Iron (fe) Containing Patents (Class 423/594.1)
  • Patent number: 7348100
    Abstract: Methods for producing an electrode active material precursor, comprising: a) producing a mixture comprising particles of lithium hydrogen phosphate, having a first average particle size, and a metal hydroxide, having a second average particle size; and b) grinding said mixture in a jet mill for a period of time suitable to produce a generally homogeneous mixture of particles having a third average size smaller than said first average size. The precursor may be used as a starting material for making electrode active materials for use in a battery, comprising lithium, a transition metal, and phosphate or a similar anion.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: March 25, 2008
    Assignee: Valence Technology, Inc.
    Inventors: George Adamson, Jeremy Barker, Allan Dirilo, Titus Faulkner, M. Yazid Saidi, Jeffrey Swoyer
  • Patent number: 7347893
    Abstract: The current invention relates to a method of manufacturing iron oxide pigments from mill scale. The mill scale is mixed with alien iron oxide and the resultant mixture is heated to a temperature of 200° C. to 900° C. in an oxidizing atmosphere to produce iron oxide pigment which can be black, brown or red. The alien iron oxide used and the iron oxide pigment produced are predominantly Fe2O3 or Fe3O4 or a mixture of both. The iron oxide pigment produced as above or from any other sources can be turn into black by mixing it with mill scale and the resultant mixture is heated to a temperature of 200° C. to 900° C. in a non-oxidizing or reducing atmosphere to produced iron oxide black pigment. Additives can be added to produce better quality iron oxide black pigment. The additives can be chromium oxide or manganese oxide or magnesium oxide or any carbonaceous material or mixtures thereof. The iron oxide black pigment produced as above is cooled in a non-oxidizing or reducing atmosphere to ensure no re-oxidation.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: March 25, 2008
    Assignee: IOP Specialists SDN. BHD.
    Inventor: Kin Onn Low
  • Patent number: 7326360
    Abstract: Magnetostrictive material based on cobalt ferrite is described. The cobalt ferrite is substituted with transition metals (such manganese (Mn), chromium (Cr), zinc (Zn) and copper (Cu) or mixtures thereof) by substituting the transition metals for iron or cobalt to form substituted cobalt ferrite that provides mechanical properties that make the substituted cobalt ferrite material effective for use as sensors and actuators. The substitution of transition metals lowers the Curie temperature of the material (as compared to cobalt ferrite) while maintaining a suitable magnetostriction for stress sensing applications.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: February 5, 2008
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: David C. Jiles, Jason A. Paulsen, John E. Snyder, Chester C. H. Lo, Andrew P. Ring, Keith A. Bormann
  • Patent number: 7288241
    Abstract: A black composite oxide particle includes a composite oxide having Fe, Mg and Al as metal components. The particle contains Fe, Mg and Al in amounts of 30 to 55 mass %, 1 to 10 mass %, and 1 to 10 mass %, respectively, and has an atomic ratio of Fe3+/Fe2+ of 0.8 to 10. Also described is a method for producing the black composite oxide particle. In an embodiment, the particle includes a hydrated composite oxide represented by an empirical formula: Fe2+aFe3+bMgcAldOe·nH2O. The black composite oxide particle is suitable as a black pigment for a coating material, an ink, toner particles, a rubber and a plastic, and is reduced with respect to the load on the environment and excellent in blackness.
    Type: Grant
    Filed: December 12, 2002
    Date of Patent: October 30, 2007
    Assignee: Mitsui Mining and Smelting Co., Ltd.
    Inventors: Koji Aga, Hiroyuki Shimamura
  • Patent number: 7267777
    Abstract: Method for removal of heavy metal ions from aqueous wastes, which are produced during electroplating and other industrial processes. The method comprises a precipitation process that is conducted in a magnetic field.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: September 11, 2007
    Assignee: Veracon Metal Ltd.
    Inventors: Pavel Koren, Igal Raz, Robert Asimov, Rami Noach, Irena Trounkovsky
  • Patent number: 7232527
    Abstract: A sintered body for thermistor device comprising: at least one element selected from elements of group 3 in a periodic table proviso that La is excluded; at least one element selected from elements of group 2 in a periodic table; Mn; Al; and oxygen, and being substantially free from any transition metal other than Mn and the at least one element selected from elements of group 3 in the periodic table.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: June 19, 2007
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Takaaki Chosokabe, Masaki Iwaya, Naoki Yamada
  • Patent number: 7232557
    Abstract: The invention describes a method of preparing magnetic ferrites from layered precursors in which Fe2+ is first introduced into the layers of layered double hydroxides (LDHs) in order to prepare Me-Fe2+—Fe3+ LDHs, and then by utilizing the easily oxidized nature of Fe2+, binary or multi-component ferrite materials containing Fe3+ in a single crystalline phase can be prepared. Values of the saturation magnetization of ferrites prepared by the method are significantly increased compared with ferrites prepared by traditional methods. Because the metal elements in the layered precursor have the characteristics of a high degree of dispersion, high activity and small particle size (average particle size 40-200 nm), no milling is required before calcination, thus simplifying the production process, shortening the production period, reducing capital investment in equipment and economizing on energy costs. In addition, the method does not corrode production equipment and does not pollute the environment.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: June 19, 2007
    Assignee: Beijing University of Chemical Technology
    Inventors: Xue Duan, Feng Li, Junjie Liu
  • Patent number: 7232556
    Abstract: Nanoparticles comprising titanium, such as nanoscale doped titanium metal compounds, inorganic titanium compounds, and organic titanium compounds, their methods of manufacture, and methods of preparation of products from nanoparticles comprising titanium are provided.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: June 19, 2007
    Assignee: NanoProducts Corporation
    Inventor: Tapesh Yadav
  • Patent number: 7223377
    Abstract: The present invention is the method for preparation of transition metal oxide having micro-mesoporous structure whose average fine pores size is not less than 1 nm and not more than 2 nm comprising, adding and dissolving transition metal salt which is a precursor of transition metal oxide and/or metal alkoxide in the solution prepared by dissolving polymer surfactant in organic solvent, hydrolyzing said transition metal salt and/or metal alkoxide and preparing sol solution which is polymerized and self organized, then obtaining gel whose organization is stabilized from said sol solution and removing said polymer surfactant by using water of room temperature or water to which alkali metal or alkaline earth metal ion is added.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: May 29, 2007
    Assignee: Japan Science and Technology Agency
    Inventors: Kazunari Domen, Junko Nomura, Byonjin Ri
  • Patent number: 7211238
    Abstract: Mesoporous aluminum oxides with high surface areas have been synthesized using inexpensive, small organic templating agents instead of surfactants. Optionally, some of the aluminum can be framework-substituted by one or more other elements. The material has high thermal stability and possesses a three-dimensionally randomly connected mesopore network with continuously tunable pore sizes. This material can be used as catalysts for dehydration, hydrotreating, hydrogenation, catalytic reforming, steam reforming, amination, Fischer-Tropsch synthesis and Diels-Alder synthesis, etc.
    Type: Grant
    Filed: March 8, 2004
    Date of Patent: May 1, 2007
    Assignee: ABB Lummus Global Inc.
    Inventors: Zhiping Shan, Jacobus Cornelius Jansen, Chuen Y. Yeh, Philip J. Angevine, Thomas Maschmeyer
  • Patent number: 7211235
    Abstract: A method is described for the manufacture of hydrotalcites by using at least one compound of a bivalent metal (Component A) and at least one compound of a trivalent metal (Component B), wherein at least one of these components is not used in the form of a solution, characterized in that a) at least one of the Components A and/or B which is not used in the form of a solution, shortly before or during mixing of the components, and/or b) the mixture containing the Components A and B is subjected to intensive grinding until an average particle size (D50) in the range of approx. 0.1 to 5 ?m is obtained, and optionally, after aging treatment or hydrothermal treatment, the resulting hydrotalcite product is separated, dried, and optionally calcinated.
    Type: Grant
    Filed: April 18, 2002
    Date of Patent: May 1, 2007
    Assignee: Sud-Chemie AG
    Inventors: Max Eisgruber, Jürgen Ladebeck, Jürgen Koy, Hubert Schiessling, Wolfgang Buckl, Herrmann Ebert
  • Patent number: 7208324
    Abstract: It is an object to provide a liquid composition for forming a thin film, with which a ferroelectric thin film having excellent characteristics can be prepared even by baking at a low temperature, and a process for producing a ferroelectric thin film using it. The above object is achieved by use of a liquid composition for forming a ferroelectric thin film, characterized in that in a liquid medium, ferroelectric oxide particles being plate or needle crystals, which are represented by the formula ABO3 (wherein A is at least one member selected from the group consisting of Ba2+, Sr2+, Ca2+, Pb2+, La3+, K+ and Na+, and B is at least one member selected from the group consisting of Ti4+, Zr4+, Nb5+, Ta5+ and Fe3+) and have a Perovskite structure and which have an average primary particle size of at most 100 nm and an aspect ratio of at least 2, are dispersed, and a soluble metal compound which forms a ferroelectric oxide by heating, is dissolved.
    Type: Grant
    Filed: October 28, 2005
    Date of Patent: April 24, 2007
    Assignee: Asahi Glass Company, Limited
    Inventors: Kazuo Sunahara, Hiroyuki Tomonaga, Yoshihisa Beppu
  • Patent number: 7195749
    Abstract: The room temperature, low field intergrain magnetoresistance (IMR) of the double perovsktite SrFe0.5MO0.5O3 is found to be highly tunable by doping either Ca or Ba into the Sr site. The dopant exerts a chemical pressure, changing the Curie temperature and the magnetic softness. The IMR at optimal doping (Sr0.2Ba0.8Fe0.5Mo0.5O3) is approximately 3.5% in 100 Oe, and increases further in high fields. The unprecedented strength of the IMR in this highly spin polarized system provides new grounds for employing novel magnetic materials for new magnetic sensing applications and spin electronics.
    Type: Grant
    Filed: April 4, 2001
    Date of Patent: March 27, 2007
    Assignee: Rutgers University
    Inventors: Sang-Wook Cheong, Bog-Gi Kim
  • Patent number: 7147834
    Abstract: A low-temperature hydrothermal reaction is provided to generate crystalline perovskite nanotubes such as barium titanate (BaTiO3) and strontium titanate (SrTiO3) that have an outer diameter from about 1 nm to about 500 nm and a length from about 10 nm to about 10 micron. The low-temperature hydrothermal reaction includes the use of a metal oxide nanotube structural template, i.e., precursor. These titanate nanotubes have been characterized by means of X-ray diffraction and transmission electron microscopy, coupled with energy dispersive X-ray analysis and selected area electron diffraction (SAED).
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: December 12, 2006
    Assignee: The Research Foundation of State University of New York
    Inventors: Stanislaus Wong, Yuanbing Mao
  • Patent number: 7141148
    Abstract: A material suitable for use as the active anode surface in the electrolytic reduction of alumina to aluminium metal defined by the formula: A1+xB1+?CdO4 where A is a divalent cation or a mixture of cations with a relative preference for octahedral coordination, B is a trivalent cation or mixture of cations with a relative preference for tetrahedral coordination, C is a trivalent cations with a relative preference for octahedral coordination or a four-valent cation with a relative preference for octahedral coordination, O is the element oxygen: When C is trivalent x=0, 0.8<d<1, ?<0.2 and x+d+d is essentially equal to 1. When C is four-valent 0.4<x<0.6, 0.4<d<0.6, ?<0.2 and x+d+? is essentially equal to 1.
    Type: Grant
    Filed: February 13, 2002
    Date of Patent: November 28, 2006
    Assignee: Norsk Hydro ASA
    Inventors: Stein Julsrud, Turid Risdal
  • Patent number: 7138102
    Abstract: A method for manufacturing a highly-crystallized double oxide powder composed of a single crystal phase which can be used as a phosphor material, a dielectric material, a magnetic material, etc. The method involves forming fine droplets of a raw material solution containing a raw material compound that includes at least one metal element and/or at least one semi-metal element that constitutes a double oxide, and heating these droplets at a high temperature, wherein the raw material solution is a solution which exhibits only one main peak attributable to the decomposition reaction of the raw material compound or a reaction intermediate thereof in a DTA profile when the solution is dried and solidified and subjected to TG-DTA measurement.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: November 21, 2006
    Assignee: Shoei Chemical Inc.
    Inventors: Yuji Akimoto, Kazuro Nagashima, Yoshikazu Nageno, Hidenori Ieda, Naoko Tanaka
  • Patent number: 7132093
    Abstract: The oxide materials are of the class of ternary mesoporous mixed oxide materials including lanthanum, a metal M selected from the group consisting of Cr, Mn, Fe, Co, Ni, Cu and Zn, and zirconium or cerium such a mesoporous La—Co—Zr mixed oxide material designated as Meso LCZ[x] where x is the atomic ratio (La+Co)/La+Co+Zr. They are useful as catalysts since they show high activities for hydrocarbon oxidation and good resistance against poisoning agents. These highly ordered mesoporous mixed oxides are synthesized by: preparing an amorphous solution of a La-M precursor and adding a salt of zirconium or cerium thereto; acidifying the amorphous solution in the presence of a surfactant under conditions to obtain a clear homogeneous solution; adjusting pH of the solution under conditions to form a solid precipitate; separating the solution and surfactant from the precipitate; and calcinating the precipitate.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: November 7, 2006
    Assignee: Université Laval
    Inventors: Serge Kaliaguine, Trong On Do
  • Patent number: 7118728
    Abstract: A method for making ferrite powder may include providing ferrite feed materials in a form of particles having different sizes and irregular shapes, and exposing the ferrite feed materials to a plasma to provide a more spherical shape to irregularly shaped particles to thereby make the ferrite powder. An apparatus for making ferrite powder may include a feeder for ferrite feed materials and a plasma generator for exposing the ferrite feed materials to a plasma.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: October 10, 2006
    Assignee: Steward Advanced Materials, Inc.
    Inventors: Henry G. Paris, Danny R. Smith
  • Patent number: 7105144
    Abstract: A method for producing ferrite hollow particles having a hollow structure formed by mutual sintering of ferrite powder, including: a) a step of mixing a resin powder and a ferrite powder of a particle size smaller than that of the resin powder under compaction thereby forming ferrite powder-coated particles in which ferrite powder coats, in a partially embedded state, surface of the resin powder; and b) a step of heat treating the obtained ferrite powder-coated particles thereby removing the resin powder and mutually sintering the ferrite powder.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: September 12, 2006
    Assignee: Yazaki Corporation
    Inventor: Takayuki Kato
  • Patent number: 7094301
    Abstract: A method of joining at least two sintered bodies to form a composite structure, including providing a first multicomponent metallic oxide having a perovskitic or fluorite crystal structure; providing a second sintered body including a second multicomponent metallic oxide having a crystal structure of the same type as the first; and providing at an interface a joint material containing at least one metal oxide containing at least one metal identically contained in at least one of the first and second multicomponent metallic oxides. The joint material is free of cations of Si, Ge, Sn, Pb, P and Te and has a melting point below the sintering temperatures of both sintered bodies. The joint material is heated to a temperature above the melting point of the metal oxide(s) and below the sintering temperatures of the sintered bodies to form the joint. Structures containing such joints are also disclosed.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: August 22, 2006
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Darryl Paul Butt, Raymond Ashton Cutler, Steven Walton Rynders, Michael Francis Carolan
  • Patent number: 7063908
    Abstract: A complex oxide and an oxide-ion conductor made of the complex oxide are provided. The complex oxide has a basic composition of (Sm1-xAx)(Al1-yBy)O3, wherein “A” represents at least one element selected from the group consisting of barium, strontium and calcium, “B” represents an element selected from the group consisting of magnesium, iron and cobalt, x is a value in a range of 0.10 to 0.30, and y is a value in a range of 0 to 0.30.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: June 20, 2006
    Assignee: NGK Insulators, Ltd.
    Inventors: Yoshihiko Yamamura, Kazuyuki Kaigawa, Shinji Kawasaki, Hiroaki Sakai
  • Patent number: 7033566
    Abstract: A photocatalyst including a metal oxide semiconductor represented by the formula: In1?xMxAO4 wherein M represents a transition metal element, A represents an element belonging to the Group 5a of the Periodic Table and x is a number greater than 0 but smaller than 1.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: April 25, 2006
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hironori Arakawa, Zhigang Zou, Kazuhiro Sayama
  • Patent number: 7025946
    Abstract: A soft hexagonal ferrite sintered material includes crystal particles of M-type hexagonal ferrite corresponding to a general chemical formula MFe12O19 wherein M is at least one element selected from the group consisting of Ba, Sr and Pb. Crystal particles having particle diameters of 5 ?m to 100 ?m are extracted from a sintered material produced from a precursor powder mixture. The extracted particles as seed crystals are mixed with a calcined powder comprising fine crystals having the above composition and particle diameters of 0.5 ?m to 3 ?m, then is sintered until the intended particle growth of the crystal particles in the sintered material is achieved to give an average particle diameter of 30 ?m to 500 ?m.
    Type: Grant
    Filed: August 21, 2002
    Date of Patent: April 11, 2006
    Assignees: Kitigawa Industries Co., Ltd., Japan Fine Ceramics Center
    Inventors: Yutaka Suematsu, Toru Matsuzaki, Yasuo Kondo, Hideaki Matsubara, Hiroshi Nomura
  • Patent number: 7022303
    Abstract: Polycrystalline materials of macroscopic size exhibiting Single-Crystal-Like properties are formed from a plurality of Single-Crystal Particles, having Self-Aligning morphologies and optionally ling morphology, bonded together and aligned along at least one, and up to three, crystallographic directions.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: April 4, 2006
    Assignee: Rutgers, The State University
    Inventors: Richard E. Riman, Larry E. McCandlish
  • Patent number: 7014881
    Abstract: An inert anode 50, for use in an electrolytic cell 12 for producing metals such as aluminum, is made by providing chemical source materials 100 such as at least two of metal salts, metal particles, or metal oxides and dissolving them to form a solution or a slurry 110, followed by adding a base 120 and adjusting the pH so that a gel 130 is formed which is dried and calcined 150, 160, 190 to provide a blend of metal oxide powder 200 which can be pressed and sintered 220 to form an inert anode 50.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: March 21, 2006
    Assignee: Alcoa Inc.
    Inventors: Xinghua Liu, Siba P. Ray, Alfred F. LaCamera, Douglas A. Weirauch, Mark L. Weaver, Robert A. DiMilia, Kirk J. Malmquist, Frankie E. Phelps, Joseph M. Dynys
  • Patent number: 7011898
    Abstract: A method of forming a composite structure includes: (1) providing first and second sintered bodies containing first and second multicomponent metallic oxides having first and second identical crystal structures that are perovskitic or fluoritic; (2) providing a joint material containing at least one metal oxide: (a) containing (i) at least one metal of an identical IUPAC Group as at least one sintered body metal in one of the multicomponent metallic oxides, (ii) a first row D-Block transition metal not contained in the multicomponent metallic oxides, and/or (iii) a lanthanide not contained in the multicomponent metallic oxides; (b) free of metals contained in the multicomponent metallic oxides; (c) free of cations of boron, silicon, germanium, tin, lead, arsenic, antimony, phosphorus and tellurium; and (d) having a melting point below the sintering temperatures of the sintered bodies; and (3) heating to a joining temperature above the melting point and below the sintering temperatures.
    Type: Grant
    Filed: March 21, 2003
    Date of Patent: March 14, 2006
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Darryl Paul Butt, Raymond Ashton Cutler, Steven Walton Rynders, Michael Francis Carolan
  • Patent number: 6835367
    Abstract: The present invention relates to a single step process for the synthesis of nanoparticles of phase pure ceramic oxides of a single or a multi-component system comprising one or more metal ions. The process comprises preparing a solution containing all the required metal ions in stoichiometric ratio by dissolving their respective soluble salts in an organic solvent or in water, preparing a precursor, adjusting the nitrate/ammonia content in the system, and heating the system.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: December 28, 2004
    Assignee: Council of Scientific and Industrial Research
    Inventors: Jose James, Rajan Jose, Asha Mary John, Jacob Koshy
  • Patent number: 6793842
    Abstract: A ferrite fine powder having a mean particle size of 0.1 to 30 &mgr;m and made of spherical single-crystal particles. The ferrite fine powder has superior physical properties and excellent magnetic properties desirable for use as a raw material for a dust core of coils, transformers, etc. The powder is prepared by forming a solution or suspension containing a compound or compounds of at least one of the metals forming the ferrite into fine droplets, and thermally decomposing the droplets at elevated temperatures.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: September 21, 2004
    Assignees: Shoei Chemical Inc., TDK Corporation
    Inventors: Yuji Akimoto, Kazuro Nagashima, Masahiro Ikemoto, Minoru Takaya, Yoshiaki Akachi, Hisashi Kobuke
  • Patent number: 6790429
    Abstract: Novel methods and devices for synthesizing ferrate and uses thereof are described. One aspect of the invention relates to synthesizing ferrate at a site proximal to the site of use, another aspect of the invention relates to devices and methods for synthesizing ferrate.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: September 14, 2004
    Assignee: Ab Initio LC
    Inventor: Lee Edward Ciampi
  • Patent number: 6780393
    Abstract: A method of producing fine particles of an oxide of a metal, comprising the steps of: preparing an acidic solution which contains ions of the metal; precipitating fine particles of a hydroxide of the metal by adding an alkaline solution to the acidic solution; collecting the fine particles of the hydroxide of the metal precipitated in a mixed solution of the acidic solution and the alkaline solution; mixing fine particles of a carbon with the collected fine particles of the hydroxide of the metal; and heat-treating a mixture of the fine particles of the hydroxide of the metal and the fine particles of the carbon at a predetermined temperature in a non-reducing atmosphere, whereby the fine particles of the oxide of the metal are produced.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: August 24, 2004
    Assignees: National Institute of Advanced Industrial Science and Technology, Noritake Co., Limited
    Inventors: Norimitsu Murayama, Woosuck Shin, Sumihito Sago, Makiko Hayashi
  • Patent number: 6780394
    Abstract: A perovskite feedstock (powder or preform) is placed in a high-pressure cell of a high pressure/high temperature (HP/HT) apparatus and subjected to pressures in excess of about 2 kbar and temperatures above about 800° C. for a time adequate to increase the density of the preform.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: August 24, 2004
    Assignee: Diamond Innovations, Inc.
    Inventors: Suresh S. Vagarali, John W. Lucek
  • Patent number: 6770256
    Abstract: Metal oxides having a perovskite or perovskite-like crystal structure are prepared by a process comprising subjecting a mixture of starring powders to a high energy milling sufficient to induce chemical reaction of the components and thereby directly mechanosynthesize said metal oxide in the form of a perovskite or a perovskite-like material having a nanocrystalline structure as determined by X-ray diffractometry. The process according to the present invention is simple, efficient, not expensive and does not require any heating step for producing a perovskite that may easily show a very high specific surface area. Another advantage is that the perovskite obtained according to the present invention also has a high density of lattice defects thereby showing a higher catalytic activity, a characteristic which is highly desirable in their eventual application as catalysts and electronic conductors.
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: August 3, 2004
    Assignee: Universite Laval
    Inventors: Serge Kaliaguine, André Van Neste
  • Publication number: 20040089558
    Abstract: Ceramic inert anodes useful for the electrolytic production of aluminum are disclosed. The inert anodes comprise oxides of Ni, Fe and Al. The Ni—Fe—Al oxide inert anode materials have sufficient electrical conductivity at operation temperatures of aluminum production cells, and also possess good mechanical stability. The Ni—Fe—Al oxide inert anodes may be used to produce commercial purity aluminum.
    Type: Application
    Filed: November 8, 2002
    Publication date: May 13, 2004
    Inventors: Douglas A. Weirauch, Joseph M. Dynys, Robert A. DiMilia, Siba P. Ray, Xinghua Liu, Frankie E. Phelps
  • Patent number: 6720112
    Abstract: An electrochemical active material contains a lithiated zirconium, titanium, or mixed titanium/zirconium oxide. The oxide can be represented by the formula LiM′M″XO4, where M′ is a transition metal, M″ is an optional three valent non-transition metal, and X is zirconium, titanium, or a combination of the two. Preferably, M′ is nickel, cobalt, iron, manganese, vanadium, copper, chromium, molybdenum, niobium, or combinations thereof. The active material provides a useful composite electrode when combined with a polymeric binder and electrically conductive material. The active material can be made into a cathode for use in a secondary electrochemical cell. Rechargeable batteries may be made by connecting a number of such electrochemical cells.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: April 13, 2004
    Assignee: Valence Technology, Inc.
    Inventors: Jeremy Barker, M. Yazid Saidi, Jeffrey L. Swoyer
  • Publication number: 20040037771
    Abstract: The invention is a method for producing a cast ceramic anode for metal oxide electrolytic reduction by feeding metallic iron and metallic nickel in solid form to an oxidizing reactor; melting and oxidizing the iron and nickel and forming molten nickel ferrite; mixing the molten nickel ferrite with dopant in a holding vessel such as ladle or tundish to increase electrical conductivity of the mixture, and casting the mixture into a mold to form a near net shape of the desired anode. Apparatus for carrying out the method, and the resulting product are also disclosed.
    Type: Application
    Filed: August 15, 2003
    Publication date: February 26, 2004
    Inventors: David C. Meissner, Ashvin Srivastava, Jeffrey B. Musat, Jeffrey K. Cheetham, Abid Bengali
  • Patent number: 6630084
    Abstract: A method of making a magnetoplumbite-type ferrite material powder includes the step of preparing the ferrite material powder by spraying a mixed chloride solution, in which a chloride of iron and a chloride of strontium are dissolved, into a heated atmosphere. The solution of the mixed chloride contains 25% through 35% of the chloride of iron and 2.4% through 4.9% of the chloride of strontium.
    Type: Grant
    Filed: October 6, 2000
    Date of Patent: October 7, 2003
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventor: Etsushi Oda
  • Publication number: 20030183800
    Abstract: Fine spinel-type ferrimagnetic particles of the present invention have a composition represented by the formula (I):
    Type: Application
    Filed: January 29, 2003
    Publication date: October 2, 2003
    Inventors: Hiroshi Yamamoto, Yukihiro Nissato
  • Patent number: 6599493
    Abstract: The present invention is directed to methods for preparing hydrous iron oxide spherules, hydrous iron oxide gels such as gel slabs, films, capillary and electrophoresis gels, iron monohydrogen phosphate spherules, hydrous iron oxide spherules having suspendable particles homogeneously embedded within to form composite sorbents and catalysts, iron monohydrogen phosphate spherules having suspendable particles of at least one different sorbent homogeneously embedded within to form a composite sorbent, iron oxide spherules having suspendable particles homogeneously embedded within to form a composite of hydrous iron oxide fiber materials, iron oxide fiber materials, hydrous iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, iron oxide fiber materials having suspendable particles homogeneously embedded within to form a composite, dielectric spherules of barium, strontium, and lead ferrites and mixtures thereof, and composite catalytic spherules of barium or s
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: July 29, 2003
    Assignee: UT-Battelle, LLC
    Inventors: Jack L. Collins, Robert J. Lauf, Kimberly K. Anderson
  • Publication number: 20030138696
    Abstract: The present invention provides a lithium insertion compound suitable for operating at a voltage greater than 4.
    Type: Application
    Filed: November 7, 2002
    Publication date: July 24, 2003
    Applicant: ALCATEL
    Inventors: Jean-Paul Peres, Andre Lecerf, Clemence Siret, Jean-Pierre Boeuve, Claudette Audry, Philippe Biensan