a slurry comprising a polymeric material, a solvent, a polyanion source or alkali metal polyanion source and at least one metal ion source; heating said slurry at a temperature and for a time sufficient to remove the solvent and form an essentially dried mixture; and heating said mixture at a temperature and for a time sufficient to produce an electroactive metal polyanion or electroactive mixed metal polyanion.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: March 4, 2008
    Assignee: Valence Technology, Inc.
    Inventors: Biying Huang, Jeffrey Swoyer, M. Yazid Saidi, Haitao Huang
  • Patent number: 7294319
    Abstract: This invention relates to a method for the removal of iron as hematite from a zinc sulphate solution in atmospheric conditions during the electrolytic preparation of zinc. According to the method, the pH of the iron-containing solution is adjusted to a value of at least 2.7, oxygen-containing gas is fed into the solution and part of the hematite thus formed is recirculated to the precipitation stage.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: November 13, 2007
    Assignee: Outotec Oyj
    Inventors: Marko Lahtinen, Leena Lehtinen, Heikki Takala
  • Patent number: 7288239
    Abstract: The invention relates to synthesis of nanoparticles, in particular to methods for producing nanoparticles with networks consisting of Z sulphate (Z=magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) or the binary mixtures thereof). The inventive method consists in synthesising the nanoparticles by crystal growth from an ion Z source and a sulphate ion source in a liquid phase mixture. The invention produces Z sulphate nanoparticles having a small diameter and uniformly dispersible in water or other solvents in a simple way. Co-ordinating solvents like glycerine, glycol ethylene and other polyethylene glycols, polyalcohols or dimethylsulphoxide (DMSO) are used for the synthesis mixture.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: October 30, 2007
    Assignee: Nanosolutions GmbH
    Inventors: Fernando Ibarra, Christiane Meyer, Stephan Haubold, Thorsten Heidelberg
  • Patent number: 7285260
    Abstract: Method of synthesis for a material made of particles having a core and a coating and/or being connected to each other by carbon cross-linking, the core of these particles containing at least one compound of formula LixM1?yM?y(XO4)n, in which x,y and n are numbers such as 0?x?2, 0?y?0.6 and 1?n?1.5, M is a transition metal, M? is an element with fixed valency, and the synthesis is carried out by reaction and bringing into equilibrium the mixture of precursors, with a reducing gaseous atmosphere, in such a way as to bring the transition metal or metals to the desired valency level, the synthesis being carried out in the presence of a source of carbon called carbon conductor, which is subjected to pyrolysis. The materials obtained have excellent electrical conductivity as well as very improved chemical activity.
    Type: Grant
    Filed: September 21, 2001
    Date of Patent: October 23, 2007
    Assignees: Hydro Quebec, CNRS, Universite de Montreal
    Inventors: Michel Armand, Michel Gauthier, Jean-Francois Magnan, Nathalie Ravet
  • Patent number: 7261867
    Abstract: An aqueous precipitation process for the preparation of particles comprising primarily silver sulfate, comprising reacting an aqueous soluble silver salt and an aqueous soluble source of inorganic sulfate ion in an agitated precipitation reactor vessel and precipitating particles comprising primarily silver sulfate, wherein the reaction and precipitation are performed in the presence of an aqueous soluble organo-sulfate or organo-sulfonate additive compound, the amount of additive being a minor molar percentage, relative to the molar amount of silver sulfate precipitated, and effective to result in precipitation of particles comprising primarily silver sulfate having a mean grain size of less than 50 micrometers.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: August 28, 2007
    Assignee: Eastman Kodak Company
    Inventors: David W. Sandford, Thomas N. Blanton
  • Patent number: 7211235
    Abstract: A method is described for the manufacture of hydrotalcites by using at least one compound of a bivalent metal (Component A) and at least one compound of a trivalent metal (Component B), wherein at least one of these components is not used in the form of a solution, characterized in that a) at least one of the Components A and/or B which is not used in the form of a solution, shortly before or during mixing of the components, and/or b) the mixture containing the Components A and B is subjected to intensive grinding until an average particle size (D50) in the range of approx. 0.1 to 5 ?m is obtained, and optionally, after aging treatment or hydrothermal treatment, the resulting hydrotalcite product is separated, dried, and optionally calcinated.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: May 1, 2007
    Assignee: Sud-Chemie AG
    Inventors: Max Eisgruber, Jürgen Ladebeck, Jürgen Koy, Hubert Schiessling, Wolfgang Buckl, Herrmann Ebert
  • Patent number: 7147832
    Abstract: Provided is a process for isolating zirconium peroxosulfate and its use, either as is or to prepare high purity zirconium compounds including powders of zirconium dioxide and stabilized zirconia. The process is based on precipitating a peroxide compound from an acidic peroxide solution of zirconium and provides a simple, economical method for producing the zirconium peroxosulfate powder and its derivatives with degree of zirconium recovery more than 99%. This process further provides an effective method for the separation and purification of zirconium from a variety of elements and/or naturally occurring ores.
    Type: Grant
    Filed: December 27, 2004
    Date of Patent: December 12, 2006
    Inventors: Vladimir Belov, Irina Belov
  • Patent number: 7083774
    Abstract: A process for producing a vanadyl sulphate solution (VOSO4) comprises forming a suspension of vanadium trioxide (V2O3) in a sulphuric acid solution and contacting the V2O3 suspension with a strong oxidising agent under controlled conditions to produce the VOSO4 solution. A preferred oxidising agent is hydrogen peroxide, which is added very slowly to the V2O3 suspension due to the violent nature of the reaction.
    Type: Grant
    Filed: May 26, 2003
    Date of Patent: August 1, 2006
    Assignee: Highveld Steel and Vanadium Corporation Limited
    Inventors: Andries Gerhardus Dormehl, Patrick Albert Monaghan
  • Patent number: 7063824
    Abstract: This invention relates to a process of treating a zirconium containing product such as zircon. The process comprises providing an alkali fusion decomposed zircon product (AFDZ) formed from reading zircon with a source of alkali metal at elevated temperatures, and treating the AFDZ to form a solid containing hydrated zirconium oxide and/or hydrated zirconium basic carbonate (hereinafter referred to as the hydrated zirconium product). The process further comprises treating the solid hydrated zirconium product to obtain in situ formation of basic zirconium sulphate as a solid thereon. The invention also relates to such a process for producing zircon derived material suitable for pigments and to such a process to produce opacifier material. The invention also relates to products of such processes.
    Type: Grant
    Filed: June 6, 2000
    Date of Patent: June 20, 2006
    Assignee: University of Pretoria
    Inventors: Gert Hendrik Jacobus Coetzee, legal representative, Willem Johannes De Wet, deceased
  • Patent number: 7045104
    Abstract: A method of treating aqueous salt solutions to provide a solution suitable for vitrification to a stable glass matrix for long term storage is described. In particular, salt solutions composed of aqueous nuclear waste materials are suitable for treatment by the described method. Specifically, salt solutions which have a sulfate to sodium mole ratio that does not permit easy vitrification into stable glasses may be treated by the present invention. The present method decreases the volume of vitrified glass.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: May 16, 2006
    Assignee: Cogema, Inc.
    Inventor: Donald James Geniesse
  • Patent number: 7037482
    Abstract: A method of extracting a halide and sulphate from an aqueous sulphate solution, such as a zinc sulphate solution, comprises subjecting the solution to solvent extraction to extract halide and sulphate from the solution and controlling the amount of sulphate extracted by selective adjustment of the acidity of the aqueous solution.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: May 2, 2006
    Assignee: Teck Cominco Metals Ltd.
    Inventors: Cashman R. S. Mason, Juris R. Harlamovs, David B. Dreisinger, Baruch Grinbaum
  • Patent number: 6872376
    Abstract: A modified vanadium compound characterized in that vanadium sulfate (III), or a mixed vanadium compound of vanadium sulfate (III) and vanadyl sulfate (IV) contains excessive sulfuric acid other than sulfate group composing the vanadium sulfate (III) or the vanadyl sulfate (IV), and when the modified vanadium compound is used, a redox flow battery electrolyte can be prepared easily.
    Type: Grant
    Filed: December 4, 2001
    Date of Patent: March 29, 2005
    Assignees: Nippon Chemical Industrial Co., Ltd., Kansai Electric Power Co., Inc., Sumitomo Electric Industries, Ltd
    Inventors: Yasuyuki Tanaka, Muneo Mita, Ken Horikawa, Nobuyuki Tokuda, Masayuki Furuya, Michiru Kubata
  • Patent number: 6858562
    Abstract: A catalyst of a water insoluble vanadyl sulfate or a complex catalyst, in which a specific oxide and a specific sulfate are combined to the water insoluble vanadyl sulfate are excellent not only in their activity, durability and SO2 resistance, not only in substantially no oxidization of SO2 to SO3 as in HCl resistant. Therefore, using this catalyst, a decomposition treatment of an organic halide(s) can be carried out with high efficiency and good stability. In particular, a efficient decomposition treatment of an organic halides(s) can be carried out also in the cases that dust is coexist; the gas to be treated contains SOX or HCl; or they generate in the decomposition area.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: February 22, 2005
    Assignees: Mitsui Chemicals, Inc., UBE Industries, Ltd.
    Inventors: Isao Takasu, Kenji Fujita
  • Patent number: 6846346
    Abstract: The invention provides a hydrometallurgical process for treating metal-containing sulfide ores and concentrates, comprising reacting said metal-containing sulfide with concentrated sulfuric acid at a temperature of between about 300° C. and 400° C. in the presence of oxygen to produce a solid metal sulfate product and a gaseous product which is primarily SO3, wherein said metal is selected from the group consisting of iron, copper, zinc, nickel, cobalt and manganese. Said metal sulfate product is then leached with dilute sulfuric acid to form a metal-containing solution, from which the metal values are separated by precipitation at raised H2SO4 concentrations obtained by saturating the solution with the gaseous SO3 from the sulfatization reaction step.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: January 25, 2005
    Assignee: Joma Chemicals AS
    Inventor: Solomon Flax
  • Publication number: 20040179991
    Abstract: A method of extracting a halide and sulphate from an aqueous sulphate solution, such as a zinc sulphate solution, comprises subjecting the solution to solvent extraction to extract halide and sulphate from the solution and controlling the amount of sulphate extracted by selective adjustment of the acidity of the aqueous solution.
    Type: Application
    Filed: March 10, 2003
    Publication date: September 16, 2004
    Applicant: TECK COMINCO METALS LTD.
    Inventors: Cashman R. S. Mason, Juris R. Harlamovs, David B. Dreisinger, Baruch Grinbaum
  • Patent number: 6787120
    Abstract: A method of treating aqueous salt solutions to provide a solution suitable for vitrification to a stable glass matrix for long term storage is described. In particular, salt solutions composed of aqueous nuclear waste materials are suitable for treatment by the described method. Specifically, salt solutions which have a sulfate to sodium mole ratio that does not permit easy vitrification into stable glasses may be treated by the present invention. The present method decreases the volume of vitrified glass.
    Type: Grant
    Filed: March 20, 2002
    Date of Patent: September 7, 2004
    Assignee: Cogema Engineering Corporation
    Inventor: Donald James Geniesse
  • Patent number: 6764663
    Abstract: A process for preparing a reconstituted vanadyl sulphate/vanadous sulphate solution for use as an electrolyte in a vanadium redox battery is disclosed. The process includes preparing a starting material including a vanadyl sulphate/vanadous sulphate solution, evaporating the starting material by applying heat to form vanadyl sulphate/vanadous sulphate crystals, and re-dissolving the vanadyl sulphate/vanadous sulphate crystals with a volume of de-ionized water to form a reconstituted vanadyl sulphate/vanadous sulphate solution having substantially the same chemical composition at the starting material. A process for preparing a vanadyl sulphate/vanadous sulphate starting material from a vanadium bearing ore material, particularly a titaniferous magnetite ore material is also disclosed.
    Type: Grant
    Filed: August 10, 2001
    Date of Patent: July 20, 2004
    Assignee: Highveld Steel and Vanadium Corporation Limited
    Inventors: Patrick Albert Monaghan, Ivan Strydom, Andries Gerhardus Dormehl
  • Patent number: 6737380
    Abstract: A process for producing a solid acid catalyst, which comprises: adding a pseudoboehmite as a binder to a sulfated zirconium hydroxide, followed by kneading with an aqueous solution containing at least one metal of the Group VIII, or loading at least one metal of the Group VIII on a sulfated zirconium hydroxide, and then adding a pseudoboehmite as a binder thereto, followed by kneading with water, further followed by molding and calcining at a temperature of from 550 to 800° C.; a solid acid catalyst produced by the production process; and a method for hydrodesulfurizing and isomerizing a light hydrocarbon oil using the catalyst.
    Type: Grant
    Filed: January 30, 2002
    Date of Patent: May 18, 2004
    Assignees: Petroleum Energy Center, Cosmo Oil Co., Ltd.
    Inventors: Katsuya Watanabe, Takahito Kawakami, Koji Baba, Takao Kimura
  • Patent number: 6692716
    Abstract: Methodology for formulating sodium bicarbonate and potassium sulfate. In one embodiment, sodium sulfate and ammonium bicarbonate are reacted to form sodium bicarbonate with the remaining liquor or brine treated with sulfuric acid to remove carbonates with subsequent precipitation of potassium sulfate. A further embodiment employs ammonium bicarbonate, ammonia gas or carbon dioxide to precipitate sodium bicarbonate. The result of the methods is the production of high quality fertilizer and food grade sodium bicarbonate.
    Type: Grant
    Filed: April 15, 1999
    Date of Patent: February 17, 2004
    Assignee: Airborne Industrial Minerals, Inc.
    Inventor: Robin Phinney
  • Patent number: 6652819
    Abstract: A process for the production of a vanadium compound from carbonaceous residues containing vanadium, which includes the steps of: (a) combusting the carbonaceous residues at a temperature of 500-690° C. in an oxygen-containing gas to form vanadium-containing combustion residues; (b) heating the vanadium-containing combustion residues at a temperature T in ° C. under an oxygen partial pressure of at most T in kPa wherein T and P meet with the following conditions: log10(P)=−3.45×10−3×T+2.21 500≦T≦1300 to obtain a solid product containing less than 5% by weight of carbon and vanadium at least 80% of which is tetravalent vanadium oxide; (c) selectively leach tetravalent vanadium ion with sulfuring acid at pH in the range of 1.5-4; (d) separating a liquid phase from the leached mixture; (e) adding an alkaline substance to the liquid phase to adjust the pH thereof in the range of 4.5-7.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: November 25, 2003
    Assignee: Chiyoda Corporation
    Inventors: Yoshimi Shiroto, Ataru Wakabayashi
  • Patent number: 6652660
    Abstract: A method for treating compounds which contain reactive sulfur is disclosed, wherein the treatment produces compounds which contain sulfur in a non reactive form. The method is based on the use of an oxidizing compound selected from the group consisting of water soluble inorganic persulfates, water soluble inorganic and organic adducts of hydrogen peroxide and mixtures thereof. The method is particularly useful in preventing stress corrosion cracking of stainless steel and in preventing auto-ignition of pyrophoric iron sulfide.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: November 25, 2003
    Assignee: United Laboratories Intl., LLC
    Inventor: Jack G. Frost
  • Patent number: 6613298
    Abstract: The present invention provides method of producing a trivalent and tetravalent mixed vanadium compound having excellent solubility with sulfuric acid directly from a tetravalent or pentavalent vanadium compound by using a reducing agent,and a method of producing a vanadium electrolyte. For example, a vanadium compound mainly containing a pentavalent vanadium compound; sulfur and concentrated sulfuric acid in molar ratios with respect to (one mol of vanadium atom in the pentavalent vanadium compound) 0.35 to 0.4:1.2 to 1.9 are kneaded into paste form, and the paste-form mixture is calcined at a temperature of not less than 150° C. to less than 440° C. so that a trivalent and tetravalent mixed vanadium compound is obtained, and a redox flow battery-use vanadium electrolyte is obtained by dissolving the trivalent and tetravalent mixed vanadium compound in a sulfuric acid solution.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: September 2, 2003
    Assignees: Kansai Electric Power Co., Inc., Sumitomo Electric Industries, Ltd., Nippon Chemical Industrial Co., Ltd.
    Inventors: Yasuyuki Tanaka, Ken Horikawa, Muneo Mita, Nobuyuki Tokuda, Michiru Kubata
  • Patent number: 6610263
    Abstract: System for removal of targeted pollutants, such as oxides of sulfur, oxides of nitrogen, mercury compounds and ash, from combustion and other industrial process gases and processes utilizing the system. Oxides of manganese are utilized as the primary sorbent in the system for removal or capture of pollutants. The oxides of manganese are introduced from feeders into reaction zones of the system where they are contacted with a gas from which pollutants are to be removed. With respect to pollutant removal, the sorbent may interact with a pollutant as a catalyst, reactant, adsorbent or absorbent. Removal may occur in single-stage, dual-stage, or multi-stage systems with a variety of different configurations and reaction zones, e.g., bag house, cyclones, fluidized beds, and the like. Process parameters, particularly system differential pressure, are controlled by electronic controls to maintain minimal system differential pressure, and to monitor and adjust pollutant removal efficiencies.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: August 26, 2003
    Assignee: EnviroScrub Technologies Corporation
    Inventors: John E. Pahlman, Steve C. Carlton, Ray V. Huff, Charles F. Hammel, Richard M. Boren, Kevin P. Kronbeck, Joshua E. Larson, Patrick A. Tuzinski, Steve G. Axen
  • Publication number: 20030118470
    Abstract: A method for treating compounds which contain reactive sulfur is disclosed, wherein the treatment produces compounds which contain sulfur in a non reactive form. The method is based on the use of an oxidizing compound selected from the group consisting of water soluble inorganic persulfates, water soluble inorganic and organic adducts of hydrogen peroxide and mixtures thereof. The method is particularly useful in preventing stress corrosion cracking of stainless steel and in preventing auto-ignition of pyrophoric iron sulfide.
    Type: Application
    Filed: January 23, 2003
    Publication date: June 26, 2003
    Inventor: Jack G. Frost
  • Patent number: 6547959
    Abstract: A method for treating compounds which contain reactive sulfur is disclosed, wherein the treatment produces compounds which contain sulfur in a non reactive form. The method is based on the use of an oxidizing compound selected from the group consisting of water soluble inorganic persulfates, water soluble inorganic and organic adducts of hydrogen peroxide and mixtures thereof. The method is particularly useful in preventing stress corrosion cracking of stainless steel and in preventing auto-ignition of pyrophoric iron sulfide.
    Type: Grant
    Filed: September 19, 2000
    Date of Patent: April 15, 2003
    Assignee: United Laboratories International, LLC
    Inventor: Jack G. Frost
  • Patent number: 6537962
    Abstract: The present invention pertains to a composite powder comprising (A) an alkali metal silicate particle having an average particle size of from 1 to 500 &mgr;m; and (B) a water-soluble salt particle having an average particle size of from 0.01 to 50 &mgr;m, of which solubility to water at 20° C. is 1 g/100 g or more, wherein the alkali metal silicate particle has a composition formula in an anhydride form represented by: xM2O.ySiO2.zMeO (I) wherein M stands for Na and/or K; Me stands for Ca and/or Mg; y/x is from 0.5 to 4.0; z/x is from 0 to 1.0; and Mg/Ca in MeO is from 0 to 10, and wherein the composite powder has a (A)/(B) weight ratio of from 1/9 to 99/1; and a detergent composition comprising the composite powder. The composite powder is a composite powder having a remarkably enhanced storage stability of the alkali metal silicate without impairing the ion exchange capacity owned by the alkali metal silicate.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: March 25, 2003
    Assignee: Kao Corporation
    Inventors: Kazuo Oki, Takashi Miyaji, Kazuhiro Otsuka, Mikio Sakaguchi
  • Patent number: 6528182
    Abstract: The invention concerns a steel plate coated with a metal layer based on zinc and a zinc hydroxysulphate layer, whereof the surface density of sulphur is more than 0.5 mg/m2. The invention also concerns a method for obtaining said plate by treating a zinc coated sheet metal: either in a highly alkaline sulphate solution under polarization; or in a sulphate solution containing Zn2+ ions without polarization. The hydroxysulphate deposit brings about a pre-lubricating effect applicable to operations for forming sheet metal.
    Type: Grant
    Filed: June 25, 2001
    Date of Patent: March 4, 2003
    Assignee: Sollac
    Inventors: Alain Bello, Sylviane Wajda, Jacques Petitjean, Armand Rossi
  • Patent number: 6521200
    Abstract: A process for the recovery of sulphur trioxide, solutions of sulphuric acid, or organic derivatives thereof, using organic compounds and/or supercritical fluids, and catalyst. The process comprises the steps of passing a mixture of SO2 and an oxygen-containing gas over an activated carbon catalyst at a temperature of at least 15° C. and preferably at a pressure of 1-200 atmospheres, and stripping the activated carbon with either (i) a liquid organic compound selected from the group consisting of ketones, ethers, decalin, tetrahydrofurans, sulpholanes, glymes and formamides and which is non-reactive with sulphur trioxide or sulphuric acid, or (ii) a liquid organic compound capable of forming organic sulphates or sulphonates by reaction with sulphur trioxide or sulphuric acid. The process may be used to obtain sulphuric acid, or organic sulphates or sulphonates.
    Type: Grant
    Filed: November 7, 2000
    Date of Patent: February 18, 2003
    Assignee: University of Waterloo
    Inventors: Peter Lewis Silveston, Robert Ross Hudgins, Radu Valentin Vladea
  • Publication number: 20030017102
    Abstract: A process for the crystallization and re-establishment of a vanadyl/vanadous sulphate solution to its original chemical composition, and the use of a vanadium bearing ore material, in particular a titaniferous magnetite ore material, for producing the vanadyl/vanadous sulphate solution or crystals, particularly for use as an electrolyte in a vanadium redox battery.
    Type: Application
    Filed: August 10, 2001
    Publication date: January 23, 2003
    Inventors: Patrick Albert Monaghan, Ivan Strydom, Andries Gerhardus Dormehl
  • Publication number: 20020157952
    Abstract: A method of treating an acid treatment solution which includes steps of adding sulfuric acid to an acid treatment solution which contains therein non-alkaline metal ions to produce sulfate, and recovering the regenerated acid treatment solution from the acid treatment solution to which the sulfuric acid has been added by separating the sulfate therefrom. Also, a device for realizing the method, and a method of fabricating a support for a planographic printing plate using the same.
    Type: Application
    Filed: February 14, 2002
    Publication date: October 31, 2002
    Applicant: FUJI PHOTO FILM CO., LTD.
    Inventors: Toru Kimura, Tsuyoshi Hirokawa, Toru Yamazaki
  • Publication number: 20020119090
    Abstract: A modified vanadium compound of the present invention in such that vanadium sulfate (III) or a mixed vanadium compound of vanadium sulfate (III) and vanadyl sulfate (IV) contains excessive sulfuric acid other than sulfate group composing the vanadium sulfate (III) or the vanadyl sulfate (IV), and when the modified vanadium compound is used, a redox flow battery electrolyte can be prepared easily.
    Type: Application
    Filed: December 4, 2001
    Publication date: August 29, 2002
    Applicant: Nippon Chemical Industrial Co.,Ltd.
    Inventors: Yasuyuki Tanaka, Muneo Mita, Ken Horikawa, Nobuyuki Tokuda, Masayuki Furuya, Michiru Kubata
  • Publication number: 20020110508
    Abstract: The present invention relates to a process of oxidation, of the wet oxidation or ozonization type, of a liquid contained in a reactor. The gas of the gas headspace is aspirated into the liquid, and the portion which is not dissolved in the liquid is recovered in the gas headspace. The agitation means creates a flow of liquid immediately adjacent to the end of the duct opening into the liquid, and generates a gas/liquid dispersion in the zone, within which the liquid reacts with the gas, then conveys and ejects the said dispersion at its periphery, such that the gas is dissolved in the liquid in the zone extending from the agitation means to the surface of the liquid. The said process is particularly suitable for oxidations which make use of considerable quantities of oxygen or of ozone. It is particularly applied for the oxidation of papermaking liquors.
    Type: Application
    Filed: February 16, 2001
    Publication date: August 15, 2002
    Inventors: Philippe Campo, Vincent Boisdon, Alain Trichet, Patrice Cognart, Florent Bouquet
  • Publication number: 20020048546
    Abstract: The present invention provides method of producing a trivalent and tetravalent mixed vanadium compound having excellent solubility with sulfuric acid directly from a tetravalent or pentavalent vanadium compound by using a reducing agent,and a method of producing a vanadium electrolyte. For example, a vanadium compound mainly containing a pentavalent vanadium compound; sulfur and concentrated sulfuric acid in molar ratios with respect to (one mol of vanadium atom in the pentavalent vanadium compound) 0.35 to 0.4:1.2 to 1.9 are kneaded into paste form, and the paste-form mixture is calcined at a temperature of not less than 150° C. to less than 440° C. so that a trivalent and tetravalent mixed vanadium compound is obtained, and a redox flow battery-use vanadium electrolyte is obtained by dissolving the trivalent and tetravalent mixed vanadium compound in a sulfuric acid solution.
    Type: Application
    Filed: July 2, 2001
    Publication date: April 25, 2002
    Inventors: Yasuyuki Tanaka, Ken Horikawa, Muneo Mita, Nobuyuki Tokuda, Michiru Kubata
  • Patent number: 6358484
    Abstract: A process for providing a zirconium basic sulfate includes providing a zirconium oxychloride solution, and then dialyzing the solution against a liquid selected from water and an aqueous solution across at least one anion exchange membrane to provide a dialyzate and diffusate. The dialyzate includes at least 90 percent of the zirconium ions of the zirconium oxychloride chloride solution and has a total acidity that is lower than the original zirconium oxychloride solution. A precipitate including zirconium basic sulfate may be formed from at least a portion of the diffusate. The zirconium oxychloride solution may be provided, for example, by dissolving zirconium tetrachloride in one of water and a hydrochloric acid solution. A material including zirconium basic sulfate produced by the process of the invention also is disclosed.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: March 19, 2002
    Assignee: ATI Properties, Inc.
    Inventor: James A. Sommers
  • Patent number: 6346222
    Abstract: This invention provides a process of making a palladium replenisher comprising a complex of palladium tetraammine sulfate. The process includes distilling a palladium nitrate solution at a temperature maintained at or below about 115° C. Palladium sulfate and ammonium hydroxide are then added to make the palladium tetraamine sulfate replenisher from solution. The replenisher of the invention is used to replenish depleted palladium during palladium electroplating to maintain the palladium concentration in the bath within from about 5 to about 10 weight percent of recommended plating bath levels.
    Type: Grant
    Filed: June 1, 1999
    Date of Patent: February 12, 2002
    Assignee: Agere Systems Guardian Corp.
    Inventors: Joseph Anthony Abys, Conor Anthony Dullaghan, Peter Epstein, Joseph John Maisano, Jr.
  • Patent number: 6315976
    Abstract: A process is provided for producing potassium sulfate by reacting ammonium sulfate and potassium chloride at a temperature of about 30 to 40° C. to produce a slurry containing K2SO4·NH4·2SO4 double salt, and reacting this double salt with an aqueous solution containing potassium chloride at a temperature of about 30° C. to produce a slurry containing potassium sulfate. The slurry containing potassium sulfate is subjected to a solids/liquid separation step to obtain potassium sulfate crystals having a size in the range of about 20 mesh to about 150 mesh.
    Type: Grant
    Filed: June 14, 1999
    Date of Patent: November 13, 2001
    Assignees: Aristos Capital Corporation, Airborne Industrial Minerals Inc.
    Inventor: Robin Phinney
  • Patent number: 6203769
    Abstract: The invention relates to a method for the treatment of fluoboric electrolyte resulting from the processes of electro-extraction of metals such as copper and lead comprising a leaching stage with fluoboric acid, in order to recycle said fluoboric acid to be recirculated to said leaching stage devoid of impurities of metals such as Me=Fe, Zn, Ca, Mg, Cd, characterized in that it comprises the stages of: a) treating said fluoboric electrolyte comprising Cu(BF4)2 or Pb(BF4)2 with H2S in order to precipitate CuS or PbS respectively in accordance with the reactions Cu(BF4)2+H2S=>CuS+2HBF4  (1) Pb(BF4)2+H2S=>PbS+2HBF4  (2) thus obtaining a solution of HBF4 containing the fluoborates of said metals Me, said solution being separated, b) treating said Me fluoborates with H2SO4 in accordance with the reaction 2 Me(BF4)n+n H2SO4=>Me(SO4)n+2n HBF4  (3) (where Me=Fe, Zn, Ca, Mg, Cd) it being possible for said sulp
    Type: Grant
    Filed: July 1, 1999
    Date of Patent: March 20, 2001
    Assignee: Ecochem Aktiengesellschaft
    Inventor: Gianni Zoppi
  • Patent number: 6180080
    Abstract: A process for the removal of thiosulphate from spent Stretford solution, The process comprises adjusting the spent Stretford solution to an acidic pH, preferably in the range of 1 to 3, and adding a peroxygen compound. The process allows the user to recycle spent Stretford solution in a cost effective manner by taking advantage of previously unknown buffering properties in the solution.
    Type: Grant
    Filed: May 14, 1997
    Date of Patent: January 30, 2001
    Assignee: Degussa Corporation
    Inventors: Christopher R. Proulx, Marioara V. Ionila
  • Patent number: 6149885
    Abstract: A method of purifying a crude nickel sulfate solution to give pure nickel sulfate through solvent extraction, in which the impurities such as cobalt, calcium, magnesium, iron, zinc, copper, sodium, ammonia and others to be in the crude solution are removed while, if necessary, effectively recovering cobalt, and for which the amount of a neutralizer to be used is reduced and the cost of treating wastewater is also reduced includes an extraction step of adding an organic acid extractant to a crude nickel sulfate solution to thereby extract nickel into the extractant to give a nickel-loaded organic phase, followed by a scrubbing step of scrubbing the organic phase as obtained in the previous extraction step with a nickel-containing scrub solution to thereby remove sodium and ammonia from the organic phase; and a second purifying step of adding a crude nickel sulfate solution to the nickel-retaining organic phase as obtained in the previous first purifying step so as to exchange the nickel in the organic phase wi
    Type: Grant
    Filed: April 28, 1998
    Date of Patent: November 21, 2000
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Susumu Makino, Naoyuki Tsuchida, Atsushi Goda, Sunao Kanesaka, Masaki Imamura, Kazuyuki Takaishi, Yoshitomo Ozaki
  • Patent number: 6126702
    Abstract: The specification discloses an apparatus and method for treating a slurry containing sodium sesquisulfate to recover sulfate and acid constituents therefrom. The apparatus includes a treatment vessel having a separation wall delineating a clarifying zone and a mixing zone. Slurry containing sesquisulfate crystals is introduced into the mixing zone along with water and the material is mixed to promote dissolution of the crystals and formation of sodium sulfate solids. Sodium sulfate solids are collected in a lower portion of the treatment vessel and conveyed out of the vessel, and liquid from the clarifying zone is conducted from an upper end of the treatment vessel to a conventional liquid processing unit. Treatment of a sesquisulfate-containing slurry in accordance with the invention provides sodium sulfate containing little or no sesquisulfate crystals thereby reducing the need for vacuum filtration or other expensive separation techniques to recover sulfuric acid and sodium sulfate solids from the slurry.
    Type: Grant
    Filed: March 9, 1998
    Date of Patent: October 3, 2000
    Assignee: International Paper Company
    Inventors: Raymond Liu, James A. McCann, Robert L. Graff, Alexander K. Bonsu
  • Patent number: 6086842
    Abstract: The present invention is directed towards a system that makes high quality gypsum from a dry flue gas desulfurization process which utilizes a low temperature regeneration of the carbon adsorbent in the flue gas process. The high quality gypsum is easily filterable with large crystal size and has high purity with few contaminants, such as calcium sulfite and heavy metals. This invention is also directed towards a system that regenerates the carbon used in dry flue gas desulfurization at a temperature below 120.degree. C. and the recycling of sodium hydroxide to form a sodium sulfite reducing solution for carbon adsorbent regeneration.
    Type: Grant
    Filed: January 2, 1996
    Date of Patent: July 11, 2000
    Assignee: General Electric Company
    Inventors: Bang Mo Kim, Norman Zethward Shilling