And Alkali Metal Or Alkaline Earth Metal Containing Patents (Class 423/594.4)
-
Patent number: 12027660Abstract: An electrochemical cell is provided comprising a thin metal foil packaging made from at least one sheet of metal foil and having a perimeter extending around at least a portion of the electrochemical cell, as well as an electrochemical cell stack contained within the thin metal foil packaging, and a metal-to-metal welded seal around at least a portion of the perimeter of the thin metal foil packaging. The metal-to-metal welded seal is hermetic or nearly hermetic. Furthermore, the metal-to-metal welded seal is narrow, having a width of less than about 1 mm, and is less than about 5 mm away from the electrochemical cell stack. In some embodiments, the thin metal foil packaging functions not only as a hermetically or near hermetically sealed packaging, but also as either electrode of the cell bonded to the foil packaging.Type: GrantFiled: October 27, 2016Date of Patent: July 2, 2024Assignee: Rutgers, The State University of New JerseyInventors: Glenn Amatucci, Irene Plitz, Linda Sung, Anthony Ferrer
-
Patent number: 12015152Abstract: A positive electrode active material may include a lithium layer doped with a first doping element and a transition metal layer doped with a second doping element. An I(003)/I(006) peak intensity ratio in X-ray diffraction measurement is equal to or less than 23.8.Type: GrantFiled: July 3, 2023Date of Patent: June 18, 2024Assignee: SK On Co., Ltd.Inventors: Sang Han Lee, Sang Wook Lee, Byoung Beom Lim, Yong Hyun Cho
-
Patent number: 11962006Abstract: A cathode active material for a lithium secondary battery according to an embodiment of the present invention includes a lithium composite oxide particle that contains lithium and transition metals including an excess amount of nickel. The lithium composite oxide particle satisfies a predetermined XRD peak area relation. A lithium secondary battery using the cathode active material and providing improved stability and durability is provided.Type: GrantFiled: October 4, 2021Date of Patent: April 16, 2024Assignee: SK ON CO., LTD.Inventors: Soo Ho Kim, Min Gu Kang, Min Suk Kang
-
Patent number: 11508962Abstract: A cathode active material precursor for a lithium metal oxide is provided. The cathode active material precursor comprises a metal-containing oxyhydroxide. The metal-containing oxyhydroxide comprises nickel and an additional metal. At least 50 mol. % of the nickel of the metal-containing oxyhydroxide has an oxidation state of +3. A method of forming a cathode active material precursor is also provided. The method comprises combining a nickel-containing compound, an additional metal-containing compound, an oxidizing agent, and a solvent to form a solution. The method further comprises exposing the solution to heat at a temperature of from about 30° C. to about 90° C. to form a precipitate comprising the metal-containing oxyhydroxide.Type: GrantFiled: February 4, 2020Date of Patent: November 22, 2022Assignee: UT-BATTELLE, LLCInventors: Ilias Belharouak, Nitin Muralidharan
-
Patent number: 11387483Abstract: A nonaqueous electrolyte energy storage device according to one aspect of the present invention is a nonaqueous electrolyte energy storage device including a positive electrode which has a conductive substrate and a positive electrode composite layer layered on the substrate, wherein the substrate is made from an aluminum alloy containing an element other than aluminum at a content of 1% by mass or more, and the positive electrode composite layer contains particles A and particles B having different particle sizes from each other as positive active materials.Type: GrantFiled: February 16, 2018Date of Patent: July 12, 2022Assignee: GS Yuasa International Ltd.Inventor: Hirotsugu Ioka
-
Patent number: 11299401Abstract: The present invention provides a positive electrode active material for a secondary battery, which includes a lithium transition metal oxide including nickel (Ni) and cobalt (Co), and at least one selected from the group consisting of aluminum (Al), manganese (Mn), and a combination thereof. The lithium transition metal oxide is characterized in that the content of nickel (Ni) in the total transition metal elements is 80 mol % or more, and the cation mixing ratio of Ni cations in a lithium layer in the lithium transition metal oxide structure is 1.1% or less.Type: GrantFiled: December 19, 2017Date of Patent: April 12, 2022Inventors: Ji Hye Kim, Byung Chun Park, So Ra Baek, Tae Gu Yoo, Wang Mo Jung
-
Patent number: 10797316Abstract: A coated nickel hydroxide powder that has improved dispersibility in a paste to inhibit agglomeration and can be densely packed in a three-dimensional metal porous body in the preparation of a positive electrode for alkaline secondary battery includes nickel hydroxide particles and a coating layer made of a cobalt compound and formed on a surface of the nickel hydroxide particles, wherein when 10 mL of water is added to 10 g of the coated nickel hydroxide powder to prepare a suspension, a total amount of eluted ions except for oxonium ions, hydroxide ions, and carbonate ions in the suspension is 6.5 mmol/L or less. The coated nickel hydroxide powder obtained through a crystallization step, a coating step, and a washing step is dried in a drying step in a decarbonated atmosphere whose partial pressure of a carbon-containing gas is 15 Pa or less.Type: GrantFiled: October 24, 2013Date of Patent: October 6, 2020Assignee: Sumitomo Metal Mining Co., Ltd.Inventors: Kazuaki Okato, Tomomichi Nihei, Hideo Sasaoka
-
Patent number: 10770751Abstract: A compound of Formula 1: Li6+(4?a)x+c)M4+(2?x)Aa+xO(7?c)N?c??(1) wherein M is a tetravalent cationic element, A is a divalent or trivalent cationic element, N? is an anion having a valence of less than ?2, wherein when A is Y3+, In3+, Zn2+, or a combination thereof, 0.15<x?0.5, otherwise 0?x?0.5, 0?c?2, and ((4?a)x+c)>0.Type: GrantFiled: November 30, 2018Date of Patent: September 8, 2020Assignee: SAMSUNG ELECTRONICS CO., LTD.Inventors: Yan Wang, Lincoln Miara
-
Patent number: 10756344Abstract: A crystalline precursor compound is described for manufacturing a lithium transition metal based oxide powder usable as an active positive electrode material in lithium-ion batteries, the precursor having a general formula Li1?a ((Niz(Ni1/2 Mn1/2)y Cox)1?k Ak)1+a O2, wherein x+y+z=1, 0.1?x?0.4, 0.25?z?0.55, A is a dopant, 0?k?0.1, and 0.04?a?0.50, wherein the precursor has a crystalline size L expressed in nm, with 77?(67*z)?L?97?(67*z). Also a method is described for manufacturing a positive electrode material having a general formula Li1?a? ((Niz (Ni1/2 Mn1/2)y Cox)1?k Ak)1?a? O2, wherein x+y+z=1, 0.1?x?0.4, 0.25?z?0.55, A is a dopant, 0?k?0.1, and 0.01?a??0.10 by sintering the crystalline precursor compound in an oxidizing atmosphere at a temperature T between 800 and 1000° C., for a time t between 6 and 36 hrs.Type: GrantFiled: August 25, 2016Date of Patent: August 25, 2020Assignees: Umicore, Umicore Korea Ltd.Inventors: Jens Paulsen, JiHye Kim, Jin-Doo Oh, Jing Zhang
-
Patent number: 10629903Abstract: The present invention relates to a method for preparing a lithium composite oxide and a lithium composite oxide prepared thereby and, more specifically, to: a method for preparing a lithium composite oxide, capable of preparing a lithium-ion secondary battery with high capacity by adjusting the amount of a basic solution added according to the nickel content during the preparation of a lithium composite oxide through a co-precipitation reaction, thereby adjusting the pH of the reactor, and thus improving the particle density and increasing the tap density, and a lithium composite oxide prepared thereby.Type: GrantFiled: July 31, 2014Date of Patent: April 21, 2020Assignee: IUCF-HYU (INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY)Inventors: Yang-Kook Sun, Sung-June Youn
-
Patent number: 10511020Abstract: An objective of the present invention is to provide a non-aqueous electrolyte secondary battery positive electrode active material formed from a lithium-nickel composite oxide which, while retaining high capacity and a high level of safety, has an excellent cycle characteristic by controlling reaction resistance and a method for producing it. [Solution] A lithium-nickel composite oxide is produced by steps (a) to (c) described below: (a) nickel hydroxide and/or nickel oxyhydroxide in a prescribed composition are sintered in a non-reducing atmosphere having 850° C. or lower to give nickel oxide; (b) after the nickel oxide and a lithium compound are mixed in a prescribed molar ratio, the mixture is sintered in an oxygen atmosphere at a temperature of 650 to 850° C.Type: GrantFiled: October 15, 2013Date of Patent: December 17, 2019Assignees: SUMITOMO METAL MINING CO., LTD., SANYO ELECTRIC CO., LTD.Inventors: Shin Imaizumi, Hideo Sasaoka, Shinichi Yasuda, Yutaka Kawatate, Takahiro Sakamoto
-
Patent number: 10351440Abstract: LiCoO2 material comprises LiCoO2 particles obtainable by a process in which Co(OH)2 particles comprising essentially octahedral shape particles, or Co3O4 particles obtained from Co(OH)2 comprising essentially octahedral shape particles, or Co3O4 particles comprising essentially octahedral shape particles and lithium salt are heated. Also disclosed are Co(OH)2 particles and the Co3O4 particles. The LiCoO2 material can be used especially as a cathode material in Li-ion batteries.Type: GrantFiled: September 15, 2016Date of Patent: July 16, 2019Assignee: Freeport Colbalt OyInventors: Aki Vanhatalo, Marten Eriksson, Janne Niittykoski
-
Patent number: 10347914Abstract: The purpose of the present invention is to provide a positive-electrode active material for non-aqueous electrolyte secondary batteries that is capable of achieving both a high capacity and a high output. This positive-electrode active material contains a lithium-nickel composite oxide represented by the general formula: LibNi1-x-yCoxMyO2 wherein M represents at least one element selected from Al, Ti, Mn and W, b is 0.95?b?1.03, x is 0<x?0.15, y is 0<y?0.07, and x and y is x+y?0.16, wherein c-axis length of the lithium-nickel composite oxide is 14.185 angstrom or greater as determined by a Rietveld analysis of X-ray diffraction.Type: GrantFiled: July 9, 2018Date of Patent: July 9, 2019Assignee: SUMITOMO METAL MINING CO., LTD.Inventors: Tomoko Nakayama, Masanori Takagi, Kensaku Mori
-
Patent number: 10193132Abstract: A method of producing submicrometer- to micrometer-sized spherical particles, the method comprising dissolving a lithium salt and a metal salt in water or alcohol forming a precursor solution, spraying the precursor solution to form fine aerosolized droplets, flowing the aerosolized droplets into a pyro lysis flame producing submicrometer- to micrometer-sized spherical particles. The submicrometer- to micrometer-sized spherical lithium-metal oxide powders produced are cathode materials for Li-ion batteries.Type: GrantFiled: August 2, 2011Date of Patent: January 29, 2019Assignee: Washington UniversityInventors: Richard Louis Axelbaum, Xiaofeng Zhang
-
Patent number: 10193152Abstract: A lithium ion secondary battery including: a cathode including a plurality cathode active material particles; an electrolyte; and an anode, wherein a cathode active material particle of the plurality of cathode active material particles has a plate-shaped crystal structure having an aspect ratio of 2 to 1000, wherein a major surface in at least one direction of the plate-shaped crystal structure is a 111 face, wherein the cathode active material particle also has a spinel-type crystal structure, and wherein the cathode active material particle has a composition represented by the formula LiCo2-xNixO4, wherein 0<x<2.Type: GrantFiled: September 9, 2016Date of Patent: January 29, 2019Assignees: SAMSUNG ELECTRONICS CO., LTD., TOHOKU TECHNO ARCH CO., LTD.Inventors: Itaru Honma, Murukanahally Kempaiah Devaraju, Yuichi Aihara, Seitaro Ito
-
Patent number: 10177366Abstract: High purity lithium and associated products are provided. In a general embodiment, the present disclosure provides a lithium metal product in which the lithium metal is obtained using a selective lithium ion conducting layer. The selective lithium ion conducting layer includes an active metal ion conducting glass or glass ceramic that conducts only lithium ions. The present lithium metal products produced using a selective lithium ion conducting layer advantageously provide for improved lithium purity when compared to commercial lithium metal. Pursuant to the present disclosure, lithium metal having a purity of at least 99.96 weight percent on a metals basis can be obtained.Type: GrantFiled: May 20, 2016Date of Patent: January 8, 2019Assignee: ALPHA-EN CORPORATIONInventors: Lawrence Ralph Swonger, Emilie Bodoin
-
Patent number: 9923198Abstract: A cathode active material including a layered lithium metal composite oxide including a first lithium metal oxide and a second lithium metal oxide having different crystal structures, and a third lithium metal oxide which is incapable of intercalating and deintercalating lithium in a charge and discharge voltage range of about 2.0 volts to about 4.7 volts versus lithium Li/Li+. Also, a cathode and a lithium battery including the cathode active material, and a method of preparing the cathode active material.Type: GrantFiled: August 3, 2015Date of Patent: March 20, 2018Assignees: SAMSUNG ELECTRONICS CO., LTD., SAMSUNG SDI CO., LTD.Inventors: Ryounghee Kim, Byungjin Choi, Donghan Kim, Jinhwan Park
-
Patent number: 9601770Abstract: Disclosed are a transition metal precursor for preparation of a lithium composite transition metal oxide, the transition metal precursor including a composite transition metal compound represented by Formula 1 below and a hydrocarbon compound, and a method of preparing the same: MnaMb(OH1-x)2??(1) wherein M is at least two selected from the group consisting of Ni, Co, Mn, Al, Cu, Fe, Mg, B, Cr, and second period transition metals; 0.4?a?1; 0?b?0.6; a+b?1; and 0?x?0.5, in which the transition metal precursor includes a particular composite transition metal compound and a hydrocarbon compound, and thus, when a lithium composite transition metal oxide is prepared using the same, carbon may be present in lithium transition metal oxide particles and/or on surfaces thereof, whereby a secondary battery including the lithium composite transition metal oxide exhibits excellent rate characteristics and long lifespan.Type: GrantFiled: October 2, 2014Date of Patent: March 21, 2017Assignee: LG Chem, Ltd.Inventors: Byung Chun Park, Sun Sik Shin, Sang Min Park, Ho Suk Shin, Hye Lim Jeon, Bo Ram Lee
-
Patent number: 9577256Abstract: An electrode mixture containing a particulate electrode active material, an electrically conductive material and a binder, wherein the electrode active material comprises a particulate core material and a coating material adhering in the form of particles or a layer to the surface of the core material, the core material is obtained by a method comprising a step of coprecipitating two or more transition metal elements, and the binder comprises a water-soluble macromolecule or a water-dispersible macromolecule or both. An electrode comprising the electrode mixture and an electrode collector. An electrode mixture paste containing the electrode mixture and water. A nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode and an electrolyte, wherein the positive electrode is the electrode.Type: GrantFiled: June 2, 2010Date of Patent: February 21, 2017Assignee: SUMITOMO CHEMICAL COMPANY, LIMITEDInventors: Jun-ichi Kageura, Takitaro Yamaguchi
-
Patent number: 9450222Abstract: Provided is an electric storage device provided with: a positive electrode including a positive electrode substrate and a positive electrode mixture layer, the positive electrode mixture layer being formed on the positive electrode substrate and containing a positive electrode active material; a negative electrode including a negative electrode substrate and a negative electrode mixture layer, the negative electrode mixture layer being formed on the negative electrode substrate and containing a negative electrode active material; and a separator disposed between the positive electrode and the negative electrode. In the electric storage device, the separator yields a triple value of standard deviation of local air resistance, as measured within a 5-mm diameter circle, of at least 20 seconds/10 cc but not more than 350 seconds/10 cc.Type: GrantFiled: September 26, 2013Date of Patent: September 20, 2016Assignee: GS Yuasa International Ltd.Inventors: Akihiko Miyazaki, Sumio Mori
-
Patent number: 9028710Abstract: The invention is directed to a pulverulent compound of the formula NiaM1bM2cOx(OH)y where M1 is at least one element selected from the group consisting of Fe, Co, Zn, Cu and mixtures thereof, M2 is at least one element selected from the group consisting of Mn, Al, Cr, B, Mg, Ca, Sr, Ba, Si and mixtures thereof, 0.3?a?0.83, 0.1?b?0.5, 0.01?c?0.5, 0.01?x?0.99 and 1.01?y?1.99, wherein the ratio of tapped density measured in accordance with ASTM B 527 to the D50 of the particle size distribution measured in accordance with ASTM B 822 is at least 0.2 g/cm3·?m. The invention is also directed to a method for the production of the pulverulent compound and the use as a precursor material for producing lithium compounds for use in lithium secondary batteries.Type: GrantFiled: July 23, 2008Date of Patent: May 12, 2015Assignee: H.C. Starck GmbHInventors: Matthias Jahn, Gerd Maikowske, Stefan Malcus, Juliane Meese-Marktscheffel, Armin Olbrich, Rüdiger Zertani
-
Patent number: 9028726Abstract: The present invention provides a sputtering target suitable for producing an amorphous transparent conductive film which can be formed without heating a substrate and without feeding water during the sputtering; which is easily crystallized by low-temperature annealing; and which has low resistivity after the crystallization. An oxide sintered compact containing an indium oxide as a main component, while containing tin as a first additive element, and one or more elements selected from germanium, nickel, manganese, and aluminum as a second additive element, with the content of tin which is the first additive element being 2-15 atom % relative to the total content of indium and tin, and the total content of the second additive element being 0.1-2 atom % relative to the total content of indium, tin and the second additive element.Type: GrantFiled: September 18, 2009Date of Patent: May 12, 2015Assignee: JX Nippon Mining & Metals CorporationInventors: Masakatsu Ikisawa, Masataka Yahagi
-
Publication number: 20150104644Abstract: To provide metal-containing trimanganese tetraoxide combined particles with which a metal-substituted lithium manganese oxide excellent as a cathode material for a lithium secondary battery can be obtained, and their production process. Metal-containing trimanganese tetraoxide combined particles containing a metal element (excluding lithium and manganese). Such metal-containing trimanganese tetraoxide combined particles can be obtained by a production process comprising a crystallization step of crystalizing a metal-substituted trimanganese tetraoxide not by means of metal-substituted manganese hydroxide from a manganese salt aqueous solution containing manganese ions and metal ions other than manganese.Type: ApplicationFiled: March 29, 2013Publication date: April 16, 2015Applicant: TOSOH CORPORATIONInventors: Eiichi Iwata, Miki Yamashita, Yasuhiro Fujii
-
Publication number: 20150090927Abstract: Disclosed are a cathode active material including a lithium transition metal oxide based on at least one transition metal selected from the group consisting of Ni, Mn and Co, wherein at least one hetero element selected from the group consisting of Ti, Co, Al, Cu, Fe, Mg, B, Cr, Bi, Zn and Zr is located at a surface portion of or inside the lithium transition metal oxide, and a secondary battery including the same. The cathode active material according to the present invention includes predetermined hetero elements at a surface thereof and therein, and, as such, a secondary battery based on the cathode active material may exhibit excellent high-speed charge characteristics and lifespan characteristics.Type: ApplicationFiled: December 3, 2014Publication date: April 2, 2015Applicant: LG CHEM, LTD.Inventors: Byung Chun Park, Seong Hoon Kang, Minsuk Kang, Wang Mo Jung, Ho Suk Shin, Sang Min Park, Geungi Min
-
Patent number: 8992794Abstract: A method for preparing a layered oxide cathode using a two step calcination procedure, wherein the first step includes pre-calcination utilizing a rotary calciner.Type: GrantFiled: June 24, 2011Date of Patent: March 31, 2015Assignee: BASF CorporationInventors: Ivan Petrovic, Anthony Thurston, Stephen Sheargold
-
Patent number: 8980475Abstract: Process for preparing lithium mixed metal oxides which comprise essentially lithium, manganese, cobalt and nickel as metal atoms and have a stoichiometric ratio of lithium to the total transition metals of greater than 1, which comprises a) the preparation of a mixture designated as intermediate (B) which comprises essentially lithium-comprising mixed metal hydroxides and lithium-comprising mixed metal oxide hydroxides, where manganese, cobalt and nickel are comprised in the ratio (1-a-b):a:b and the oxidation state averaged over all ions of manganese, cobalt and nickel is at least 4-1.75a-1.75b, where 0?a?0.5 and 0.1?b?0.8, by a thermal treatment carried out with continual mixing and in the presence of oxygen of a mixture (A) comprising at least one transition metal compound and at least one lithium salt (L), during which L does not melt, and b) the thermal treatment carried out without mixing and in the presence of oxygen of the intermediate (B).Type: GrantFiled: June 23, 2011Date of Patent: March 17, 2015Assignee: BASF SEInventors: Simon Schroedle, Hartmut Hibst, Jordan Keith Lampert, Mark Schweter, Ivan Petrovic
-
Publication number: 20150037676Abstract: Provided is a cathode active material for a non-aqueous electrolyte secondary battery that has a uniform particle size and high packing density, and that is capable of increased battery capacity and improved coulomb efficiency. When producing a nickel composite hydroxide that is a precursor to the cathode active material by supplying an aqueous solution that includes at least a nickel salt, a neutralizing agent and a complexing agent into a reaction vessel while stirring and performing a crystallization reaction, a nickel composite hydroxide slurry is obtained while controlling the ratio of the average particle size per volume of secondary particles of nickel composite hydroxide that is generated inside the reaction vessel with respect to the average particle size per volume of secondary particles of nickel composite hydroxide that is finally obtained so as to be 0.2 to 0.Type: ApplicationFiled: February 22, 2013Publication date: February 5, 2015Applicant: Sumitomo Metal Mining Co., Ltd.Inventors: Mitsuru Yamauchi, Kazuomi Ryoshi, Kensaku Mori
-
Patent number: 8932545Abstract: A method is provided for the synthesis of a mesoporous lithium transition metal compound, the method comprising the steps of (i) reacting a lithium salt with one or more transition metal salts in the presence of a surfactant, the surfactant being present in an amount sufficient to form a liquid crystal phase in the reaction mixture (ii) heating the reaction mixture so as to form a sol-gel and (iii) removing the surfactant to leave a mesoporous product. The mesoporous product can be an oxide, a phosphate, a borate or a silicate and optionally, an additional phosphate, borate or silicate reagent can be added at step (i). The reaction mixture can comprise an optional chelating agent and preferably, the reaction conditions at steps (i) and (ii) are controlled so as to prevent destabilization of the liquid crystal phase. The invention is particularly suitable for producing mesoporous lithium cobalt oxide and lithium iron phosphate.Type: GrantFiled: October 19, 2009Date of Patent: January 13, 2015Assignee: Qinetiq LimitedInventors: Gary Owen Mepsted, Emmanuel Imasuen Eweka
-
Publication number: 20150010819Abstract: A cathode active material including at least two agglomerates of primary particles and a cathode and a lithium secondary battery containing the same are disclosed. In the cathode active material, a secondary particle includes a nickel-based lithium transition metal oxide, an average particle diameter of each primary particle is in a range from about 2 to about 3 ?m, and an average particle diameter of the secondary particle is in a range from about 5 to about 8 ?m.Type: ApplicationFiled: December 10, 2013Publication date: January 8, 2015Applicant: Samsung SDI Co., Ltd.Inventors: Young-Hun LEE, Soon-Rewl LEE, Na-Ri PARK, Young-Ki KIM, Ick-Kyu CHOI, Yong-Chul PARK, Hong-Kyu CHOI
-
Patent number: 8926860Abstract: The present invention relates to a cathode active material with whole particle concentration gradient for a lithium secondary battery, a method for preparing same, and a lithium secondary battery having same, and more specifically, to a composite cathode active material, a method for manufacturing same, and a lithium secondary battery having same, the composite cathode active material having excellent lifetime characteristics and charge/discharge characteristics through the stabilization of crystal structure as the concentration of a metal comprising the cathode active material shows concentration gradient in the whole particle, and having thermostability even in high temperatures.Type: GrantFiled: December 27, 2011Date of Patent: January 6, 2015Assignee: Industry-University Cooperation Foundation Hanyang UniversityInventors: Yang-Kook Sun, Hyung Joo Noh
-
Patent number: 8911902Abstract: A nickel (Ni)-based positive electrode active material, a method of preparing the same, and a lithium battery using the Ni-based positive electrode active material.Type: GrantFiled: May 6, 2011Date of Patent: December 16, 2014Assignee: Samsung SDI Co., Ltd.Inventors: Do-Hyung Park, Seon-Young Kwon, Min-Han Kim, Ji-Hyun Kim, Chang-Hyuk Kim, Jeong-Seop Lee, Yoon-Chang Kim
-
Patent number: 8900537Abstract: A template-free reverse micelle (RM) based method is used to synthesize pyrochlore nanostructures having photocatalytic activity. In one embodiment, the method includes separately mixing together a first acid stabilized aqueous solution including pyrochlore precursor A and a second acid stabilized aqueous solution including pyrochlore precursor B with an organic solution including a surfactant to form an oil-in-water emulsion. Next, equimolar solutions of the first and second acid stabilized oil-in-water emulsions are mixed together. Then, the mixture of the first and second acid stabilized oil-in-water emulsion is treated with a base to produce a precipitate including pyrochlore precursors A and B. After which, the precipitate is dried to remove volatiles. The precipitate is then calcined in the presence of oxygen to form a pyrochlore nanostructure, such as a bismuth titanate (Bi2Ti2O7) pyrochlore nanorod. The method of synthesizing the pyrochlore nanorod is template-free.Type: GrantFiled: May 11, 2011Date of Patent: December 2, 2014Assignee: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, RenoInventors: Vaidyanathan Subramanian, Sankaran Murugesan
-
Publication number: 20140326918Abstract: A system and method thereof are provided for multi-stage processing of one more precursor compounds into a battery material. The system includes a mist generator, a drying chamber, one or more gas-solid separators, and one or more in-line reaction modules comprised of one or more gas-solid feeders, one or more gas-solid separators, and one or more reactors. Various gas-solid mixtures are formed within the internal plenums of the drying chamber, the gas-solid feeders, and the reactors. In addition, heated air or gas is served as the energy source within the processing system and as the gas source for forming the gas-solid mixtures to facilitate reaction rate and uniformity of the reactions therein. Precursor compounds are continuously delivered into the processing system and processed in-line through the internal plenums of the drying chamber and the reaction modules into final reaction particles useful as a battery material.Type: ApplicationFiled: May 23, 2013Publication date: November 6, 2014Inventor: LIang-Yuh Chen
-
Patent number: 8877382Abstract: A method for preparing a positive active material for a rechargeable lithium battery includes: a) providing a furnace and a crucible that is included in the furnace; b) putting a mixture of a composite metal precursor and a lithium compound into the crucible; and c) preparing a positive active material for a rechargeable lithium battery by firing the mixture in the crucible, wherein during the process b), the mixture in the crucible is positioned so that a minimum distance from a predetermined position inside the mixture to an exterior of the mixture in the crucible is about 5 cm or less. A rechargeable lithium made by this method is disclosed.Type: GrantFiled: May 24, 2011Date of Patent: November 4, 2014Assignee: Samsung SDI Co., Ltd.Inventors: Min-Han Kim, Do-Hyung Park, Seon-Young Kwon, Yu-Mi Song, Ji-Hyun Kim, Kyoung-Hyun Kim
-
Patent number: 8877090Abstract: There is provided a novel positive electrode active material for a secondary battery. A positive electrode active material for a secondary battery according to the present exemplary embodiment is represented by the following formula (I):Lia(NixCryMn2-x-y-zM1z)O4(I) wherein 0<x, 0<y, 0<z, x+y+z<2, and 0?a?2; and M1 contains at least one selected from the group consisting of Na and Mg. A positive electrode for a secondary battery according to the present exemplary embodiment has the positive electrode active material for a secondary battery according to the present exemplary embodiment.Type: GrantFiled: November 16, 2011Date of Patent: November 4, 2014Assignee: Nec CorporationInventors: Takehiro Noguchi, Hideaki Sasaki, Makiko Uehara
-
Publication number: 20140272132Abstract: A method of forming a powder MjXp wherein Mj is a positive ion or several positive ions selected from alkali metal, alkaline earth metal or transition metal; and Xp is a monoatomic or a polyatomic anion selected from Groups IIIA, IVA, VA, VIA or VIIA; called complexometric precursor formulation or CPF. The method includes the steps of: providing a first reactor vessel with a first gas diffuser and an first agitator; providing a second reactor vessel with a second gas diffuser and a second agitator; charging the first reactor vessel with a first solution comprising a first salt of Mj; introducing gas into the first solution through the first gas diffuser, charging the second reactor vessel with a second solution comprising a salt of Mp; adding the second solution to the first solution to form a complexcelle; drying the complexcelle, to obtain a dry powder; and calcining the dried powder of said MjXp.Type: ApplicationFiled: March 15, 2013Publication date: September 18, 2014Inventor: Perfect Lithium Corp.
-
Publication number: 20140272568Abstract: A compound MjXp which is particularly suitable for use in a battery prepared by the complexometric precursor formulation methodology wherein: Mj is at least one positive ion selected from the group consisting of alkali metals, alkaline earth metals and transition metals and j is an integer representing the moles of said positive ion per moles of said MjXp; and Xp, a negative anion or polyanion from Groups IIIA, IV A, VA, VIA and VIIA and may be one or more anion or polyanion and p is an integer representing the moles of said negative ion per moles of said MjXp.Type: ApplicationFiled: March 15, 2013Publication date: September 18, 2014Applicant: PERFECT LITHIUM CORP.Inventor: PERFECT LITHIUM CORP.
-
Publication number: 20140272579Abstract: A compound MjXp which is particularly suitable for use in a battery prepared by the complexometric precursor formulation methodology wherein: Mj is at least one positive ion selected from the group consisting of alkali metals, alkaline earth metals and transition metals and j is an integer representing the moles of said positive ion per moles of said MjXp; and Xp, a negative anion or polyanion from Groups IIIA, IV A, VA, VIA and VIIA and may be one or more anion or polyanion and p is an integer representing the moles of said negative ion per moles of said MjXp.Type: ApplicationFiled: March 15, 2013Publication date: September 18, 2014Applicant: PERFECT LITHIUM CORP.Inventor: Teresita Frianeza-Kullberg
-
Patent number: 8815204Abstract: Provided is a method for preparing a lithium mixed transition metal oxide, comprising subjecting Li2CO3 and a mixed transition metal precursor to a solid-state reaction under an oxygen-deficient atmosphere with an oxygen concentration of 10 to 50% to thereby prepare a powdered lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification. Therefore, since the high-Ni lithium mixed transition metal oxide having a given composition can be prepared by a simple solid-state reaction in air, using a raw material that is cheap and easy to handle, the present invention enables industrial-scale production of the lithium mixed transition metal oxide with significantly decreased production costs and high production efficiency.Type: GrantFiled: August 22, 2013Date of Patent: August 26, 2014Assignee: LG Chem, Ltd.Inventors: Hong Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
-
Publication number: 20140225031Abstract: A lithium-rich lithium metal complex oxide contains at least 50 mol % of Mn with respect to a total amount of metals other than lithium, and at least one other metal. The lithium metal complex oxide has a tapped density in a range of 1.0 g/ml to 2.0 g/ml.Type: ApplicationFiled: September 26, 2012Publication date: August 14, 2014Inventors: Taiki Yasuda, Takaaki Masukawa
-
Patent number: 8801960Abstract: Because of the composition represented by General Formula: Li1+x+?Ni(1?x?y+?)/2Mn(1?x?y??)/2MyO2 (where 0?x?0.05, ?0.05?x+??0.05, 0?y?0.4; ?0.1???0.1 (when 0?y?0.2) or ?0.24???0.24 (when 0.2<y?0.4); and M is at least one element selected from the group consisting of Ti, Cr, Fe, Co, Cu, Zn, Al, Ge and Sn), a high-density lithium-containing complex oxide with high stability of a layered crystal structure and excellent reversibility of charging/discharging can be provided, and a high-capacity non-aqueous secondary battery excellent in durability is realized by using such an oxide for a positive electrode.Type: GrantFiled: January 31, 2008Date of Patent: August 12, 2014Assignee: Hitachi Maxell, Ltd.Inventors: Atsushi Ueda, Kazutaka Uchitomi, Shigeo Aoyama
-
Patent number: 8795897Abstract: Provided is a cathode active material containing a Ni-based lithium mixed transition metal oxide. More specifically, the cathode active material comprises the lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification, which is prepared by a solid-state reaction of Li2CO3 with a mixed transition metal precursor under an oxygen-deficient atmosphere, and has a Li2CO3 content of less than 0.07% by weight of the cathode active material as determined by pH titration. The cathode active material in accordance with the present invention and substantially free of water-soluble bases such as lithium carbonates and lithium sulfates and therefore has excellent high-temperature and storage stabilities and a stable crystal structure.Type: GrantFiled: April 25, 2013Date of Patent: August 5, 2014Assignee: LG Chem, Ltd.Inventors: Hong Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
-
Publication number: 20140204444Abstract: Multi-layer devices comprising a layer of an electrochromic lithium nickel oxide composition on a first substrate, the lithium nickel oxide composition comprising lithium, nickel and a Group 4 metal selected from titanium, zirconium, hafnium and a combination thereof.Type: ApplicationFiled: January 21, 2014Publication date: July 24, 2014Applicant: Kinestral Technologies, Inc.Inventors: Hye Jin CHOI, Mark BAILEY, John David BASS, Stephen Winthrop von KUGELGEN, Eric LACHMAN, Howard W. TURNER, Julian P. BIGI
-
Publication number: 20140204445Abstract: Multi-layer devices comprising a layer of an electrochromic lithium nickel oxide composition on a first substrate, the lithium nickel oxide composition comprising lithium, nickel and a Group 5 metal selected from niobium, tantalum and a combination thereof.Type: ApplicationFiled: January 21, 2014Publication date: July 24, 2014Applicant: Kinestral Technologies, Inc.Inventors: Hye Jin CHOI, Mark BAILEY, John David BASS, Stephen Winthrop von KUGELGEN, Eric LACHMAN, Howard W. TURNER
-
Patent number: 8784770Abstract: Provided is a lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 (M, x and y are as defined in the specification) having mixed transition metal oxide layers (“MO layers”) comprising Ni ions and lithium ions, wherein lithium ions intercalate into and deintercalate from the MO layers and a portion of MO layer-derived Ni ions are inserted into intercalation/deintercalation layers of lithium ions (“reversible lithium layers”) thereby resulting in the interconnection between the MO layers. The lithium mixed transition metal oxide of the present invention has a stable layered structure and therefore exhibits improved stability of the crystal structure upon charge/discharge. In addition, a battery comprising such a cathode active material can exhibit a high capacity and a high cycle stability.Type: GrantFiled: March 13, 2013Date of Patent: July 22, 2014Assignee: LG Chem, Ltd.Inventors: Hong Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
-
Patent number: 8765305Abstract: The present invention relates to a cathode active material for a lithium secondary battery and a process for preparing the same. In accordance with the present invention, the cathode active material having a high packing density was designed and synthesized and thus provided is a cathode active material for a lithium secondary battery exhibiting structural stability such as improved characteristics for charge/discharge, service life and high-rate and thermal stability, by modifying surface of the electrode active material with amphoteric or basic compounds capable of neutralizing acid produced around the cathode active material.Type: GrantFiled: November 17, 2004Date of Patent: July 1, 2014Assignee: Industry-University Cooperation Foundation, Hanyang UniversityInventors: Yang Kook Sun, Myoung Hun Lee, Yoon Jung Kang, Gil Ho Kim
-
Publication number: 20140178739Abstract: Disclosed is a positive electrode for a rechargeable lithium battery that includes a positive active material including lithium-nickel cobalt manganese composite metal oxide, wherein the positive active material has an increase rate of a specific surface area of from about 66.4% to about 77.5% after pressing relative to a specific surface area of the positive active material before pressing, and the positive electrode has an active mass density of from about 2.514 g/cc to about 3.389 g/cc.Type: ApplicationFiled: March 14, 2013Publication date: June 26, 2014Applicant: SAMSUNG SDI CO., LTD.Inventor: Tae-Jin Jung
-
Patent number: 8758455Abstract: A method of producing a layered structure lithium mixed metal oxide, including a step of calcining a lithium mixed metal oxide raw material containing a transition metal element and a lithium element in a molar ratio of the lithium element to the transition metal element of 1 or more and 2 or less, in the presence of an inactive flux containing one or more compounds selected from the group consisting of a carbonate of M, a sulfate of M, a nitrate of M, a phosphate of M, a hydroxide of M, a molybdate of M, and a tungstate of M, wherein M represents one or more elements selected from the group consisting of Na, K, Rb, Cs, Ca, Mg, Sr and Ba.Type: GrantFiled: March 18, 2010Date of Patent: June 24, 2014Assignee: Sumitomo Chemical Company, LimitedInventors: Cedric Pitteloud, Yoshinari Sawabe, Satoshi Shimano
-
Publication number: 20140158932Abstract: The present disclosure relates to a positive electrode active material precursor for a lithium secondary battery, a positive electrode active material manufactured by using thereof, and a lithium secondary battery comprising the same. More specifically, it relates to a positive electrode active material precursor for a lithium secondary battery as a secondary particle comprising transition metals, and formed by gathering of a plurality of primary particles having different a-axis direction length to c-axis direction length ratio, wherein the a-axis direction length to c-axis direction length ratio of the primary particle making up the secondary particle is increased from the center to the surface of the secondary particle; a positive electrode active material; and a lithium secondary battery comprising the same.Type: ApplicationFiled: June 10, 2013Publication date: June 12, 2014Applicant: IUCF-HYU (INDUSTRY-UNIVERSITY COOPERATION FOUNDATION HANYANG UNIVERSITY)Inventors: Yang-Kook Sun, Hyung-Joo Noh, Jang-Wook Park
-
Publication number: 20140127582Abstract: The present invention provides a lithium secondary battery having a great output power in a low SOC range and a positive electrode active material for use in the battery The battery comprises a positive electrode, a negative electrode and a non-aqueous electrolyte. The positive electrode comprises a positive electrode active material in a form of secondary particles as aggregates of primary particles of a lithium transition metal oxide. The positive electrode active material comprises at least one species of Ni, Co and Mn, and further comprises W and Mg. The W is present, concentrated on surfaces of the primary particles while the Mg is present throughout the primary particles. The Mg content in the positive electrode active material is higher than 50 ppm relative, to the total amount of the active material based on the mass.Type: ApplicationFiled: May 31, 2011Publication date: May 8, 2014Inventor: Hiroki Nagai