Titanium (e.g., Titanate, Etc.) Patents (Class 423/598)
  • Patent number: 10615463
    Abstract: A method of charging a battery includes applying a charging voltage to a lithium-ion battery for a period of time after the battery is fully charged. The battery includes a positive electrode having a positive active material, a negative electrode having a negative active material, and an electrolyte. The negative active material includes a lithium titanate material and has a capacity that is less than that of the positive electrode. The charging voltage is greater than a fully charged voltage of the battery, and applying the charging voltage for the period of time is sufficient to cause a zero volt crossing potential of the battery to increase to above a decomposition potential of the positive active material.
    Type: Grant
    Filed: February 16, 2018
    Date of Patent: April 7, 2020
    Assignee: MEDTRONIC, INC.
    Inventors: Erik R. Scott, Gaurav Jain
  • Patent number: 10510490
    Abstract: A multilayer ceramic electronic component includes: a ceramic body including a dielectric layer and first and second internal electrodes stacked to be alternately exposed to one side surface and the other side surface with the dielectric layer disposed therebetween; and first and second external electrodes disposed on an external surface of the ceramic body to be connected to the first and second internal electrodes, respectively, in which the ceramic body includes an area of overlap in a thickness direction of the first and second internal electrodes, margin region, and/or cover region, and the margin region in the width direction and/or the cover region includes a phosphoric acid-based second phase.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: December 17, 2019
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Sim Chung Kang, Eun Jung Lee, Ki Pyo Hong, Yong Park
  • Patent number: 10342113
    Abstract: A method of generating at least one trapped atom of a specific species, the method comprising the steps of: positioning a sample material (18) comprising a specific species in a vacuum (14); generate an atomic vapor (20) of the specific species by irradiating the sample material with a first laser (12); trapping one or more atoms from the generated atomic vapor.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: July 2, 2019
    Assignee: THE UNIVERSITY OF BIRMINGHAM
    Inventors: Ole Kock, Yeshpal Singh, Kai Bongs, Wei He
  • Patent number: 10315928
    Abstract: A method for producing a barium titanate-based powder that includes mixing a titanium compound and a barium compound together with water and chlorine to prepare a slurry, and temporarily firing the mixture of the titanium compound and the barium compound which is contained in the slurry to provide a barium titanate-based powder. The chlorine in the slurry is in the form of chlorine ions in a ratio of 230 to 1100 wt ppm based on the amount of the barium titanate-based powder to be synthesized.
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: June 11, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Hiroko Ajichi, Toshiharu Nakagawa, Wenjun Wang, Sanae Nakae, Norikazu Tachibana
  • Patent number: 10294116
    Abstract: This invention relates broadly to the production of titanium alloys by electrolytic reduction processes, and is concerned in one or more aspects with the preparation of a feedstock for such processes. In other aspects, the invention relates to a novel synthetic rutile (SR) product and to methods of producing titanium alloy from titaniferous material.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: May 21, 2019
    Assignee: ILUKA Resources Limited
    Inventors: Nicholas Glen Bernard, John Maxwell Bultitude-Paull
  • Patent number: 10249875
    Abstract: A method of preparing a negative electrode active material of the present invention includes mixing a lithium precursor and a titanium precursor, and sintering the precursor mixture to prepare a lithium titanium-based active material including a lithium titanium oxide, wherein a residual amount of lithium in the lithium titanium-based active material is 2,000 ppm or less based on a total amount of the lithium titanium-based active material. The preparation method allows the residual amount of lithium to be 2,000 ppm or less in a range, in which rate capability is not significantly reduced, by appropriately controlling sintering temperature, wherein the method may provide a lithium secondary battery, in which an amount of gas generated is extremely small even if stored at high temperature, a thickness expansion rate is consequently considerably low, and, simultaneously, the rate capability is also excellent.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: April 2, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Ye Ri Kim, Byung Hun Oh, Eun Kyung Kim
  • Patent number: 10156277
    Abstract: Provided is an alkali-metal titanate in which the content and adhesivity of the fibrous potassium titanate is significantly reduced. The alkali-metal titanate includes 0.5 mol to 2.2 mol of potassium oxide in terms of potassium atoms, 0.05 mol to 1.4 mol of sodium oxide in terms of sodium atoms, and 0 mol to 1.4 mol of lithium oxide in terms of lithium atoms relative to 1 mol of alkali-metal hexatitanate, in which a total content of potassium oxide in terms of potassium atoms, sodium oxide in terms of sodium atoms, and lithium oxide in terms of lithium atoms relative to 1 mol of alkali-metal hexatitanate is 1.8 mol to 2.3 mol; and the alkali-metal titanate has a single phase conversion ratio of 85% to 100%, a fiber ratio of 0% by volume to 10% by volume, and a moisture content of 0% by mass to 1.0% by mass.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: December 18, 2018
    Assignee: TOHO TITANIUM CO., LTD.
    Inventors: Mamoru Nakashima, Hideki Sakai, Daisuke Taki
  • Patent number: 10112178
    Abstract: The present invention provides a methane oxidation catalyst comprising one or more noble metals supported on zirconia, wherein the zirconia comprises tetragonal zirconia and monoclinic zirconia, and wherein the weight ratio of tetragonal zirconia to monoclinic zirconia is in the range of from 1:1 to 31:1. The invention further provides a process for preparing a methane oxidation catalyst, a methane oxidation catalyst thus prepared and a method of oxidizing methane.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: October 30, 2018
    Assignee: SHELL OIL COMPANY
    Inventors: Peter Tanev Tanev, Mario Soorholtz
  • Patent number: 10106431
    Abstract: A method for making an anode active material of a lithium ion battery is provided. In the method, a tetrabutyl titanate solution and a water solution of lithium hydroxide is provided. The tetrabutyl titanate solution is incrementally added into the water solution of lithium hydroxide to react with the water solution of lithium hydroxide in an alkaline environment to obtain a mixed precipitate. The mixed precipitate is calcined to synthesize a spinel type lithium titanate. The spine lithium titanate is used as the anode active material to improve an electrochemical performance of the lithium ion battery.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: October 23, 2018
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Li Sun, Jia-Ping Wang, Shou-Shan Fan
  • Patent number: 9796631
    Abstract: A method of manufacturing barium titanate powder by dispersing, in a solvent such as ethanol, barium titanate. Then, the barium titanate is separated from the slurry by evaporating the solvent while pressurizing the slurry in a pressure container. Then, the separated barium titanate is subjected to a heat treatment, thereby producing the barium titanate powder.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: October 24, 2017
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Shinya Konishi, Kazuya Fujii, Kazushige Nada
  • Patent number: 9786912
    Abstract: The invention provides a low-cost, efficient method for producing lithium titanate that is useful for applications in electric storage devices. The desired lithium titanate can be obtained by heating at least (1) titanium oxide having a BET single point specific surface area of 50 to 450 m2/g based on nitrogen adsorption and (2) a lithium compound. Preferably the titanium oxide and lithium compound are heated together with (3) a lithium titanate compound having the same crystal structure as the desired lithium titanate. Preferably these ingredients are dry-mixed before heating.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: October 10, 2017
    Assignee: ISHIHARA SANGYO KAISHA, LTD.
    Inventors: Masatoshi Honma, Kazuyoshi Takeshima, Tsunehisa Takeuchi, Atsushi Ishizawa, Yusuke Okuda
  • Patent number: 9771274
    Abstract: The invention provides a method for producing barium titanate powder comprising the steps of: adding an aqueous slurry of anatase hydrous titanium oxide having a BET specific surface area in the range of 200 m2/g to 400 m2/g and a half width of diffraction peak of (101) plane in the range of 2.3° to 5.0° as measured by X-ray diffraction to an aqueous solution of barium hydroxide while maintaining the aqueous solution of barium hydroxide at a temperature in the range from 80° C. to the boiling point thereof under normal pressure to cause a reaction of the barium hydroxide with the hydrous titanium oxide to provide an aqueous slurry of barium titanate precursor; and subjecting the barium titanate precursor thus obtained to hydrothermal treatment over a period of not less than 24 hours to provide barium titanate particles.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: September 26, 2017
    Assignee: SAKAI CHEMICAL INDUSTRY CO., LTD.
    Inventors: Kazumi Yamanaka, Yuji Baba, Minoru Yoneda, Yukihiro Kuniyoshi, Shinji Ogama
  • Patent number: 9695061
    Abstract: The invention provides a method for producing barium titanate powder comprising the steps of: adding an aqueous slurry of anatase hydrous titanium oxide having a BET specific surface area in the range of 200 to 400 m2/g and a half width of diffraction peak of (101) plane in the range of 2.3° to 5.0° as measured by X-ray diffraction to an aqueous solution of barium hydroxide while maintaining the aqueous solution of barium hydroxide at a temperature in the range from 80° C. to the boiling point thereof under normal pressure to cause a reaction of the barium hydroxide with the hydrous titanium oxide to provide an aqueous slurry of barium titanate precursor; and subjecting the barium titanate precursor thus obtained to hydrothermal treatment over a period of time shorter than 24 hours to provide barium titanate particles.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: July 4, 2017
    Assignee: SAKAI CHEMICAL INDUSTRY CO., LTD.
    Inventors: Kazumi Yamanaka, Yuji Baba, Minoru Yoneda, Yukihiro Kuniyoshi, Shinji Ogama
  • Patent number: 9679698
    Abstract: A multi-layer ceramic capacitor has a structure where the dispersion, nd, of average grain size of the dielectric grains constituting the dielectric layer (a value (D90/D10) obtained by dividing D90 which is a grain size including 90% cumulative abundance of grains by D10 which is a grain size including 10% cumulative abundance of grains) is smaller than 4.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: June 13, 2017
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Koichiro Morita, Tetsuo Shimura
  • Patent number: 9673381
    Abstract: The invention provides a lead titanate coating and a preparing method thereof. According to the method, mixed powder is sprayed on the surface of a matrix, and through polarization, the lead titanate coating is acquired. The mixed powder comprises PbTiO3 powder, PbO powder and Al powder. Lead titanate (PbTiO3) is a kind of ferroelectric material, and can be used for preparing a piezoelectric sensor. Besides, the PbO powder and the Al powder are added, so that the piezoelectric property of the lead titanate coating can be improved. Since the lead titanate coating prepared by the present invention can be combined with the matrix closely and the intensity of piezoelectric signal is high, it can be widely applied to mechanical parts, such as a piston ring, a cylinder, a gear, and the like, to dynamically monitor the service situations of the parts better.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: June 6, 2017
    Inventors: Haidou Wang, Zhiguo Xing, Binshi Xu
  • Patent number: 9567690
    Abstract: The invention provides a process for the production of crystalline titanium powder containing single crystals or agglomerates of single crystals having an average crystal size (by volume) greater than 1 ?m, said process including reacting a titanium chloride species, preferably titanium dichloride, and reducing metal in a continuous back-mix reactor to produce a free flowing suspension of titanium powder in molten chloride salt wherein: i. both the titanium chloride species and the reducing metal are dissolved in a molten chloride salt and fed to the reactor containing a chloride salt of the reducing metal; ii. the average feed ratio of the titanium chloride species and reducing metal to the continuous back-mix reactor is within 1%, preferably within 0.1%, of the stoichiometric ratio required to fully reduce the titanium chloride salt to titanium metal; iii.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: February 14, 2017
    Assignee: CSIR
    Inventors: David Steyn Van Vuuren, Salomon Johannes Oosthuizen, Jaco Johannes Swanepoel
  • Patent number: 9566565
    Abstract: A TiO2-based catalyst material in particle form having a content of metal removes pollutants, in particular of nitrogen oxides from combustion gases.
    Type: Grant
    Filed: June 25, 2011
    Date of Patent: February 14, 2017
    Assignee: Sachtleben Chemie GmbH
    Inventors: Sonja Grothe, Bernd Rohe, Peter Ebbinghaus, Elke Gosch
  • Patent number: 9561488
    Abstract: A zinc titanate reactive adsorbent comprising multiphase, polycrystalline nanofibers comprising ZnTiO3, ZnO, TiO2, and Zn2TiO4.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: February 7, 2017
    Assignee: The Board of Trustees of The University of Illinois
    Inventors: Prashant Jain, Mayank Behl, Mark Shannon, Junghoon Yeom
  • Patent number: 9508981
    Abstract: According to one embodiment, a non-aqueous electrolyte battery is provided. The non-aqueous electrolyte battery includes a negative electrode contained a negative electrode active material. The negative electrode active material includes a monoclinic ?-type titanium-based oxide or lithium titanium-based oxide. The monoclinic ?-type titanium-based oxide or lithium titanium-based oxide has a peak belonging to (011), which appears at 2?1 in a range of 24.40° or more and 24.88° or less, in an X-ray diffraction pattern obtained by wide angle X-ray diffractometry using CuK? radiation as an X-ray source.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: November 29, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroki Inagaki, Norio Takami
  • Patent number: 9466833
    Abstract: The invention provides a low-cost, efficient method for producing lithium titanate that is useful for applications in electric storage devices. The desired lithium titanate can be obtained by heating at least (1) titanium oxide having a BET single point specific surface area of 50 to 450 m2/g based on nitrogen adsorption and (2) a lithium compound. Preferably the titanium oxide and lithium compound are heated together with (3) a lithium titanate compound having the same crystal structure as the desired lithium titanate. Preferably these ingredients are dry-mixed before heating.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: October 11, 2016
    Assignee: ISHIHARA SANGYO KAISHA, LTD.
    Inventors: Masatoshi Honma, Kazuyoshi Takeshima, Tsunehisa Takeuchi, Atsushi Ishizawa, Yusuke Okuda
  • Patent number: 9446964
    Abstract: Provided is a process for manufacturing, at a low cost and efficiently, lithium titanium oxides which are useful for electricity storage devices. A desired lithium titanium oxide can be obtained by heating at least both (1) a titanium compound and (2) a lithium compound that has a volume-mean particle diameter of 5 ?m or less. The lithium compound is preferably obtained by adjusting the volume-mean particle diameter to 5 ?m or less by pulverizing. It is preferable that the titanium compound and the lithium compound are heated together with (3) a lithium titanium oxide compound that has the same crystal structure as that of objective lithium titanium oxide. It is preferable that these materials are dry-blended prior to the heating.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: September 20, 2016
    Assignee: ISHIHARA SANGYO KAISHA, LTD.
    Inventors: Kazuyoshi Takeshima, Tsunehisa Takeuchi, Masatoshi Honma, Yusuke Okuda
  • Patent number: 9416244
    Abstract: The invention provides a process for producing an aqueous dispersion of zirconium oxide that includes: reacting a zirconium salt with an alkali in water to obtain a slurry of particles of zirconium oxide; filtering, washing, and repulping the slurry; adding an organic acid to the resulting slurry in an amount of one mole part or more per mole part of the zirconium in the slurry; hydrothermally treating the resulting mixture at a temperature of 170° C. or higher; and washing the resulting aqueous dispersion of particles of zirconium oxide.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: August 16, 2016
    Assignee: SAKAI CHEMICAL INDUSTRY CO., LTD.
    Inventors: Kenichi Nakagawa, Takanori Morita
  • Patent number: 9327990
    Abstract: A process of preparing nanostructured lithium titanate particles. The process contains the steps of providing a solvent containing a soft-template compound, a lithium ion-containing compound, and a titanium ion-containing compound; removing the solvent to obtain a lithium titanate precursor; and calcining the precursor followed by milling and annealing. Also disclosed is a nanostructured lithium titanate particle prepared by this process.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: May 3, 2016
    Assignee: National University of Singapore
    Inventors: Palani Balaya, Srirama Hariharan
  • Patent number: 9312070
    Abstract: A multilayer ceramic capacitor has multiple laminated dielectric ceramic layers made of a dielectric ceramic, internal electrodes formed between the dielectric ceramic layers, and external electrodes electrically connected to the internal electrodes, wherein generation of cracks in the dielectric layer due to expansion of the internal electrode is suppressed by causing ceramic grains having a crystal axis ratio c/a higher than that of the ceramic grains constituting the dielectric layer to be present in non-contiguous parts of the internal electrodes between the dielectric ceramic layers, and by harnessing the stress-mitigating effect of domain switching involving these ceramic grains.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: April 12, 2016
    Assignee: TAIYO YUDEN CO., LTD.
    Inventors: Shusaku Ueda, Noriyuki Chigira, Shinichi Abe
  • Patent number: 9260316
    Abstract: The present invention relates to titanium dioxide nanoparticles, titanate, lithium titanate nanoparticles, and preparation methods thereof. According to the present invention, titanium dioxide nanoparticles having a quasicrystalline phase corresponding to an intermediate form between a crystalline phase and an amorphous phase may be provided.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: February 16, 2016
    Assignee: POSCO
    Inventors: Dong Hyun Kim, Jhi-Yong Kim, Juno Seok, Seok-Mo Chung, Jong Hoon Son
  • Patent number: 9248428
    Abstract: A zinc titanate reactive adsorbent comprising multiphase, polycrystalline nanofibers comprising ZnTiO3, ZnO, TiO2, and Zn2TiO4.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: February 2, 2016
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Prashant Jain, Mayank Behl, Mark Shannon, Junghoon Yeom
  • Patent number: 9242922
    Abstract: A method for producing a high-quality barium titanyl salt includes using, as the fluids to be treated, at least two kinds of fluids, namely, a barium titanium mixed solution that is obtained by dissolving both a barium compound and a titanium compound in a solvent, a compound solution that is obtained by dissolving, in a solvent, a compound capable of deposing the barium and titanium contained in the barium-titanium mixed solution into a barium titanyl salt, and if necessary, one or more other fluids; and mixing these fluids together in a thin film fluid formed at least between two treating surfaces and to form a barium titanyl salt. The treating surfaces are so arranged as to face each other in an approachable/separable state with one of the treating surfaces and being capable of turning relatively to the other.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: January 26, 2016
    Assignee: M. TECHNIQUE CO., LTD.
    Inventor: Masakazu Enomura
  • Patent number: 9245688
    Abstract: A monolithic ceramic capacitor having a large capacity and high reliability includes a ceramic sintered body including a plurality of stacked ceramic layers, and first and second inner electrodes and alternately disposed inside the ceramic sintered body to be opposed to each other in a stacking direction of the ceramic layers with one of the ceramic layers being interposed between the adjacent first and second inner electrodes. The ceramic sintered body includes a first portion in which the first and second inner electrodes are opposed to each other, and a second portion positioned outside the first portion. A ratio (Ic/Ia) of c-axis peak intensity (Ic) to a-axis peak intensity (Ia) measured with an XRD analysis of the one of the ceramic layers is about 2 or more.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: January 26, 2016
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Akihiro Shiota
  • Patent number: 9145304
    Abstract: Methods directed to the synthesis and peroxide-modification of nanosized monosodium titanate are described. Methods include combination of reactants at a low concentration to a solution including a nonionic surfactant. The nanosized monosodium titanate can exhibit high selectivity for sorbing various metallic ions.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: September 29, 2015
    Assignee: Savannah River Nuclear Solutions, LLC
    Inventors: David T. Hobbs, Kathryn M. L. Taylor-Pashow, Mark C. Elvington
  • Patent number: 9061945
    Abstract: There are provided a method of manufacturing perovskite powder, and perovskite powder and a multilayer ceramic electronic component manufactured thereof. The manufacturing method includes: washing metal oxide hydrate to remove impurities therefrom; adding pure water and an acid or a base to the metal oxide hydrate to prepare a metal oxide sol; mixing the metal oxide sol with a metal salt to form perovskite particle nuclei; and conducting grain growth of the perovskite particle nuclei by hydrothermal treatment to produce perovskite powder. The method of manufacturing perovskite powder and the perovskite powder manufactured by the same have advantages such as excellent crystallinity, reduced generation of fine powder, and favorable dispersion properties.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: June 23, 2015
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Kum Jin Park, Sang Hyuk Kim, Hye Young Baeg, Hyung Joon Jeon, Sang Hoon Kwon, Chang Hak Choi
  • Publication number: 20150132623
    Abstract: According to one embodiment, a non-aqueous electrolyte battery is provided. The non-aqueous electrolyte battery includes a negative electrode contained a negative electrode active material. The negative electrode active material includes a monoclinic ?-type titanium-based oxide or lithium titanium-based oxide. The monoclinic ?-type titanium-based oxide or lithium titanium-based oxide has a peak belonging to (011), which appears at 2?1 in a range of 24.40° or more and 24.88° or less, in an X-ray diffraction pattern obtained by wide angle X-ray diffractometry using CuK? radiation as an X-ray source.
    Type: Application
    Filed: January 23, 2015
    Publication date: May 14, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiroki INAGAKI, Norio Takami
  • Patent number: 9023311
    Abstract: A ceramic powder that contains, as a main composition, barium titanate powder having a perovskite structure with an average particle size (median size) of 200 nm or smaller as measured by SEM observation, wherein the barium titanate powder is such that the percentage of barium titanate particles having twin defects in the barium titanate powder is 13% or more as measured by TEM observation and that its crystal lattice c/a is 1.0080 or more. The ceramic powder has a wide range of optimum sintering temperatures and thus offers excellent productivity and is particularly useful in the formation of thin dielectric layers of 1 ?m or less.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: May 5, 2015
    Assignee: Taiyo Yuden Co., Ltd.
    Inventor: Youichi Mizuno
  • Patent number: 9023305
    Abstract: The invention relates to a strontium-82/rubidium-82 generator, comprising a column filled with a cationic exchanger loaded with strontium-82, and having an inlet and an outlet, and a liquid medium, wherein parts of the column, inlet and outlet coming into contact with the liquid medium are iron-free, preferably metal-free, to a method for producing rubidium-82, and to the obtained diagnostic agent.
    Type: Grant
    Filed: August 14, 2009
    Date of Patent: May 5, 2015
    Assignee: Stichting Jeroen Bosch Ziekenhuis
    Inventor: Roland Anthonius Maria Johannus Claessens
  • Patent number: 9011713
    Abstract: Provided are a composite including a lithium titanium oxide and a bismuth titanium oxide, a method of manufacturing the composite, an anode active material including the composite, an anode including the anode active material, and a lithium secondary battery having improved cell performance by including the anode.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: April 21, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Min-sang Song, Kyu-sung Park, Gue-sung Kim, Young-min Choi
  • Patent number: 9005568
    Abstract: The invention provides a process for production of powder of perovskite compound which comprises: the first step for obtaining an aggregate of perovskite compound which comprises at least one A group element selected from the group consisting of Mg, Ca, Sr, Ba and Pb and at least one B group element selected from the group consisting of Ti, Zr, Hf and Sn, and which is represented by the general formula ABO3 wherein A is at least one A group element and B is at least one B group element; and the second step for heating the aggregate of perovskite compound obtained in the first step in a solvent at a temperature in a range from 30° C. to 500° C. whereby disintegrating the aggregate.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: April 14, 2015
    Assignee: Sakai Chemical Industry Co., Ltd.
    Inventors: Takashi Shikida, Shinji Ogama, Yoshiaki Ikeda, Kazuhisa Hidaka
  • Publication number: 20150094199
    Abstract: A convenient and versatile method for preparing complex metal oxides is disclosed. The method uses a low temperature, environmentally friendly gel-collection method to form a single phase nanomaterial. In one embodiment, the nanomaterial consists of BaAMnBTiCOD in a controlled stoichiometry.
    Type: Application
    Filed: July 29, 2014
    Publication date: April 2, 2015
    Inventors: Stephen O'Brien, Shuangyi Liu, Limin Huang
  • Patent number: 8986641
    Abstract: In some embodiments, the present invention provides amphiphilic nanosheets that comprise lamellar crystals with at least two regions: a first hydrophilic region, and a second hydrophobic region. In some embodiments, the amphiphilic nanosheets of the present invention also comprise a plurality of functional groups that are appended to the lamellar crystals. In some embodiments, the functional groups are hydrophobic functional groups that are appended to the second region of the lamellar crystals. In some embodiments, the lamellar crystals comprise ?-zirconium phosphates. Additional embodiments of the present invention pertain to methods of making the aforementioned amphiphilic nanosheets. Such methods generally comprise appending one or more functional groups to a stack of lamellar crystals; and exfoliating the stack of lamellar crystals for form the amphiphilic nanosheets.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: March 24, 2015
    Assignee: The Texas A&M University System
    Inventors: Zhengdong Cheng, Andres F. Mejia, Agustin Diaz, Abraham Clearfield, Mahboobul S Mannan, Ya-Wen Chang
  • Publication number: 20150075603
    Abstract: A coating is described. The coating includes a metal oxide layer, which in turn includes a surface having a water contact angle greater than 90 degrees. A metal-oxide coating composition is also described. The composition includes effective amounts of a first type and a second of metals and an effective amount of oxygen to react with the first type and the second type of metals to produce a first type and a second type of metal oxides, both of which produce a structure that is greater than about 50% (by volume) amorphous.
    Type: Application
    Filed: March 21, 2013
    Publication date: March 19, 2015
    Inventors: Mark Allen George, Ching-Lin Chang, Ravi Prasad
  • Patent number: 8968609
    Abstract: A contactless power transfer system is proposed. The power transfer system comprises a field-focusing element comprising a dielectric material. The dielectric material comprises a composition that is selected from the family of (Ba,Sr)TiO3 or CaCu3Ti4O12. The compositions of the (Ba,Sr)TiO3 include the materials such as Ca1-x-yBaxSryTi1-zCrzO3-?Np, wherein 0<x<1; 0<y<1; 0?z?0.01; 0???1; and 0?p?1. The compositions of the CaCu3Ti4O12 include the materials such as Ca1-x-yBaxSry (Ca1-zCuz)Cu2Ti4-?Al?O12-0.5?, wherein 0?x<0.5; 0?y<0.5; 0?z?1; and 0???0.1.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: March 3, 2015
    Assignee: General Electric Company
    Inventors: Kalaga Murali Krishna, Jay Chakraborty, Lohit Matani, Adnan Kutubuddin Bohori, Suma Memana Narayana Bhat, Somakumar Ramachandrapanicker
  • Publication number: 20150051366
    Abstract: Disclosed herein are a novel complex metal oxide catalyst, and a method of preparing polyester using the same. The metal-bound compound of the present invention has a higher catalytic activity as compared to an antimony catalyst and existing titanium catalysts to be easily synthesized and stabilized, have a sufficient polymerization activity even with a small amount, and be used as an environmentally friendly catalyst for polyester polymerization. In addition, when preparing polyester by using the complex metal oxide of the present invention, since catalytic activity caused by phosphorus (P) which is a thermal stabilizer used to decrease pyrolysis at the time of hot-melting and molding is not deteriorated, an excessive amount of phosphorus may be used as compared to the related art, such that pyrolysis less occurs, whereby the yellowing phenomenon may be decreased and high viscosity may be maintained.
    Type: Application
    Filed: April 10, 2013
    Publication date: February 19, 2015
    Inventors: Young Keun Yang, Seung Woong Yoon, Yong Taek Hwang, Kyung Ho Lim, Jong Ho Bae
  • Publication number: 20150044568
    Abstract: A method for manufacturing lithium titanate (Li4Ti5O12) of a substantially single phase, which is excellent in rate performance, and can be easily handled. The lithium titanate (Li4Ti5O12) is prepared from substantially a raw material powder consisting of a lithium compound and a raw material powder consisting of a titanic acid compound which are mixed and the resultant mixture is calcined. A lithium carbonate is used as the lithium compound and metatitanic acid or orthotitanic acid is used as the titanic acid compound. The penetration speed coefficient of the lithium titanate obtained, to a nonaqueous electrolyte is larger than a penetration speed coefficient of lithium titanate, obtained by using a lithium hydroxide as the lithium compound, to the same nonaqueous electrolyte. The specific surface area of the lithium titanate obtained is 10 m2/g or less.
    Type: Application
    Filed: March 14, 2013
    Publication date: February 12, 2015
    Applicant: TAYCA CORPORATION
    Inventors: Keiichi Watanabe, Shuji Nishida
  • Patent number: 8940270
    Abstract: To provide a sulfur trioxide decomposition catalyst, particularly, a sulfur trioxide decomposition catalyst capable of lowering the temperature required when producing hydrogen by an S—I cycle process. A sulfur trioxide decomposition catalyst comprising a composite oxide of vanadium and at least one metal selected from the group consisting of transition metal and rare earth elements is provided. Also, a sulfur dioxide production process comprising decomposing sulfur trioxide into sulfur dioxide and oxygen by using the sulfur trioxide decomposition catalyst above, is provided. Furthermore, a hydrogen production process, wherein the reaction of decomposing sulfur trioxide into sulfur dioxide and oxygen by an S—I cycle process is performed by the above-described sulfur dioxide production process, is provided.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: January 27, 2015
    Assignees: Toyota Jidosha Kabushiki Kaisha, National University Corporation Kumamoto University
    Inventors: Shinichi Takeshima, Masato Machida
  • Publication number: 20150023857
    Abstract: One embodiment provides a method, comprising: calculating, using at least one computer, a distance to a hull for an alloy XxY1-x in the range 0.01?x?0.99, where X and Y are perovskite materials; determining, using the at least one computer, a preferred phase for the alloy in the range 0.01?x?0.99; and selecting an alloy composition having the distance to the hull being less than 0.1 eV/atom and for which the preferred phase in at least a portion of the range 0.01?x?0.99 is a tetragonal phase. Piezoelectric materials as selected by the method are also provided.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 22, 2015
    Applicants: Massachusetts Institute of Technology, Central Michigan University, Robert Bosch LLC Research and Technology Center
    Inventors: Rickard Roberto ARMIENTO, Gerbrand CEDER, Marco FORNARI, Geoffroy HAUTIER, Boris KOZINSKY
  • Publication number: 20150010756
    Abstract: Crystalline strontium titanate powder (SrTiO3) and a method of preparing strontium titanate powder (SrTiO3) are provided. A method of preparing strontium titanate powder involves providing an aqueous solution comprising a strontium precursor and a titanium precursor, immersing a polymer compound in the aqueous solution, and heating the aqueous solution in which the polymer compound is immersed.
    Type: Application
    Filed: June 30, 2014
    Publication date: January 8, 2015
    Applicant: RESEARCH & BUSINESS FOUNDATION SUNGKYUNKWAN UNIVERSITY
    Inventors: Dae Ho YOON, Suk Hyun SONG, Masaki TAKAKI
  • Patent number: 8927154
    Abstract: A spherical primary particle of a lithium titanium oxide of which average diameter is in the range of about 1 to about 20 ?m, a method of preparing the spherical primary particle of the lithium titanium oxide, and a lithium rechargeable battery including the spherical primary particle of the lithium titanium oxide.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: January 6, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jong-Hee Lee, Young-Su Kim, Jae-Myung Kim, Kyu-Nam Joo, So-Ra Lee, Deok-Hyun Kim, Gu-Hyun Chung, Beom-Kwon Kim, Yong-Mi Yu
  • Publication number: 20140374642
    Abstract: Methods for forming lead zirconate titanate (PZT) nanoparticles are provided. The PZT nanoparticles are formed from a precursor solution, comprising a source of lead, a source of titanium, a source of zirconium, and a mineraliser, that undergoes a hydro thermal process. The size and morphology of the PZT nanoparticles are controlled, in part, by the heating schedule used during the hydro thermal process.
    Type: Application
    Filed: August 17, 2012
    Publication date: December 25, 2014
    Applicant: University of Washington through its Center for Commercialization
    Inventors: I-Yeu Shen, Guozhong Cao, Hsien-Lin Huang
  • Publication number: 20140363367
    Abstract: A process for the preparation of Li4Ti5O12 by a novel, low-cost route from titanium tetrachloride is described. In the process disclosed herein, conditions have been discovered which result in the preparation of Li4Ti5O12 having a high purity and a high surface area. These properties are useful for good performance in a lithium ion battery.
    Type: Application
    Filed: June 5, 2013
    Publication date: December 11, 2014
    Inventor: SANG-HWAN KIM
  • Publication number: 20140363366
    Abstract: A process for the preparation of Li4Ti5O12 by a novel, low-cost route from titanium tetrachloride is described. In the process disclosed herein, conditions have been discovered which result in the preparation of Li4Ti5O12 having a high purity and a high surface area. These properties are useful for good performance in a lithium ion battery.
    Type: Application
    Filed: June 5, 2013
    Publication date: December 11, 2014
    Inventor: JEFFERY SCOTT THOMPSON
  • Publication number: 20140363368
    Abstract: The present invention relates to titanium dioxide nanoparticles, titanate, lithium titanate nanoparticles, and preparation methods thereof. According to the present invention, titanium dioxide nanoparticles having a quasicrystalline phase corresponding to an intermediate form between a crystalline phase and an amorphous phase may be provided.
    Type: Application
    Filed: December 27, 2012
    Publication date: December 11, 2014
    Inventors: Dong Hyun Kim, Jhi-Yong Kim, Juno Seok, Seok-Mo Chung, Jong Son
  • Patent number: 8906272
    Abstract: An infra-red reflective material is a perovskite-like multiple oxide which includes at least an alkaline-earth metal and at least one type of element selected from a group of titanium, zirconium and niobium, and further, if necessary, manganese and/or iron, an element belonging to the IIIa group of the periodic table such as aluminum and gallium, etc., or zinc, etc., has sufficient infra-red reflective power, is excellent in thermal stability and heat resistance, and does not raise concerns on safety and environmental issues. The infra-red reflective material can be produced by, for example, mixing an alkaline-earth metal compound and a titanium compound and further, if necessary, a manganese compound and/or an iron compound, a compound belonging to the IIIa group of the periodic table, or a zinc compound in predetermined amounts, and firing the mixture.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: December 9, 2014
    Assignee: Ishihara Sangyo Kaisha, Ltd.
    Inventors: Yoichi Takaoka, Norihiko Sanefuji, Emi Ohta