Hydrogen Sulfide Patents (Class 423/573.1)
  • Patent number: 8021624
    Abstract: The invention relates to a reactor (1) and a process for continuously preparing H2S by converting a reactant mixture which comprises essentially gaseous sulfur and hydrogen over a catalyst, comprising a sulfur melt (9) at least in a lower subregion (8) of the reactor (1), into which gaseous hydrogen is introduced. The catalyst is arranged in at least one U-shaped tube (21) which is partly in contact with the sulfur melt (9), the at least one U-shaped tube (21) having at least one entry orifice (23) on a limb (26) above the sulfur melt (9), through which the reactant mixture can enter the U-shaped tube (21) from a reactant region (10) of the reactor (1), having a flow path within the at least one U-shaped tube, along which the reactant mixture can be converted in a reaction region comprising the catalyst (22), and having at least one exit orifice (24) in another limb (27) through which a product can exit into a product region (7).
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: September 20, 2011
    Assignee: BASF SE
    Inventors: Andreas Wölfert, Herald Jachow, Heinz Drieβ
  • Patent number: 8012441
    Abstract: The invention relates to a method for isolating hydrogen sulphide from coke-oven gas with the subsequent recovery of elemental sulphur in a Claus plant. The hydrogen sulphide is eliminated from the coke-oven gas by gas washing using an absorption liquid. During the regeneration of the loaded absorption liquid, hydrogen sulphide is accumulated in concentrated form and is fed to the Claus plant. Said Claus plant comprises a Claus boiler, a waste-heat boiler, in addition to a reactor, which forms an additional catalyst stage. According to the invention, the Claus plant is operated with a single reactor, which operates at a working temperature of below 250° C. The process gas that exits the reactor is returned after the deposition of elemental sulphur with a non-reacted residual concentration of hydrogen sulphide to the coke-oven gas that is to be cleaned, prior to the gas washing stage.
    Type: Grant
    Filed: May 10, 2003
    Date of Patent: September 6, 2011
    Assignee: Uhde GmbH
    Inventor: Holger Thielert
  • Patent number: 7988767
    Abstract: Contemplated configurations and methods for elemental sulfur removal from various gases, and especially well acid gases employ a hydrocarbon solvent that dissolves the sulfur to form a rich solvent and that is then regenerated by hydrotreating. Thus, sulfur is removed from the rich solvent as H2S that may then be processed (e.g., in Claus unit or absorption unit) while the regenerated solvent is routed back to the well and associated production pipes.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: August 2, 2011
    Assignee: Fluor Technologies Corporation
    Inventors: Curt Graham, Robert Henderson, Richard B. Nielsen, Michael Debest
  • Patent number: 7985397
    Abstract: A method of treating hydrogen sulfide or producing hydrogen which comprises disposing a liquid tank having a photocatalyst electrode comprising a photocatalyst and a liquid tank having a metal electrode so that the two liquid tanks are separated from each other by a cation-exchange membrane, placing a liquid containing either hydrogen sulfide or an organic substance in the liquid tank having the photocatalyst electrode, electrically connecting the photocatalyst electrode to the metal electrode, and exposing the photocatalyst to a light. The liquid to be placed in the liquid tank having the metal electrode preferably is an acidic solution. The photocatalyst preferably comprises a metal sulfide, and preferably is fine particles having a layered nanocapsule structure.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: July 26, 2011
    Assignees: Nittetsu Mining Co., Ltd., Tohoku University
    Inventors: Hiromichi Matsumoto, Akira Kishimoto, Kazuyuki Tohji
  • Patent number: 7951353
    Abstract: An apparatus and method of contacting a liquid with different gases sequentially in separate mass transfer zones within a single vessel, the mass transfer zones operatively in fluid communication with each other, including intimately contacting the liquid with a process gas in co-current flow in a downstream mass transfer zone to effect mass transfer between the liquid and the process gas, and introducing the liquid into an upstream mass transfer zone with a second gas, different from the process gas, thereby effecting mass transfer between the liquid and the second gas. The rate of flow of the liquid from the upstream mass transfer zone to downstream mass transfer zone is controlled by the controlled addition of a third gas into one or more downcomers separating each mass transfer zone such that the specific density of the liquid in the downcomers provides a driving force that controls flow.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: May 31, 2011
    Assignee: Merichem Company
    Inventor: David Alan Hobson
  • Patent number: 7901646
    Abstract: Disclosed herein are various types of systems and methods for the efficient production of sulfur from a sulfur-laden gas. The system described herein includes a desulfurization unit, a regenerator receiving sulfurized mass from the desulfurization unit, a sulfur recovery unit, a sulfur track in fluid communication with the regenerator and the sulfur recovery unit, and a sulfur concentrator on a sulfur track. The sulfur stream coming out of the regenerator is concentrated using the sulfur concentrator and converted into a sulfur product at the sulfur recovery unit.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: March 8, 2011
    Assignee: General Electric Company
    Inventors: Raul Eduardo Ayala, Harish Radhakrishna Acharya
  • Patent number: 7901655
    Abstract: A process for treating a gas stream comprising H2S that includes the step of selectively oxidizing the H2S of the gas stream within a catalytic zone containing an oxidation catalyst and in the presence of an inert liquid medium and molecular oxygen to form elemental sulfur and a gas stream depleted of H2S. A liquid stream yielded from the catalytic zone and containing the inert liquid medium and liquid elemental sulfur undergoes a separation into a first liquid phase rich in the inert liquid medium and a second liquid phase rich in elemental sulfur. Either at least a part of the liquid stream or at least a part of the second liquid phase, or both, undergoes a combustion to form a fluid stream that comprises sulfur dioxide.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: March 8, 2011
    Assignee: Shell Oil Company
    Inventors: Carolus Matthias Anna Maria Mesters, Isaac Cornelis Van Den Born
  • Patent number: 7887777
    Abstract: Hydrogen sulfide H2S is prepared from a crude gas stream containing H2S and polysulfanes (H2Sx). The crude gas stream is passed at temperatures of from 114 to 165° C. through catalytically active material present in a vessel, and sulfur is collected in the bottom of the vessel and recycled to the preparation of H2S. This process may be accomplished in an apparatus including a reactor for reacting sulfur and hydrogen, a cooler for receiving and cooling an H2S-containing crude gas stream passed out of the reactor to between 114 to 165° C., a vessel coupled to the cooler, the vessel including catalytically active material and a bottom for collecting sulfur obtained from the crude gas stream, and a line which is connected to the bottom of the vessel and opens into the cooler or into the reactor, for recycling sulfur.
    Type: Grant
    Filed: January 15, 2008
    Date of Patent: February 15, 2011
    Assignee: BASF SE
    Inventors: Andreas Wölfert, Herald Jachow, Heinz Drieβ
  • Publication number: 20100300872
    Abstract: A method of H2S dissociation which comprises generating radicals or ions. The H2S dissociation is initiated at relatively low temperature, e.g., of less than 1875 K. The residence time for dissociation generally ranges from about 0.01 s to 10 s. In one embodiment, plasmas are used to generate ions for use in the H2S dissociation.
    Type: Application
    Filed: May 28, 2010
    Publication date: December 2, 2010
    Applicants: Chevron U.S.A. Inc., Drexel University
    Inventors: Alexander Gutsol, R. William Potter, SR., Kirill Gutsol, Thomas Nunnally, Andrei Starikovskii, Alexander Fridman, Alexander Rabinovich
  • Patent number: 7837970
    Abstract: The invention relates to a process and plant for producing sulphuric acid by catalytic oxidation of SO2 to form SO3 in a converter with at least one contact stage, the SO3-containing process gas, after it has passed through at least one contact stage, being withdrawn from the converter and fed to an apparatus for recovering heat, in which steam is generated from feedwater by means of the heat of the process gas, and the process gas then being fed to an absorber, in which the SO3 is absorbed in sulphuric acid. To improve the utilization of heat during the production of sulphuric acid, the feedwater is fed to the heat recovery apparatus at a higher temperature than the process gas fed to the absorber.
    Type: Grant
    Filed: February 11, 2006
    Date of Patent: November 23, 2010
    Assignee: Outotec Oyj
    Inventor: Karl-Heinz Daum
  • Patent number: 7833502
    Abstract: A process to efficiently remove sulfur compounds from a hydrocarbon stream in a refinery operation includes the production and recycle of hydrogen from the sulfur compounds. The sulfur compounds present in the hydrocarbon cut are converted to hydrogen sulphide which is split to hydrogen and sulfur in a non-thermal plasma reactor.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: November 16, 2010
    Assignee: ENI S.p.A.
    Inventors: Aldo Bosetti, Alberto de Angelis
  • Patent number: 7824638
    Abstract: This disclosure relates generally to processes for efficient incineration and conversion of the tail gas streams from sulfur recovery units containing sulfur compounds such as H2S, CO2, COS, CS2, and other sulfur species and sulfur vapors from S1 to S8 to SO2. The present disclosure describes the use of a combination of catalysts to achieve efficient oxidation of all reduced sulfur compounds as well as oxidation of CO and H2 to meet the industry emission requirements. The catalytic tail gas incineration process described herein can advantageously operate at lower temperatures, which in turn can represent a savings in reduced fuel gas costs.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: November 2, 2010
    Assignee: Worleyparsons Group, Inc.
    Inventors: Mahin Rameshni, Stephen Santo
  • Publication number: 20100266483
    Abstract: The invention concerns a process for desulphurization of a gaseous effluent containing hydrogen sulphide using a Claus treatment unit followed by a Claus tail gas treatment unit (TGT), said process comprising using a device for on-line analysis of the ratio H2S/SO2 at the outlet from the TGT unit and a feed-back loop which can maintain said H2S/SO2 molar ratio at the outlet from the TGT unit to a value close to 2 and generally in the range 1.5 to 2.5.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 21, 2010
    Applicant: IFP
    Inventors: Julien Grandjean, Laurent Renaudot, P-Louis Carrette, Sophie Drozdz
  • Patent number: 7811544
    Abstract: A method for recovering sulfur from a sulfur-bearing process gas stream in which a process gas stream comprising H2S and/or SO2 is contacted with a lean mixture of a lean UCSRP solution and a catalyst for promotion of a reaction between H2S and SO2 in anon-UCSRP vessel at a temperature below which H2S and SO2 react, whereby at least a portion of the H2S and/or SO2 is absorbed by the lean UCSRP solution, forming a rich mixture of a rich UCSRP solution and the catalyst. The rich mixture is introduced into a UCSRP vessel and heated to a reaction temperature greater than or equal to a melting temperature of sulfur, forming elemental sulfur and H2O.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: October 12, 2010
    Assignee: Gas Technology Institute
    Inventors: Dennis Leppin, Howard S. Meyer
  • Patent number: 7803339
    Abstract: The invention provides a method for disposal of di-sulphide compounds having the general formula of R—S—S—R, wherein R is an alkyl group, the method comprising the steps of: (a) combusting said di-sulphide compounds in the presence of an oxygen-containing gas in a sulphur dioxide generation zone, whereby at least part of the di-sulphide compounds is converted to sulphur dioxide to obtain a gas stream comprising sulphur dioxide; (b) reacting the gas stream comprising sulphur dioxide with hydrogen sulphide to obtain elemental sulphur.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: September 28, 2010
    Assignee: Shell Oil Company
    Inventor: Anders Carlsson
  • Patent number: 7727507
    Abstract: A process for treating a gas stream comprising H2S that includes the step of selectively oxidizing the H2S of the gas stream within a catalytic zone containing an oxidation catalyst and in the presence of an inert liquid medium and molecular oxygen to form elemental sulfur and a gas stream depleted of H2S. A liquid stream yielded from the catalytic zone and containing the inert liquid medium and liquid elemental sulfur undergoes a separation into a first liquid phase rich in the inert liquid medium and a second liquid phase rich in elemental sulfur. Either at least a part of the liquid stream or at least a part of the second liquid phase, or both, undergoes a combustion to form a fluid stream that comprises sulfur dioxide.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: June 1, 2010
    Assignee: Shell Oil Company
    Inventors: Carolus Matthias Anna Maria Mesters, Isaac Cornelis Van Den Born
  • Patent number: 7722852
    Abstract: Processes for the thermal reduction of sulfur dioxide to elemental sulfur are described and disclosed. The processes described include three general reaction sections, including the reaction furnace portion where the SO2-containing stream is combusted, the hydrogenation portion wherein the effluent from the reaction furnace is hydrogenated over an appropriate catalyst, and a Claus conversion portion, wherein residual H2S and SO2 are further reacted to produce additional elemental sulfur.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: May 25, 2010
    Assignee: WorleyParsons Group, Inc.
    Inventor: Mahin Rameshni
  • Patent number: 7658906
    Abstract: Novel sulfur recovery plants, and processes utilizing these plants are disclosed. These apparatuses eliminate the use of a condenser between the waste heat boiler and first Claus catalytic reactors, and also eliminate the use of reheaters in between Claus catalytic reactors.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: February 9, 2010
    Assignee: ConocoPhillips Company
    Inventors: Alfred E. Keller, Nathan A. Hatcher, Sriram Ramani, Larry D. Swinney
  • Patent number: 7655205
    Abstract: Disclosed is a process for the removal of sulfur from a gas stream containing sulfur dioxide, hydrogen cyanide and hydrogen sulfide. The process includes a hydrogenation step, a hydrolysis step, an ammonia removal step and a hydrogen sulfide removal step. An aqueous alkaline washing liquid is used in the hydrogen sulfide removal step and with the spent sulfide containing washing liquid being regenerated using an oxidation bioreactor that utilizes sulfide oxidizing bacteria such as autotropic aerobic cultures of Thiobacillus and Thiomicrospira.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: February 2, 2010
    Assignee: Shell Oil Company
    Inventors: Petrus Franciscus Antonius Van Grinsven, Wiebe Sjoerd Kijlstra, Inge Roos, Cornelis Jacobus Smit
  • Patent number: 7655213
    Abstract: A method for removing hydrogen sulfide to produce elemental sulfur from a synthesis gas feed stream containing hydrogen sulfide, carbon monoxide, hydrogen, carbon dioxide and water using direct oxidation of hydrogen sulfide by contacting a feed stream containing synthesis gas with oxygen in the presence of a catalyst comprised of metal oxides to convert a substantial fraction of the hydrogen sulfide present in the feed stream into sulfur and water, followed by cooling the reaction products to a temperature below the dew point temperature of the water and sulfur, separating the reaction products into two streams, with the first stream containing elemental sulfur and water in liquid form and the second stream containing unreacted components from the synthesis gas, hydrogen sulfide, carbon monoxide, hydrogen, carbon dioxide and water, and then recycling a portion of the unreacted components to the feed stream.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: February 2, 2010
    Assignee: General Electric Company
    Inventors: John Duckett Winter, Raymond D. Steele
  • Patent number: 7641874
    Abstract: Granulated Activated Carbon (GAC) is used to remove hydrogen sulfide (H2S) from the biogas produced in an anaerobic digester. The cleaned biogas is then combusted in a reciprocating engine. The exhaust of the engine is passed through a heat exchanger and then through GAC in an adsorber to adsorb nitrogen oxides (NOx) and any sulfur oxides (SOx). The GACs containing NOx, H2S, and SOx, are transported to a microwave reactor, mixed, and exposed to microwave energy. The H2S and NOx are desorbed from the GAC and chemically combined to produce nitrogen, carbon dioxide, sulfur and water. Unreacted nitrogen oxides or hydrogen sulfide are transported to a second reactor containing carbon media to be reacted by a further microwave process. Sulfur is removed with a filter as a solid and the remaining inert components are vented to the atmosphere. The GAC is regenerated and reused to remove additional H2S and NOx.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: January 5, 2010
    Assignee: CHA Corporation
    Inventor: Chang Yul Cha
  • Patent number: 7611685
    Abstract: The inventive method for hydrogen sulphide and/or mercaptans decomposition consists in passing hydrogen sulphide and/or mercaptan-containing gas at a temperature less than 200° C. through a hard material layer (catalyst) which decomposes said hydrogen sulphide or mercaptans in such a way that hydrogen or hydrocarbons are released and sulphur-containing compounds are formed on a material surface. Said hard material is placed in a liquid medium layer. Said invention makes it possible to use a hard material (catalyst) without a periodical regeneration thereof.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: November 3, 2009
    Assignee: Institu Kataliza Imeni G. K. Boreskova Sibirskogo Otdeleniya Rossiiskoi Akademii Nauk
    Inventors: Anatolii Nikolaevich Startsev, Anastasia Viktorovna Pashigreva, Olga Valeryevna Voroshina, Ivan Ivanovich Zakharov, Valentin Nikolaevich Parmon
  • Patent number: 7608231
    Abstract: Process for the removal in continuous of hydrogen sulfide from gaseous streams containing it, comprising: a) putting a gas containing H2S in contact with an oxidizing acid aqueous solution of ferric nitrate and containing a heteropolyacid having redox properties; b) filtrating and separating the sulfur produced by the redox reaction; c) oxidizing the ferrous nitrate to ferric nitrate with air; d) recycling the solution containing ferric nitrate and heteropolyacid to the oxidation step (a); e) subjecting the gaseous stream leaving the oxidation reactor (c) to washing with the reduced solution; and f) discharging the gaseous stream.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: October 27, 2009
    Assignee: ENI S.p.A.
    Inventors: Giuseppe Bellussi, Alberto De Angelis, Paolo Pollesel, Marcello Milli
  • Publication number: 20090263312
    Abstract: A process and system for substantially eliminating contaminants from a gas and a gas produced therefrom.
    Type: Application
    Filed: April 21, 2009
    Publication date: October 22, 2009
    Applicant: SWAPSOL Corp.
    Inventor: James A. Wasas
  • Patent number: 7597871
    Abstract: Disclosed is a method for treating a gas stream rich in hydrogen sulfide by providing one or more feed gas streams rich in hydrogen sulfide into a Claus reaction furnace, providing air into the Claus reaction furnace, providing supplemental oxygen into the Claus reaction furnace, and providing steam to the Claus reaction furnace, where the steam is in addition to any steam that may be present in gases that are recycled to the Claus reaction furnace. The components are then reacted at a temperature above about 2400° F. and at a pressure sufficient to cause hydrogen sulfide to be converted into sulfur.
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: October 6, 2009
    Assignee: Goar, Allison & Associates, Inc.
    Inventor: William P. Ferrell
  • Publication number: 20090238750
    Abstract: A process to efficiently remove sulfur compounds from a hydrocarbon stream in a refinery operation includes the production and recycle of hydrogen from the sulfur compounds. The sulfur compounds present in the hydrocarbon cut are converted to hydrogen sulphide which is split to hydrogen and sulfur in a non-thermal plasma reactor.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 24, 2009
    Inventors: Aldo Bosetti, Alberto de Angelis
  • Patent number: 7578985
    Abstract: A method for removal of hydrogen sulfide and mercury from a gaseous stream containing hydrogen sulfide and mercury in which a hydrogen sulfide conversion catalyst is contacted with the gaseous stream at a temperature less than or equal to the dewpoint of elemental sulfur, and the hydrogen sulfide is oxidized, forming elemental sulfur.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: August 25, 2009
    Assignee: Gas Technology Institute
    Inventors: James L. Aderhold, Jr., Nagaraju Palla, Keyur Pandya
  • Patent number: 7560088
    Abstract: A compact sulfur recovery system is disclosed which includes an upflow orientation for the gases through a primary structure including a catalytic partial oxidation reaction zone, a first temperature-control zone, a first Claus catalytic reaction zone, a second temperature-control zone, a first liquid sulfur outlet, and a first effluent gas outlet. The upward flow of the gases puts the hottest gases in contact with the tubes and tube sheet in the waste heat boiler where there is greater confidence in having liquid water in most continuous therewith.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: July 14, 2009
    Assignee: ConocoPhillips Company
    Inventors: Alfred E. Keller, Sriram Ramani, Nathan A. Hatcher, Joe D. Allison, Steven E. Lusk, Larry D. Swinney, Kerri J. Kirkendall, Gilbert E. Torres, Paul D. Stewart, Terry D. Pruitt
  • Patent number: 7553473
    Abstract: Hydrogen sulfide is oxidized to sulfur by means of treatment with an aqueous acid solution containing trivalent iron and a hetero polyacid having formula (I): HnXVyM(12-y)O40; or a sole hetero polyacid having formula (II): HnMeM12O40; wherein the symbols X, M Me n and y are specified in the text. At the end of the oxidation, the solution is treated with gas containing oxygen to re-oxidize the reduced metal.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: June 30, 2009
    Assignee: ENI S.p.A.
    Inventors: Alberto De Angelis, Giuseppe Bellussi, Paolo Pollesel, Ugo Romano, Carlo Perego
  • Patent number: 7544344
    Abstract: A feed gas stream containing hydrogen sulfide is subjected to a Claus reaction in a Claus furnace (16). Oxygen or oxygen-enriched air containing at least 80% by volume oxygen is supplied to the furnace (16) to support combustion of the hydrogen sulfide. Sulfur vapour is condensed out of the resultant effluent gas in a sulfur condenser (3). The sulfur depleted effluent gas is subjected to a plurality of stages of catalytic reaction of hydrogen sulfide in order to form further sulfur vapour in catalytic reactors (36, 44) and (52) with the sulfur vapour being condensed out of the gas in sulfur condensers (38, 46) and (54). The sulfur dioxide content of the resulting tail gas is reduced to hydrogen sulfide in reactor (6).
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: June 9, 2009
    Assignee: The BOC Group plc
    Inventor: Stephen Rhys Graville
  • Patent number: 7531159
    Abstract: This invention teaches a process that includes extraction of gas in which the presence of foam results in the carry over in the outlet gas stream of excessive liquids and/or solids, including the steps of injecting the foam laden gas stream tangentially into a cyclonic separator having an axial gas outlet and a liquid outlet, under conditions in which the inlet stream is subjected to at least about 150 G's, the outlet gas being substantially liquids/solids free and the outlet liquid stream being conveyed for disposal or further processing.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: May 12, 2009
    Assignee: National Tank Company
    Inventors: Robert A. Lanning, F. Stephen Brusso, Gary W. Sams
  • Publication number: 20090092524
    Abstract: Contemplated plants include an acid gas enrichment unit in which acid gas unsuitable for feeding into a Claus plant from an upstream acid gas removal unit is separated into a concentrated hydrogen sulfide stream that is fed to the Claus plant and a carbon dioxide stream that is compressed in a compressor before sequestration, further purification, and/or recycling to a gasification unit.
    Type: Application
    Filed: April 20, 2006
    Publication date: April 9, 2009
    Applicant: FLUOR TECHNOLOGIES CORPORATION
    Inventors: Ravi Ravikumar, Gordon Sims, Harold Sandler
  • Patent number: 7501111
    Abstract: Claus sulfur recovery plants that include one or more single-stage or multi-stage compact tubular Claus catalytic reactor-heat exchanger units are disclosed. In some instances, these new or improved Claus plants additionally include one or more compact heat exchanger containing cooling tubes that are filled with a heat transfer enhancement medium. The new compact tubular Claus catalytic reactor-heat exchanger units and HTEM-containing heat exchangers are also disclosed. A process for recovering sulfur from a hydrogen sulfide-containing gas stream, employing the new tubular Claus catalytic reactor-heat exchanger unit, and in some instances a HTEM-containing heat exchanger, are also disclosed.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: March 10, 2009
    Assignee: Conoco Phillips Company
    Inventors: Alfred E. Keller, Sriram Ramani, Joe D. Allison, Steven E. Lusk, Nathan A. Hatcher, Larry D. Swinney, Rebecca S. Shaver
  • Patent number: 7455828
    Abstract: A process and apparatus for obtaining a hydrogen product and a sulfur product from a feed gas comprised of hydrogen sulfide. In the process, a first separating step separates the feed gas to obtain a first purified hydrogen sulfide fraction comprised of at least about 90 percent hydrogen sulfide by volume. A dissociating step dissociates hydrogen sulfide present in the first purified hydrogen sulfide fraction to convert it into a dissociated first purified hydrogen sulfide fraction comprised of elemental hydrogen and sulfur. A second separating step separates the dissociated first purified hydrogen sulfide fraction to obtain a hydrogen rich fraction comprised of elemental hydrogen. The sulfur product may also be obtained from the dissociated first purified hydrogen sulfide fraction. Finally, the hydrogen product is obtained from the hydrogen rich fraction. The apparatus is provided for performing the process.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: November 25, 2008
    Assignee: H2S Technologies, Ltd.
    Inventors: Richard R. Selinger, Brian R. Thicke
  • Patent number: 7442290
    Abstract: Mesoporous aluminum oxides with high surface areas have been synthesized using inexpensive, small organic templating agents instead of surfactants. Optionally, some of the aluminum can be framework-substituted by one or more other elements. The material has high thermal stability and possesses a three-dimensionally randomly connected mesopore network with continuously tunable pore sizes. This material can be used as catalysts for dehydration, hydrotreating, hydrogenation, catalytic reforming, steam reforming, amination, Fischer-Tropsch synthesis and Diels-Alder synthesis, etc.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: October 28, 2008
    Assignee: Lummus Technology Inc.
    Inventors: Zhiping Shan, Jacobus Cornelius Jansen, Chuen Y. Yeh, Philip J. Angevine, Thomas Maschmeyer
  • Patent number: 7438886
    Abstract: The present application relates to a process for removing hydrogen sulfide H2S from a gas (1) by contacting said gas with a liquid solution (2) containing ferric sulfate in an absorption column (RC). Ferric sulfate and H2S react at room temperature and at a pressure ranging from 1 to 1.2 atm. Ferric ions being reduced to two-valent iron and sulfide oxidised to elemental sulfur. The liquid (4) coming out of the absorption column is filtered in two steps, the retentate (6, 8) comprising elemental sulfur, the filtrate (5, 7) containing the iron ions. The filtrate is sent to a bioreactor (RB) for regeneration, i.e. oxidation of iron to Fe3+ by means of thiobacillus ferroxidans and air injection (10). The regenerated solution is reused in the absorption column (RC). The process faces the problems relating to the alignment between the chemical step and the biological step in order to obtain a process which can stably run continuously.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: October 21, 2008
    Assignee: Enitechnologie S.p.A.
    Inventors: Roberto Gianna, Umberto Barberini, Mario Galileo Valdiserri, Francesco Crescenzi, Andrea Robertiello
  • Patent number: 7427383
    Abstract: A method and system for removing hydrogen sulfide from gaseous process streams, such as sour gas streams are disclosed and described. A gaseous stream containing hydrogen sulfide can be contacted with an aqueous silicon-containing composition under high shear conditions to form a sweetened gaseous product. The gaseous product has significantly reduced hydrogen sulfide content and recovered liquid and solid filtrates are generally non-toxic.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: September 23, 2008
    Assignee: Nestco LLC
    Inventor: Ignacio Cisneros
  • Patent number: 7419652
    Abstract: The invention relates to a process for removing hydrogen sulfide and recovering sulfur from a gas stream, comprising the steps of: contacting said gas stream with an aqueous catalyst solution of a polyvalent metal redox catalyst in a contacting zone to absorb said hydrogen sulfide and form a reduced catalyst solution comprising reduced polyvalent metal redox catalyst and sulfur particles; oxidizing said reduced catalyst solution while removing sulfur particles to form said oxidized aqueous catalyst solution comprising polyvalent metal redox catalyst in an oxidized state with sulfur particles removed; and recovering sulfur by transferring at least one of said sulfur particles and foam to a separation zone; wherein a coagulating reagent is added to a feed of said separation zone prior to entering said separation zone to promote settlement of sulfur particles.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: September 2, 2008
    Assignee: Research Institute of Petroleum Industry (RIPI)
    Inventors: Mohammad Reza Khattaty, Khaled Forsat, Reza Hashemi, Manafi Varkiani Hossein
  • Patent number: 7396522
    Abstract: The present invention relates to a catalyst useful for removal of hydrogen sulphide from gas streams and its conversion to sulphur, a process for preparing such catalyst and a method for removing of hydrogen sulphide using said catalyst.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: July 8, 2008
    Inventors: Jayalekshmy Ayyer, Pradipkumar Maheshchandra Shah, Virendra Bhikhabhai Patel
  • Patent number: 7378068
    Abstract: The present invention includes a process for the removal of hydrogen sulfide from hydrogen sulfide gas containing gaseous streams. In one embodiment, the process comprises feeding a sulfide ion containing solution to an oxidation unit. The method further comprises feeding an oxidizing gas to the oxidation unit and contacting the sulfide ion containing solution with the oxidizing gas under sufficient conditions to form a polysulfide solution comprising polysulfide and hydroxide ions. In addition, the process comprises mixing the polysulfide containing solution with a hydrogen sulfide gas under conditions sufficient for absorption of hydrogen sulfide and precipitation of sulfur from the polysulfide containing solution. In some embodiments, the process comprises separating the precipitated sulfur from liquid.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: May 27, 2008
    Assignee: ConocoPhillips Company
    Inventors: Zhenhua Mao, Shang Y. Chen
  • Patent number: 7374742
    Abstract: The present invention provides a method for removing sulfur species from a gas stream without the use of a sulfur species removal process, such as an amine scrub. The sulfur species are removed by directly subjecting the gas stream to a sulfur recovery process, such as a Claus or sub-dewpoint Claus process at high pressure and moderate temperatures, wherein the sulfur recovery process comprises a catalyst which does not comprise activated carbon.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: May 20, 2008
    Assignee: Bechtel Group, Inc.
    Inventors: Robert Geosits, Charles Kimtantas
  • Patent number: 7357905
    Abstract: The invention relates to a process for direct oxidation into sulfur and/or into sulfate of sulfur-containing compounds that are contained in an amount that is less than 10% by volume in a gas, in which said gas is brought into contact with an oxidation catalyst that comprises a substrate and an active phase that comprises iron in a proportion of between 2 and 5% by weight of the oxidation catalyst at a temperature of less than 200° C. and in the presence of oxygen.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: April 15, 2008
    Assignee: Institut Francais du Petrole
    Inventors: Jean-François Chapat, Christophe Nedez, Jean-Louis Ray
  • Patent number: 7354564
    Abstract: A method of conducting the partial oxidation to sulphur in at least one furnace of part of the hydrogen sulphide content of a feed gas mixture containing from 10 to 60% by volume of hydrogen sulphide but including at least one aromatic hydrocarbon impurity typically selected from benzene, xylene, toluene and ethyl benzene. A flame is created in the furnace. All the feed gas mixture is fed to the flame. Oxygen molecules are also fed to the flame. At last some of the oxygen molecules are supplied from a source of oxygen-enriched air to pure oxygen, and there is created in the flame at least one hot aromatic hydrocarbon impurity destruction region in which a substantial proportion, typically at least 75% by volume, of the aromatic hydrocarbon impurity is destroyed.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: April 8, 2008
    Assignee: The BOC Group, plc.
    Inventors: Stephen Rhys Graville, Jason Scott Norman
  • Patent number: 7351392
    Abstract: A combined process for the recovery of sulfur from an acid gas stream. The combined process includes both a Claus unit and a unit for treating the Claus tail gas with caustic to remove hydrogen sulfide therefrom and to biologically oxidize the hydrogen sulfide using certain types of sulfur bacteria to make elemental sulfur. The combined process provides for an exceptionally low concentration of hydrogen sulfide in the finally treated sweet gas.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: April 1, 2008
    Assignee: Shell Oil Company
    Inventors: Jen Kai Chen, Michael Arthur Huffmaster
  • Patent number: 7335253
    Abstract: The invention provides a process for preparing a sulphur cement product comprising the following steps: (a) selectively oxidising hydrogen sulphide to elemental sulphur by contacting, in a reaction zone, a hydrogen sulphide containing feed gas and a molecular-oxygen containing gas with a particulate oxidation catalyst under selective oxidation conditions; (b) discharging a stream comprising liquid and/or solid elemental sulphur and particulate oxidation catalyst from the reaction zone; (c) admixing the stream comprising elemental sulphur and particulate oxidation catalyst with at least any one of elemental sulphur, a sulphur cement filler, a sulphur cement modifier, or aggregate at a temperature at which sulphur is molten; (d) solidifying the mixture obtained in step (c) by cooling it to a temperature below the melting temperature of sulphur to obtain the sulphur cement product.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: February 26, 2008
    Assignee: Shell Oil Company
    Inventors: Carolus Matthias Anna Maria Mesters, Marinus Johannes Reynhout, Guy Lode Magda Maria Verbist
  • Patent number: 7332145
    Abstract: Disclosed is a process for the treatment of gas containing mercaptans and acid gases, including the following steps: (1) separating the acid gases from the said gas and obtaining a sweetened gas and the flow of acid gases containing H2S; (2) reacting the H2S thus obtained in step (1) according to the Claus reaction; (3) concentrating the mercaptans in at least one cut of the said sweetened gas; (4) extracting the mercaptans of the said cut; and further comprising: (5) transforming the mercaptans into dialkyl-disulfide (DSO); (6) hydrogenating DSO into H2S; and (7) reacting the H2S thus obtained at step (6) according to the Claus reaction. An installation for carrying out this procedure is also described.
    Type: Grant
    Filed: September 9, 2005
    Date of Patent: February 19, 2008
    Assignee: Total S.A.
    Inventor: Denis Chretien
  • Patent number: 7326392
    Abstract: A method for removing H2S from H2S-containing gaseous streams in which an H2S-containing gaseous stream is introduced into a flow channel and at least one liquid chemical H2S scavenging agent is also introduced into the flow channel. Directly within the flow channel, liquid chemical H2S scavenging agent is transformed into a plurality of H2S scavenging agent droplets, which plurality of H2S scavenging agent droplets are contacted with the H2S-containing gaseous stream, whereby at least a portion of the H2S is absorbed by the plurality of H2S scavenging agent droplets. In accordance with one embodiment, transformation of the liquid chemical H2S scavenging agent is carried out in an inclined flow channel and in accordance with another embodiment, the transformation is carried out using ultrasonic atomization.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: February 5, 2008
    Assignee: Gas Technology Institute
    Inventors: Kevin S. Fisher, Kenneth E. McIntush
  • Patent number: 7311891
    Abstract: Recovering sulfur from a gas stream containing hydrogen sulfide by oxidizing the gas stream to convert the hydrogen sulfide in the gas stream to sulfur oxide, and thus form a sulfur oxide enriched gas stream. The sulfur oxide enriched gas stream is contacted with a solid, sulfation resistant adsorbent bed at relatively low temperatures to extract the sulfur oxides and retain them as sulfur compounds, thus forming a sulfur oxide depleted gas stream. The adsorbent bed is then contacted with an inert or reducing gas stream to reduce the retained sulfur compounds to sulfur and/or sulfur dioxide and thereby form an enriched sulfur and/or sulfur dioxide bearing stream. The elemental sulfur is recovered and/or the sulfur dioxide bearing stream may be recycled to the Claus unit for further conversion.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: December 25, 2007
    Assignee: BASF Catalysts LLC
    Inventors: William Bachop Dolan, John Warren Byrne, Michael John Mitariten, Kenneth Butwell, Alfonse Maglio
  • Patent number: 7291320
    Abstract: A process for the selective oxidation of hydrogen sulphide in a hydrogen sulphide containing feed gas to elemental sulphur, wherein the hydrogen sulphide containing feed gas (3), an inert liquid medium (5), and a molecular-oxygen containing gas (4) are supplied to a reaction zone (1) comprising at least one catalytic zone (2) comprising an oxidation catalyst to form elemental sulphur and a gaseous stream depleted in hydrogen sulphide (8), in which process the oxidation catalyst of each catalytic zone (2) is contacted with hydrogen sulphide and/or molecular-oxygen in the presence of inert liquid medium at a temperature in the range of from 120 to 160° C., under such conditions that the elemental sulphur formed is essentially in liquid form and is removed from the reaction zone with the inert liquid medium.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: November 6, 2007
    Assignee: Shell Oil Company
    Inventors: John Wilhelm Geus, Carolus Matthias Anna Maria Mesters, Ronald Jan Schoonebeek
  • Patent number: 7282193
    Abstract: A method for producing sulfur and energy from an acid gas stream containing hydrogen sulfide by partially combusting the acid gas stream to produce a combustion product gas, mixing a sulfur dioxide stream with the combustion product gas, separating sulfur from the mixture, combusting sulfur to produce sulfur dioxide and heat energy and passing at least a portion of the sulfur dioxide to the combustion product gas.
    Type: Grant
    Filed: June 20, 2005
    Date of Patent: October 16, 2007
    Assignee: Black & Veatch Corporation
    Inventors: Peter D. Clark, David K. Stevens