And Alkali Metal Or Alkaline Earth Metal Containing Patents (Class 423/594.6)
  • Patent number: 11482704
    Abstract: A cobalt oxide for a lithium secondary battery, a method of preparing the cobalt oxide; a lithium cobalt oxide for a lithium secondary battery formed from the cobalt oxide; and a lithium secondary battery having a positive electrode including the lithium cobalt oxide, the cobalt oxide having a tap density of about 2.8 g/cc to about 3.0 g/cc, and an intensity ratio of about 0.8 to about 1.2 of a second peak at 2? of about 31.3±1° to a first peak at 2? of about 19±1° in X-ray diffraction spectra, as analyzed by X-ray diffraction.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: October 25, 2022
    Assignee: SAMSUNG SDI CO., LTD.
    Inventors: Junseok Park, Seonyoung Kwon, Jihyun Kim, Jinhwa Kim, Dohyung Park, Daehoe Lee
  • Patent number: 11038173
    Abstract: A lithium ion secondary battery of the present disclosure is provided with a positive electrode, a negative electrode, a separator, and a nonaqueous electrolyte containing lithium ions.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: June 15, 2021
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Kazuteru Umetsu, Hitoshi Morita, Nobuhiro Okada, Keita Kusuzaka, Takeshi Kamijo
  • Patent number: 10840501
    Abstract: The present disclosure provides a positive electrode additive and a preparation method thereof, a positive electrode plate and a lithium-ion secondary battery. The positive electrode additive comprises a modified lithium carbonate. The modified lithium carbonate comprises a lithium carbonate particle and a polymer coating. The polymer coating coats a surface of the lithium carbonate particle and comprises a polymer. The positive electrode additive of the present disclosure has low cost and simple preparation method, when the positive electrode additive is applied in lithium-ion secondary battery, it can significantly improve lithium-ion secondary battery safety performance without affecting electrical performance of the lithium-ion secondary battery.
    Type: Grant
    Filed: February 4, 2019
    Date of Patent: November 17, 2020
    Assignee: CONTEMPORARY AMPEREX TECHNOLOGY CO., LIMITED
    Inventors: Xiang Hong, Lingyan Jiang
  • Patent number: 10840511
    Abstract: Provided is a precursor of a positive electrode active material for non-aqueous electrolyte secondary batteries which allows a non-aqueous electrolyte secondary battery to have excellent battery characteristics. A manganese composite hydroxide is obtained by adjusting the pH value of an aqueous solution for nucleation containing cobalt and/or manganese to 7.5 to 11.1 on the basis of a liquid temperature of 25° C. to form plate-shaped crystal nuclei, and adjusting the pH value of a slurry for particle growth containing the plate-shaped crystal nuclei to 10.5 to 12.5 on the basis of a liquid temperature of 25° C., and supplying a mixed aqueous solution including a metal compound containing at least manganese to the slurry, thereby performing particle growth of the plate-shaped crystal nuclei.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: November 17, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kazuomi Ryoshi, Kensaku Mori
  • Publication number: 20150148218
    Abstract: Rapid, reversible redox activity may be accomplished at significantly reduced temperatures, as low as about 200° C., from epitaxially stabilized, oxygen vacancy ordered SrCoO2.5 and thermodynamically unfavorable perovskite SrCoO3-?. The fast, low temperature redox activity in SrCoO3-? may be attributed to a small Gibbs free energy difference between the two topotactic phases. Epitaxially stabilized thin films of strontium cobaltite provide a catalyst adapted to rapidly transition between oxidation states at substantially low temperatures. Methods of transitioning a strontium cobaltite catalyst from a first oxidation state to a second oxidation state are described.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Inventors: Ho Nyung Lee, Hyoungjeen Jeen, Woo Seok Choi, Michael Biegalski, Chad M. Folkman, I-Cheng Tung, Dillon D. Fong, John W. Freeland, Dongwon Shin, Hiromichi Ohta, Matthew F. Chisholm
  • Patent number: 9028710
    Abstract: The invention is directed to a pulverulent compound of the formula NiaM1bM2cOx(OH)y where M1 is at least one element selected from the group consisting of Fe, Co, Zn, Cu and mixtures thereof, M2 is at least one element selected from the group consisting of Mn, Al, Cr, B, Mg, Ca, Sr, Ba, Si and mixtures thereof, 0.3?a?0.83, 0.1?b?0.5, 0.01?c?0.5, 0.01?x?0.99 and 1.01?y?1.99, wherein the ratio of tapped density measured in accordance with ASTM B 527 to the D50 of the particle size distribution measured in accordance with ASTM B 822 is at least 0.2 g/cm3·?m. The invention is also directed to a method for the production of the pulverulent compound and the use as a precursor material for producing lithium compounds for use in lithium secondary batteries.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: May 12, 2015
    Assignee: H.C. Starck GmbH
    Inventors: Matthias Jahn, Gerd Maikowske, Stefan Malcus, Juliane Meese-Marktscheffel, Armin Olbrich, Rüdiger Zertani
  • Publication number: 20150099076
    Abstract: A process for manufacturing a composite material comprising a functionalization of the substrate, which comprises treatment of said substrate with at least one first alcoholic solvent, functionalization of a first powder and formation of a first colloidal sol of said functionalized first powder in a second solvent, at least one application of a layer of said first colloidal sol of said first powder to the substrate, drying of said layer of said first colloidal sol and formation of a layer of first coating formed by said first colloidal sol, adherent to said substrate, by heating at a temperature above 50° C. and below 500° C.
    Type: Application
    Filed: May 16, 2013
    Publication date: April 9, 2015
    Applicant: PRAYON SA
    Inventors: Dimitri Liquet, Carlos Alberto Paez, Cedric Calberg, David Eskenazi, Jean-Paul Pirard, Benoit Heinrichs
  • Patent number: 8980475
    Abstract: Process for preparing lithium mixed metal oxides which comprise essentially lithium, manganese, cobalt and nickel as metal atoms and have a stoichiometric ratio of lithium to the total transition metals of greater than 1, which comprises a) the preparation of a mixture designated as intermediate (B) which comprises essentially lithium-comprising mixed metal hydroxides and lithium-comprising mixed metal oxide hydroxides, where manganese, cobalt and nickel are comprised in the ratio (1-a-b):a:b and the oxidation state averaged over all ions of manganese, cobalt and nickel is at least 4-1.75a-1.75b, where 0?a?0.5 and 0.1?b?0.8, by a thermal treatment carried out with continual mixing and in the presence of oxygen of a mixture (A) comprising at least one transition metal compound and at least one lithium salt (L), during which L does not melt, and b) the thermal treatment carried out without mixing and in the presence of oxygen of the intermediate (B).
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: March 17, 2015
    Assignee: BASF SE
    Inventors: Simon Schroedle, Hartmut Hibst, Jordan Keith Lampert, Mark Schweter, Ivan Petrovic
  • Publication number: 20150052739
    Abstract: Lithium metal oxides may be regenerated under ambient conditions from materials recovered from partially or fully depleted lithium-ion batteries. Recovered lithium and metal materials may be reduced to nanoparticles and recombined to produce regenerated lithium metal oxides. The regenerated lithium metal oxides may be used to produce rechargeable lithium ion batteries.
    Type: Application
    Filed: August 20, 2014
    Publication date: February 26, 2015
    Inventor: Nilanjan DEB
  • Patent number: 8932545
    Abstract: A method is provided for the synthesis of a mesoporous lithium transition metal compound, the method comprising the steps of (i) reacting a lithium salt with one or more transition metal salts in the presence of a surfactant, the surfactant being present in an amount sufficient to form a liquid crystal phase in the reaction mixture (ii) heating the reaction mixture so as to form a sol-gel and (iii) removing the surfactant to leave a mesoporous product. The mesoporous product can be an oxide, a phosphate, a borate or a silicate and optionally, an additional phosphate, borate or silicate reagent can be added at step (i). The reaction mixture can comprise an optional chelating agent and preferably, the reaction conditions at steps (i) and (ii) are controlled so as to prevent destabilization of the liquid crystal phase. The invention is particularly suitable for producing mesoporous lithium cobalt oxide and lithium iron phosphate.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: January 13, 2015
    Assignee: Qinetiq Limited
    Inventors: Gary Owen Mepsted, Emmanuel Imasuen Eweka
  • Patent number: 8926860
    Abstract: The present invention relates to a cathode active material with whole particle concentration gradient for a lithium secondary battery, a method for preparing same, and a lithium secondary battery having same, and more specifically, to a composite cathode active material, a method for manufacturing same, and a lithium secondary battery having same, the composite cathode active material having excellent lifetime characteristics and charge/discharge characteristics through the stabilization of crystal structure as the concentration of a metal comprising the cathode active material shows concentration gradient in the whole particle, and having thermostability even in high temperatures.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: January 6, 2015
    Assignee: Industry-University Cooperation Foundation Hanyang University
    Inventors: Yang-Kook Sun, Hyung Joo Noh
  • Patent number: 8911902
    Abstract: A nickel (Ni)-based positive electrode active material, a method of preparing the same, and a lithium battery using the Ni-based positive electrode active material.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: December 16, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Do-Hyung Park, Seon-Young Kwon, Min-Han Kim, Ji-Hyun Kim, Chang-Hyuk Kim, Jeong-Seop Lee, Yoon-Chang Kim
  • Publication number: 20140326918
    Abstract: A system and method thereof are provided for multi-stage processing of one more precursor compounds into a battery material. The system includes a mist generator, a drying chamber, one or more gas-solid separators, and one or more in-line reaction modules comprised of one or more gas-solid feeders, one or more gas-solid separators, and one or more reactors. Various gas-solid mixtures are formed within the internal plenums of the drying chamber, the gas-solid feeders, and the reactors. In addition, heated air or gas is served as the energy source within the processing system and as the gas source for forming the gas-solid mixtures to facilitate reaction rate and uniformity of the reactions therein. Precursor compounds are continuously delivered into the processing system and processed in-line through the internal plenums of the drying chamber and the reaction modules into final reaction particles useful as a battery material.
    Type: Application
    Filed: May 23, 2013
    Publication date: November 6, 2014
    Inventor: LIang-Yuh Chen
  • Patent number: 8877382
    Abstract: A method for preparing a positive active material for a rechargeable lithium battery includes: a) providing a furnace and a crucible that is included in the furnace; b) putting a mixture of a composite metal precursor and a lithium compound into the crucible; and c) preparing a positive active material for a rechargeable lithium battery by firing the mixture in the crucible, wherein during the process b), the mixture in the crucible is positioned so that a minimum distance from a predetermined position inside the mixture to an exterior of the mixture in the crucible is about 5 cm or less. A rechargeable lithium made by this method is disclosed.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: November 4, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Min-Han Kim, Do-Hyung Park, Seon-Young Kwon, Yu-Mi Song, Ji-Hyun Kim, Kyoung-Hyun Kim
  • Patent number: 8871673
    Abstract: Catalysts for the decomposition of N2O into nitrogen and oxygen in the gas phase, which comprises a porous support composed of polycrystalline or vitreous inorganic material, a cerium oxide functional layer applied thereto and a layer of oxidic cobalt-containing material applied thereto are described. The catalysts can be used, in particular, as secondary or tertiary catalysts in nitric acid plants.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: October 28, 2014
    Assignee: UHDE GmbH
    Inventors: Meinhard Schwefer, Rolf Siefert, Frank Seifert, Frank Froehlich, Wolfgang Burckhardt
  • Patent number: 8852740
    Abstract: An electrode active material including a lithium-transition metal complex oxide having a layered rock salt structure or spinel structure and a fluorine and nitrogen introduced therein. Also disclosed is an electrode active material production method including a nitrogen introduction step of synthesizing a lithium-transition metal complex oxide (c) having a layered rock salt structure or spinel structure and a fluorine and nitrogen introduced therein, by firing a material composition including a lithium-transition metal complex oxide (a) having a fluorine introduced therein and a nitriding agent (b) being represented by the formula (1) and being solid or liquid at ordinary temperature.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: October 7, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hideki Oki, Toshihiro Seguchi
  • Publication number: 20140294720
    Abstract: A LiCoO2 film-forming precursor solution is a precursor solution used to form a LiCoO2 film which is used as a positive electrode material of a thin film lithium secondary battery. In this LiCoO2 film-forming precursor solution, an organic lithium compound and an organic cobalt compound are dissolved in an organic solvent. In addition, the organic lithium compound is a lithium salt of a carboxylic acid represented by a formula CnH2n+1COOH (wherein, 2?n?8).
    Type: Application
    Filed: February 20, 2014
    Publication date: October 2, 2014
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Takashi Noguchi, Toshiaki Watanabe, Hideaki Sakurai, Nobuyuki Soyama
  • Publication number: 20140272568
    Abstract: A compound MjXp which is particularly suitable for use in a battery prepared by the complexometric precursor formulation methodology wherein: Mj is at least one positive ion selected from the group consisting of alkali metals, alkaline earth metals and transition metals and j is an integer representing the moles of said positive ion per moles of said MjXp; and Xp, a negative anion or polyanion from Groups IIIA, IV A, VA, VIA and VIIA and may be one or more anion or polyanion and p is an integer representing the moles of said negative ion per moles of said MjXp.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: PERFECT LITHIUM CORP.
    Inventor: PERFECT LITHIUM CORP.
  • Publication number: 20140272132
    Abstract: A method of forming a powder MjXp wherein Mj is a positive ion or several positive ions selected from alkali metal, alkaline earth metal or transition metal; and Xp is a monoatomic or a polyatomic anion selected from Groups IIIA, IVA, VA, VIA or VIIA; called complexometric precursor formulation or CPF. The method includes the steps of: providing a first reactor vessel with a first gas diffuser and an first agitator; providing a second reactor vessel with a second gas diffuser and a second agitator; charging the first reactor vessel with a first solution comprising a first salt of Mj; introducing gas into the first solution through the first gas diffuser, charging the second reactor vessel with a second solution comprising a salt of Mp; adding the second solution to the first solution to form a complexcelle; drying the complexcelle, to obtain a dry powder; and calcining the dried powder of said MjXp.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventor: Perfect Lithium Corp.
  • Publication number: 20140272579
    Abstract: A compound MjXp which is particularly suitable for use in a battery prepared by the complexometric precursor formulation methodology wherein: Mj is at least one positive ion selected from the group consisting of alkali metals, alkaline earth metals and transition metals and j is an integer representing the moles of said positive ion per moles of said MjXp; and Xp, a negative anion or polyanion from Groups IIIA, IV A, VA, VIA and VIIA and may be one or more anion or polyanion and p is an integer representing the moles of said negative ion per moles of said MjXp.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: PERFECT LITHIUM CORP.
    Inventor: Teresita Frianeza-Kullberg
  • Patent number: 8821766
    Abstract: The present invention aims at providing lithium manganate having a high output and an excellent high-temperature stability. The above aim can be achieved by lithium manganate particles having a primary particle diameter of not less than 1 ?m and an average particle diameter (D50) of kinetic particles of not less than 1 ?m and not more than 10 ?m, which are substantially in the form of single crystal particles and have a composition represented by the following chemical formula: Li1+xMn2-x-yYyO4 in which Y is at least one element selected from the group consisting of Al, Mg and Co; x and y satisfy 0.03?x?0.15 and 0.05?y?0.20, respectively, wherein the Y element is uniformly dispersed within the respective particles, and an intensity ratio of I(400)/I(111) thereof is not less than 33% and an intensity ratio of I(440)/I(111) thereof is not less than 16%.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: September 2, 2014
    Assignee: Toda Kogyo Corporation
    Inventors: Masayuki Uegami, Akihisa Kajiyama, Kazutoshi Ishizaki, Hideaki Sadamura
  • Patent number: 8815204
    Abstract: Provided is a method for preparing a lithium mixed transition metal oxide, comprising subjecting Li2CO3 and a mixed transition metal precursor to a solid-state reaction under an oxygen-deficient atmosphere with an oxygen concentration of 10 to 50% to thereby prepare a powdered lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification. Therefore, since the high-Ni lithium mixed transition metal oxide having a given composition can be prepared by a simple solid-state reaction in air, using a raw material that is cheap and easy to handle, the present invention enables industrial-scale production of the lithium mixed transition metal oxide with significantly decreased production costs and high production efficiency.
    Type: Grant
    Filed: August 22, 2013
    Date of Patent: August 26, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Hong Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
  • Patent number: 8801974
    Abstract: A method for making a composite of cobalt oxide is disclosed. An aluminum nitrate solution is provided. Lithium cobalt oxide particles are introduced into the aluminum nitrate solution. The lithium cobalt oxide particles are mixed with the aluminum nitrate solution to form a mixture. A phosphate solution is added into the mixture to react with the aluminum nitrate solution and form an aluminum phosphate layer on surfaces of the lithium cobalt oxide particles. The lithium cobalt oxide particles with the aluminum phosphate layer formed on the surfaces thereof are heat treated to form a lithium cobalt oxide composite. The lithium cobalt oxide composite is electrochemical lithium-deintercalated at a voltage of Vx, wherein 4.5V<Vx?5V to form a cobalt oxide. The present disclosure also relates to a cobalt oxide and a composite of cobalt oxide.
    Type: Grant
    Filed: October 26, 2011
    Date of Patent: August 12, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Jian-Jun Li, Xiang-Ming He, Li Wang, Dan Wang, Xian-Kun Huang, Chang-Yin Jiang
  • Patent number: 8801960
    Abstract: Because of the composition represented by General Formula: Li1+x+?Ni(1?x?y+?)/2Mn(1?x?y??)/2MyO2 (where 0?x?0.05, ?0.05?x+??0.05, 0?y?0.4; ?0.1???0.1 (when 0?y?0.2) or ?0.24???0.24 (when 0.2<y?0.4); and M is at least one element selected from the group consisting of Ti, Cr, Fe, Co, Cu, Zn, Al, Ge and Sn), a high-density lithium-containing complex oxide with high stability of a layered crystal structure and excellent reversibility of charging/discharging can be provided, and a high-capacity non-aqueous secondary battery excellent in durability is realized by using such an oxide for a positive electrode.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: August 12, 2014
    Assignee: Hitachi Maxell, Ltd.
    Inventors: Atsushi Ueda, Kazutaka Uchitomi, Shigeo Aoyama
  • Publication number: 20140216632
    Abstract: A method for producing an active material molded body includes molding a constituent material containing LiCoO2 in the form of a powder by compression, and then performing a heat treatment at a temperature of 900° C. or higher and lower than the melting point of LiCoO2.
    Type: Application
    Filed: February 4, 2014
    Publication date: August 7, 2014
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Sukenori ICHIKAWA, Tomofumi YOKOYAMA
  • Patent number: 8795897
    Abstract: Provided is a cathode active material containing a Ni-based lithium mixed transition metal oxide. More specifically, the cathode active material comprises the lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification, which is prepared by a solid-state reaction of Li2CO3 with a mixed transition metal precursor under an oxygen-deficient atmosphere, and has a Li2CO3 content of less than 0.07% by weight of the cathode active material as determined by pH titration. The cathode active material in accordance with the present invention and substantially free of water-soluble bases such as lithium carbonates and lithium sulfates and therefore has excellent high-temperature and storage stabilities and a stable crystal structure.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: August 5, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Hong Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
  • Patent number: 8784770
    Abstract: Provided is a lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 (M, x and y are as defined in the specification) having mixed transition metal oxide layers (“MO layers”) comprising Ni ions and lithium ions, wherein lithium ions intercalate into and deintercalate from the MO layers and a portion of MO layer-derived Ni ions are inserted into intercalation/deintercalation layers of lithium ions (“reversible lithium layers”) thereby resulting in the interconnection between the MO layers. The lithium mixed transition metal oxide of the present invention has a stable layered structure and therefore exhibits improved stability of the crystal structure upon charge/discharge. In addition, a battery comprising such a cathode active material can exhibit a high capacity and a high cycle stability.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: July 22, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Hong Kyu Park, Sun sik Shin, Sin young Park, Ho suk Shin, Jens M. Paulsen
  • Patent number: 8758455
    Abstract: A method of producing a layered structure lithium mixed metal oxide, including a step of calcining a lithium mixed metal oxide raw material containing a transition metal element and a lithium element in a molar ratio of the lithium element to the transition metal element of 1 or more and 2 or less, in the presence of an inactive flux containing one or more compounds selected from the group consisting of a carbonate of M, a sulfate of M, a nitrate of M, a phosphate of M, a hydroxide of M, a molybdate of M, and a tungstate of M, wherein M represents one or more elements selected from the group consisting of Na, K, Rb, Cs, Ca, Mg, Sr and Ba.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: June 24, 2014
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Cedric Pitteloud, Yoshinari Sawabe, Satoshi Shimano
  • Publication number: 20140138571
    Abstract: The present invention provides a magnetoelectric material in which an electric property is capable of being controlled by a magnetic field or a magnetic property is capable of being controlled by an electric field, and a method of manufacturing the same. Particularly, the present invention provides a magnetoelectric material in which a distance between magnetic ions interacting with each other is controlled by using non-magnetic ions or alkaline earth metal ions, and a method of manufacturing the same.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 22, 2014
    Applicant: SNU R&DB FOUNDATION
    Inventors: Kee Hoon KIM, Sae Hwan CHUN, Yi Sheng CHAI, Kwang Woo SHIN
  • Publication number: 20140127398
    Abstract: This invention relates to methods of preparing positive electrode materials for electrochemical cells and batteries. It relates, in particular, to a method for fabricating lithium-metal-oxide electrode materials for lithium cells and batteries. The method comprises contacting a hydrogen-lithium-manganese-oxide material with one or more metal ions, preferably in an acidic solution, to insert the one or more metal ions into the hydrogen-lithium-manganese-oxide material; heat-treating the resulting product to form a powdered metal oxide composition; and forming an electrode from the powdered metal oxide composition.
    Type: Application
    Filed: January 14, 2014
    Publication date: May 8, 2014
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Michael M. THACKERAY, Sun-Ho KANG, Mahalingam BALASUBRAMANIAN, Jason CROY
  • Publication number: 20140124701
    Abstract: LiCoO2 material comprises LiCoO2 particles obtainable by a process in which Co(OH)2 particles comprising essentially octahedral shape particles, or Co3O4 particles obtained from Co(OH)2 comprising essentially octahedral shape particles, or Co3O4 particles comprising essentially octahedral shape particles and lithium salt are heated. Also disclosed are Co(OH)2 particles and the Co3O4 particles. The LiCoO2 material can be used especially as a cathode material in Li-ion batteries.
    Type: Application
    Filed: May 31, 2011
    Publication date: May 8, 2014
    Applicant: OMG Kokkola Chemicals Oy
    Inventors: Aki Vanhatalo, Marten Eriksson, Janne Niittykoski
  • Patent number: 8703337
    Abstract: A lithium cobalt oxide powder for use as an active positive electrode material in lithium-ion batteries, the lithium cobalt oxide powder having a Ti content of between 0.1 and 0.25 mol %, and the lithium cobalt oxide powder having a density PD in g/cm3 dependent on the powder particle size expressed by the D50 value in ?m, wherein PD?3.63+[0.0153*(D50?17)].
    Type: Grant
    Filed: November 23, 2011
    Date of Patent: April 22, 2014
    Assignee: Umicore
    Inventors: Robert Ellenwood, Jens Martin Paulsen, JaeRyoung Lee
  • Patent number: 8663847
    Abstract: It is an object of the present invention to provide a positive electrode material having a large ratio of the discharge capacity around 4 V to the total discharge capacity including the discharge capacity at 4V or lower while making the discharge capacity around 4 V sufficient, for the purpose of providing a lithium secondary battery using a lithium transition metal phosphate compound excellent in thermal stability, utilizing the discharge potential around 4V (vs. Li/Li+) that is higher than the discharge potential of LiFePO4, and being advantageous with respect to the detection of the end of discharge state, and a lithium secondary battery using the same. The present invention uses a positive active material for a lithium secondary battery containing a lithium transition metal phosphate compound represented by LiMn1-x-yFexCoyPO4(0.1?x?0.2, 0<y?0.2).
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: March 4, 2014
    Assignee: GS Yuasa International Ltd.
    Inventors: Yuta Kashiwa, Mariko Kohmoto, Toru Tabuchi, Tokuo Inamasu, Toshiyuki Nukuda
  • Patent number: 8658125
    Abstract: The present invention relates to a positive electrode active material comprising a lithium-containing composite oxide containing nickel with an oxidation state of 2.0 to 2.5 and manganese with an oxidation state of 3.5 to 4.0, the oxidation state determined by the shifts of energy at which absorption maximum is observed in the X-ray absorption near-K-edge structures, and to a non-aqueous electrolyte secondary battery using the same, the positive electrode active material being characterized in having a high capacity, a long storage life and excellent cycle life.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: February 25, 2014
    Assignees: Panasonic Corporation, Osaka City University
    Inventors: Tsutomu Ohzuku, Hiroshi Yoshizawa, Masatoshi Nagayama
  • Publication number: 20140050655
    Abstract: Nanowire synthesis and one dimensional nanowire synthesis of titanates and cobaltates. Exemplary titanates and cobaltates that are fabricated and discussed include, without limitation, strontium titanate (SrTiO3), barium titanate (BaTiO3), lead titanate (PbTiO3), calcium cobaltate (Ca3Co4O9) and sodium cobaltate (NaCo2O4).
    Type: Application
    Filed: February 21, 2012
    Publication date: February 20, 2014
    Applicant: PURDUE RESEARCH FOUNDATION
    Inventors: Yue Wu, Gautam G. Yadav, Genqiang Zhang
  • Publication number: 20140050656
    Abstract: The present invention provides a method for treating the particle surface of a cathode active material for a lithium secondary battery, the method comprising (a) preparing a cathode active material having a lithium compound; (b) generating a plasma from a gas comprising at least one of a fluorine-containing gas and a phosphorus-containing gas as a part of a reactive gas; and (c) removing lithium impurities present on the particle surface of the cathode active material with the plasma. In accordance with the present invention, the amount of the lithium impurities present on the particle surface of the cathode active material can be reduced to suppress a side reaction of the lithium impurities and an electrolyte.
    Type: Application
    Filed: October 10, 2013
    Publication date: February 20, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Sung-Joong Kang, Hong-Kyu Park, Joo-Hong Jin, Dae-Jin Lee
  • Publication number: 20140008568
    Abstract: Processes and compositions for multi-transition metal-containing cathode materials for lithium ion batteries. Processes encompass providing a composition which can be a mixture of molecular precursor compounds having the formulas [LiM(x+)(OR)1+x] and [Li2M(x+)(OR)2+x]. The metal atoms, M, can be Ni, V, Co, Mn, or Fe, and the —OR groups can be alkoxy, aryloxy, heteroaryloxy, alkenyloxy, siloxy, phosphinate, phosphonate, and phosphate. The compositions can be converted and annealed to provide cathode materials.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 9, 2014
    Inventors: Kyle L. Fujdala, Zhongliang Zhu, Paul R. Markoff Johnson
  • Publication number: 20140011084
    Abstract: Lithium-cobalt-containing molecular precursor compounds, compositions and processes for making cathodes for lithium ion batteries. The molecular precursor compounds are soluble and provide processes to make stoichiometric cathode materials with solution-based processes. The cathode material can be, for example, a lithium cobalt oxide, a lithium cobalt phosphate, or a lithium cobalt silicate. Cathodes can be made as bulk material in a solid form or in solution, or in various forms including thin films.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 9, 2014
    Inventors: Kyle L. Fujdala, Zhongliang Zhu, Paul R. Markoff Johnson
  • Patent number: 8586247
    Abstract: A positive electrode active material for lithium batteries includes secondary particles having primary particles and an amorphous material. A method of manufacturing the positive electrode active material includes mixing a lithium composite oxide and a lithium salt, and heat treating the mixture. A positive electrode includes the positive electrode active material, and a lithium battery includes the positive electrode.
    Type: Grant
    Filed: December 1, 2010
    Date of Patent: November 19, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Do-Hyung Park, Seon-Young Kwon, Min-Han Kim, Ji-Hyun Kim, Chang-Hyuk Kim, Yoon-Chang Kim, Jeong-Seop Lee
  • Patent number: 8574541
    Abstract: The present invention provides for a process of making a Ni-based lithium transition metal oxide cathode active materials used in lithium ion secondary batteries. The cathode active materials are substantially free of Li2CO3 impurity and soluble bases.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: November 5, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jens M. Paulsen, Hong-Kyu Park, Yong Hoon Kwon
  • Publication number: 20130280613
    Abstract: An electrode thin film to be used in an all-solid lithium battery is formed predominantly of lithium cobaltate and has a density larger than or equal to 3.6 g/cm3 and smaller than or equal to 4.9 g/cm3.
    Type: Application
    Filed: November 15, 2011
    Publication date: October 24, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Jun Akedo, Daniel Popovici, Hideyuki Nagai
  • Patent number: 8557440
    Abstract: A positive electrode active material having a lithium-excess lithium-transition metal composite oxide particle represented by the chemical formula Li1.2Mn0.54Ni0.13Co0.13O2. The lithium-excess lithium-transition metal composite oxide particle has an inner portion (1) having a layered structure and a surface adjacent portion (2) having a crystal structure gradually changing from a layered structure to a spinel structure from the inner portion (1) toward the outermost surface portion (3). The layered structure and the spinel structure have an identical ratio of the amount of Mn and the total amount of Ni and Co.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: October 15, 2013
    Assignee: SANYO Electric Co., Ltd.
    Inventors: Denis Yau Wai Yu, Katsunori Yanagida
  • Patent number: 8545794
    Abstract: The invention relates to a powder compound of the formula NiaMbOx(OH)y, wherein M represents Co and at least one element selected from the group consisting of Fe, Zn, Al, Sr, Mg, or Ca and mixtures thereof, or M represents Co Mn and Fe, wherein 0.6?a<1.0, 0<b?0.4, 0<x?0.60, and 1.4?y<2, wherein the powder compound has a particle size distribution d50 value, measured in accordance with ASTM B 822, of <5 ?m, and wherein a ratio of tap density, measured in accordance with ASTM B 527, to the particle size distribution d50 value is at least 0.4 g/cm3. The invention also relates to a process for preparing the compound and its uses.
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: October 1, 2013
    Assignee: H.C. Starck GmbH
    Inventors: Matthias Jahn, Gerd Malkowske, Stefan Malcus, Juliane Meese-Marktscheffel, Armin Olbrich, Rüdiger Zertani
  • Patent number: 8540961
    Abstract: Provided is a method for preparing a lithium mixed transition metal oxide, comprising subjecting Li2CO3 and a mixed transition metal precursor to a solid-state reaction under an oxygen-deficient atmosphere with an oxygen concentration of 10 to 50% to thereby prepare a powdered lithium mixed transition metal oxide having a composition represented by Formula I of LixMyO2 wherein M, x and y are as defined in the specification. Therefore, since the high-Ni lithium mixed transition metal oxide having a given composition can be prepared by a simple solid-state reaction in air, using a raw material that is cheap and easy to handle, the present invention enables industrial-scale production of the lithium mixed transition metal oxide with significantly decreased production costs and high production efficiency.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: September 24, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Hong-Kyu Park, Sun Sik Shin, Sin Young Park, Ho Suk Shin, Jens M. Paulsen
  • Publication number: 20130183593
    Abstract: An oxide represented by Formula 1: A2M1?xCxD2O7+???Formula 1 wherein, in Formula 1, x is in the range of 0.4?x?1.0; ? is selected such that the oxide electrically neutral; A is at least one metal selected from an alkaline earth metal; M is an alkaline earth metal that differs from A; C is a transition metal; and D is at least one selected from germanium (Ge) and silicon (Si).
    Type: Application
    Filed: December 21, 2012
    Publication date: July 18, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD
    Inventor: Samsung Electronics Co., Ltd.
  • Patent number: 8481213
    Abstract: Disclosed herein is a cathode active material for a lithium secondary battery, in particular, including a lithium transition metal oxide with a layered crystalline structure in which the transition metal includes a transition metal mixture of Ni, Mn and Co, and an average oxidation number of all transition metals other than lithium is more than +3, and specific conditions represented by the following formulae (1) and (2), 1.1<m(Ni)/m(Mn)<1.5 and 0.4<m(Ni2+)/m(Mn4+)<1, are satisfied. The inventive cathode active material has a more uniform and stable layered structure by controlling the oxidation number of transition metals contained in a transition metal oxide layer to form the layered structure, compared to conventional substances. Accordingly, the active material exhibits improved overall electrochemical characteristics including battery capacity and, in particular, excellent high rate charge-discharge features.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: July 9, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Sung Kyun Chang, Hong-Kyu Park, Ho Suk Shin, Seung Tae Hong, Youngsun Choi
  • Publication number: 20130122372
    Abstract: Provided is spinel-type lithium transition metal oxide (LMO) used as a positive electrode active material for lithium battery, said LMO being capable of simultaneously achieving all output characteristics (rate characteristics), high temperature cycle life characteristics, and rapid charging characteristics. The disclosed is spinel-type lithium transition metal oxide including, besides Li and Mn, one or more elements selected from a group consisting of Mg, Ti, Ni, Co, and Fe, and having crystallite size of between 200 nm and 1000 nm and strain of 0.0900 or less. Because the crystallite size is markedly large, oxygen deficiency is markedly little, and the structure is strong, when the LMO is used as a positive electrode active material for lithium secondary batteries, all output characteristics (rate characteristics), high temperature cycle life characteristics, and rapid charging characteristics can be achieved simultaneously.
    Type: Application
    Filed: July 13, 2011
    Publication date: May 16, 2013
    Applicant: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Shinya Kagei, Keisuke Miyanohara, Yoshimi Hata, Yasuhiro Ochi, Tetsuya Mitsumoto
  • Patent number: 8440113
    Abstract: The present invention aims at providing lithium manganate having a high output and an excellent high-temperature stability. The above aim can be achieved by lithium manganate particles having a primary particle diameter of not less than 1 ?m and an average particle diameter (D50) of kinetic particles of not less than 1 ?m and not more than 10 ?m, which are substantially in the form of single crystal particles and have a composition represented by the following chemical formula: Li1+xMn2?x?yYyO4 in which Y is at least one element selected from the group consisting of Al, Mg and Co; x and y satisfy 0.03?x?0.15 and 0.05?y?0.20, respectively, wherein the Y element is uniformly dispersed within the respective particles, and an intensity ratio of I(400)/I(111) thereof is not less than 33% and an intensity ratio of I(440)/I(111) thereof is not less than 16%.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: May 14, 2013
    Assignee: Toda Kogyo Corporation
    Inventors: Masayuki Uegami, Akihisa Kajiyama, Kazutoshi Ishizaki, Hideaki Sadamura
  • Publication number: 20130101733
    Abstract: A method for producing a thermoelectric conversion material composed of a metal A having an alkali metal or alkaline earth metal, a transition metal M, and oxygen O, and represented by AxMyOz, where x, y, and z are valences of the respective elements, includes the steps of: using a massive metal oxide as the thermoelectric conversion material and a salt in a solid, liquid or gaseous state; causing a diffusion reaction between the oxide and the salt; and forming the thermoelectric conversion material having aligned crystal orientation. A production apparatus includes a reactor into which the oxide and the salt are introduced, and a heating means for heating the oxide and the salt within the reactor to promote the diffusion reaction. Thereby, the thermoelectric conversion material having efficiency is produced more simply and at lower cost than a production of the single crystal.
    Type: Application
    Filed: June 30, 2011
    Publication date: April 25, 2013
    Applicant: KYUSHU INSTITUTE OF TECHNOLOGY
    Inventors: Toshitada Shimozaki, Akifumi Nishiwaki
  • Publication number: 20130101901
    Abstract: A lithium-transition metal complex compound has an nth order hierarchical structure in which n type structures represented by at least one unit of ath order units in a range of 1×10-(a+5) m to 10×10-(a+5) m exist in a complex form, wherein n is a natural number that is 2 or greater, and a is a natural number in a range of 1 to 5. The lithium-transition metal complex may be prepared by heat-treating a mixture including a lithium source, a transition metal source, and solvent in contact with a natural material having a hierarchical structure. A lithium battery includes an electrode including the lithium-transition metal complex compound having the nth order hierarchical structure. The lithium battery can have improved rapid charging characteristics, high power characteristics, and cycle characteristics.
    Type: Application
    Filed: December 11, 2012
    Publication date: April 25, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Samsung Electronics Co., Ltd.