Titanium Dioxide Patents (Class 423/610)
  • Patent number: 8377414
    Abstract: This disclosure provides a process for preparing mesoporous amorphous hydrous oxide of titanium, comprising formation of a precipitate comprising an ionic porogen and a hydrolyzed compound comprising titanium from an aqueous mixture in the pH range of 5 to 10; and removing the ionic porogen from the precipitate to recover a mesoporous hydrous oxide of titanium, the ionic porogen being in sufficient amount and the conditions of precipitating being effective for producing a mesoporous hydrous oxide of titanium having a surface area of at least about 400 m2/g and a pore volume of at least 0.4 cc/g.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: February 19, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventor: Carmine Torardi
  • Publication number: 20130034491
    Abstract: The present application discloses a shape preserving chemical transformation of ZnO mesostructures into anatase TiO2 mesostructures using controlled low temperature TiCl4 treatment for optoelectronic applications.
    Type: Application
    Filed: June 1, 2012
    Publication date: February 7, 2013
    Applicant: Council of Scientific & Industrial Research
    Inventors: Subas Kumar MUDULI, Vivek Vishnu DHAS, Onkar Sharad GAME, Ashish Prabhakar YENGANTIWAR, Abhik BANERJEE, Satishchandra Balakrishna OGALE
  • Publication number: 20130035399
    Abstract: The subject matter of the present invention is marked inorganic additives, a method for their production and also their use.
    Type: Application
    Filed: September 21, 2012
    Publication date: February 7, 2013
    Applicant: SACHTLEBEN CHEMIE GMBH
    Inventor: SACHTLEBEN CHEMIE GMBH
  • Patent number: 8367579
    Abstract: A self-cleaning surface coating is easy and inexpensive to produce because it has only a simple titanium dioxide layer.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: February 5, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rudolf Gensler, Heinrich Kapitza, Heinrich Zeininger
  • Patent number: 8357628
    Abstract: The present invention is a process for making an inorganic/organic hybrid totally porous spherical silica particles by self assembly of surfactants that serve as organic templates via pseudomorphic transformation.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 22, 2013
    Assignee: Agilent Technologies, Inc.
    Inventors: Ta-Chen Wei, Wu Chen, William E. Barber
  • Patent number: 8357348
    Abstract: The present invention relates to a method for preparing anatase-type titanium dioxide (TiO2) nanoparticles, the method comprising the steps of: uniformly mixing titanium n-butoxide and cetyltrimethyl ammonium salt (CTAS) in water; subjecting the mixture to hydrothermal treatment at a temperature of 60˜120° C.; and collecting anatase-type titanium dioxide nanoparticles produced by the hydrothermal treatment and drying the collected nanoparticles. According to the present invention, anatase-type titanium dioxide nanoparticles having excellent crystallinity can be easily prepared in large amounts by a simple process without needing heat treatment.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: January 22, 2013
    Assignee: Korea Basic Science Institute
    Inventors: Hae Jin Kim, Soon Chang Lee, Jin Bae Lee
  • Publication number: 20130008748
    Abstract: A friction disc (2) with an anti-abrasion layer (1) and integrated wear indication, the friction disc (2) having a friction surface (2?) which is completely covered by the anti-abrasion layer (1). At least one indication surface element (3) which occupies a part of the friction surface (2?) and differs from at least one of the components friction surface (2?) and anti-abrasion layer (1) of the friction disc (2) in at least one of the features coloring and texture is provided between the anti-abrasion layer (1) and the friction disc (2). Compositions of the anti-abrasion layer (1) of the friction disc (2).
    Type: Application
    Filed: March 16, 2011
    Publication date: January 10, 2013
    Applicant: DAIMLER AG
    Inventors: Oliver Lembach, Ralph Mayer
  • Publication number: 20130012598
    Abstract: Nanofibers are fabricated in a continuous process by introducing a polymer solution into a dispersion medium, which flows through a conduit and shears the dispersion medium. Liquid strands, streaks or droplets of the polymer solution are continuously shear-spun into elongated fibers. An inorganic precursor may be introduced with the polymer solution, resulting in fibers that include inorganic fibrils. The resulting composite inorganic/polymer fibers may be provided as an end product. Alternatively, the polymer may be removed to liberate the inorganic fibrils, which may be of the same or smaller cross-section as the polymer fibers and may be provided as an end product.
    Type: Application
    Filed: May 16, 2012
    Publication date: January 10, 2013
    Inventors: ORLIN D. VELEV, STOYAN SMOUKOV, PETER GEISEN, MILES C. WRIGHT, SUMIT GANGWAL
  • Patent number: 8343665
    Abstract: According to one embodiment, a negative electrode active material includes a compound having a crystal structure of monoclinic titanium dioxide. The compound has a highest intensity peak detected by an X-ray powder diffractometry using a Cu-K? radiation source. The highest intensity peak is a peak of a (001) plane, (002) plane, or (003) plane. A half-width (2?) of the highest intensity peak falls within a range of 0.5 degree to 4 degrees.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: January 1, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yasuhiro Harada, Norio Takami, Hiroki Inagaki, Keigo Hoshina, Yuki Otani
  • Patent number: 8337799
    Abstract: The invention relates to a method for producing nanoparticles of at least one oxide of a transition metal selected from Ti, Zr, Hf, V, Nb and Ta, which are coated with amorphous carbon, wherein said method includes the following successive steps: (i) a liquid mixture containing as precursors at least one alkoxyde of the transition metal, an alcohol, and an acetic acid relative to the transition metal is prepared and diluted in water in order to form an aqueous solution, the precursors being present in the solution according to a molar ratio such that it prevents or sufficiently limits the formation of a sol so that the aqueous solution can be freeze-dried, and such that the transition metal, the carbon and the oxygen are present in a stoichiometric ratio according to which they are included in the nanoparticles; (ii) the aqueous solution is freeze-dried; (ii) the freeze-dried product obtained during the preceding step is submitted to pyrolysis under vacuum or in an inert atmosphere in order to obtain the nano
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: December 25, 2012
    Assignees: Commissariat a l'Energie Atomique-CEA, Ecole Centrale de Paris-ECP, Centre National de la Recherche Scientifique (CNRS)
    Inventors: Christine Bogicevic, Fabienne Karolak, Gianguido Baldinozzi, Mickael Dollé, Dominique Gosset, David Simeone
  • Publication number: 20120319004
    Abstract: A self-cleaning material is generally described that may include a substrate having a first surface. A self-cleaning layer of aligned nanotube structures may be formed on the first surface of the substrate, where absorption of light by the nanotube structures may cause a change in state of the self-cleaning material based on an angle of incidence of the light and an orientation vector corresponding to the layer of aligned nanotube structures.
    Type: Application
    Filed: August 28, 2012
    Publication date: December 20, 2012
    Inventors: Charles A. Eldering, Edward A. Ehrlacher
  • Publication number: 20120316570
    Abstract: The present invention is based on that local administration of strontium ions in bone tissue has been found to improve the bone formation and bone mass upon implantation of a bone tissue implant in said bone tissue. In particular, the invention relates to a bone tissue implant having an implant surface covered by an oxide layer comprising strontium ions and a method for the manufacture thereof. A blasting powder comprising strontium ions, a method for locally increasing bone formation, and the use of strontium ions or a salt thereof for manufacturing a pharmaceutical composition for locally increasing bone formation are also provided by the present invention.
    Type: Application
    Filed: August 21, 2012
    Publication date: December 13, 2012
    Applicant: Astra Tech AB
    Inventors: Christina GRETZER, Ingela Petersson
  • Patent number: 8329139
    Abstract: The present invention relates to an industrial applicable process for the preparation of materials with nanometric dimensions and controlled shape, based on titanium dioxide. The invention also relates to a process for the preparation of titanium dioxide nanorods with anatase phase composition, which are highly suitable for applications involving photovoltaic cells, particularly Dye Sensitized Solar Cells (DSSC), photoelectrolysis cells and tandem cells for the conversion of solar energy and the production of hydrogen.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: December 11, 2012
    Assignee: Daunia Solar Cell, S.r.l.
    Inventors: Giuseppe Ciccarella, Roberto Cingolani, Luisa De Marco, Giuseppe Gigli, Giovanna Melcarne, Francesca Martina, Francesco Matteucci, Jolanda Spadavecchia
  • Publication number: 20120308476
    Abstract: A method of forming a metal oxide nanostructure comprises disposing a chelated oligomeric metal oxide precursor on a solvent-soluble template to form a first structure comprising a deformable chelated oligomeric metal oxide precursor layer; setting the deformable chelated oligomeric metal oxide precursor layer to form a second structure comprising a set metal oxide precursor layer; dissolving the solvent-soluble template with a solvent to form a third structure comprising the set metal oxide precursor layer; and thermally treating the third structure to form the metal oxide nanostructure.
    Type: Application
    Filed: August 10, 2012
    Publication date: December 6, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ho-Cheol Kim, Robert D. Miller, Oun Ho Park
  • Patent number: 8323613
    Abstract: The manufacture of titanium dioxide by oxidation of titanium tetrachloride in a plug flow reactor, wherein the titanium tetrachloride is introduced into the reactor in at least two stages and is used exclusively in liquid form. The total quantity of liquid TiCl4 used is split up in several stages. A small quantity is added in the first stage in order to start combustion despite using the liquid phase. In the first phase, the activation energy required is provided solely via the preheated oxygen. In all other stages, the activation energy is provided by the preheated oxygen and the reaction enthalpy of TiCl4 oxidation released in the upstream stages.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: December 4, 2012
    Assignee: Kronos International, Inc.
    Inventor: Rainer Gruber
  • Patent number: 8318127
    Abstract: Exemplary embodiments provide materials and methods of forming a metal oxide composite and a porous metal oxide, which can be used for applications including catalysis, sensors, energy storage, solar cells, heavy metal removal and separations, etc. In one embodiment, a one-step solvothermal process can be used to form the metal oxide phase with high crystallinity and high surface area.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: November 27, 2012
    Assignee: STC.UNM
    Inventors: Xingmao Jiang, C. Jeffrey Brinker
  • Publication number: 20120294914
    Abstract: A particulate titanium dioxide has a median volume particle diameter of greater than 70 nm. The titanium dioxide can be produced by calcining precursor particles. The titanium dioxide has enhanced UVA efficacy. The particulate titanium dioxide can be used to form dispersions. The particulate titanium dioxide or dispersions can be used to produce sunscreen products having a UV protection which is at least one third of the label SPF value.
    Type: Application
    Filed: December 22, 2010
    Publication date: November 22, 2012
    Applicant: Croda International PLC
    Inventors: Ian Robert Tooley, Robert Michael Sayer, Paul Martin Staniland
  • Publication number: 20120288711
    Abstract: Titanium dioxide which includes particles having a large major-axis length in a large proportion and comprises columnar particles having a satisfactory particle size distribution. A titanium compound, an alkali metal compound, and an oxyphosphorus compound are heated/fired in the presence of titanium dioxide nucleus crystals having an aspect ratio of 2 or higher to grow the titanium dioxide nucleus crystals. Subsequently, a titanium compound, an alkali metal compound, and an oxyphosphorus compound are further added and heated/fired in the presence of the grown titanium dioxide nucleus crystals. Thus, titanium dioxide is produced which comprises columnar particles having a weight-average major-axis length of 7.0-15.0 ?m and in which particles having a major-axis length of 10 ?m or longer account for 15 wt. % or more of all the particles.
    Type: Application
    Filed: June 4, 2012
    Publication date: November 15, 2012
    Inventors: Kaoru ISOBE, Katsuichi Chiba, Takanori Sakamoto
  • Patent number: 8309042
    Abstract: The disclosure provides a process for recycling ore in the chloride process, without the build-up of silica-containing gangue in the chlorination reactor.
    Type: Grant
    Filed: January 23, 2008
    Date of Patent: November 13, 2012
    Assignee: E I du Pont de Nemours and Company
    Inventors: Matthew Donnel Eisenmann, Jorge Lavastida, Timothy Josiah McKeon, James Elliott Merkle, Jr.
  • Publication number: 20120282165
    Abstract: Processes for the production of euhedral rutile titanium dioxide from titanyl hydroxide using calcination with a flux are provided. Calcination in the presence of sodium chloride flux has been found to lower the calcination temperature used to produce the rutile form of titanium dioxide and to improve control of particle size.
    Type: Application
    Filed: October 31, 2011
    Publication date: November 8, 2012
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventor: CARMINE TORARDI
  • Publication number: 20120275991
    Abstract: A method for producing nanoscale particles by means of ionic liquids produces highly crystalline particles. The ionic liquids can be easily regenerated.
    Type: Application
    Filed: December 15, 2010
    Publication date: November 1, 2012
    Applicant: Leibniz-Institut fuer Neue Materialien gemeinnuetzige GmbH
    Inventors: Peter William de Oliveira, Hechun Lin, Michael Veith
  • Patent number: 8298507
    Abstract: A process for producing a fine particulate titanium dioxide, comprising charging a fine particulate titanium dioxide powder in a resin bag, spraying water droplets having a liquid droplet diameter of 5 to 500 ?m to the powder in the bag, and closing the bag for storing the powder in the bag.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: October 30, 2012
    Assignee: Showa Denko K.K.
    Inventors: Hisao Kogoi, Susumu Kayama, Jun Tanaka
  • Patent number: 8298506
    Abstract: Titanium dioxide particles is doped with a rare earth element. The doping ratio of the rare earth element is within a range more than 0 at % and not more than 5.0 at %, and the rare earth element is substituted for titanium atoms in the unit lattice of titanium dioxide so that the titanium dioxide particles emit light attributable to the rare earth element when the titanium dioxide particles are irradiated with light having the absorption wavelength of titanium dioxide and showing a peak at 360 nm.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: October 30, 2012
    Assignee: National Institute for Materials Science
    Inventors: Jiguang Li, Takamasa Ishigaki
  • Patent number: 8295786
    Abstract: The present invention provides a magnetic sheet with improved resistance to folding while maintaining good magnetic characteristics and reliability; a method for producing the magnetic sheet; an antenna; and a portable communication device. A magnetic sheet of the present invention includes a flat magnetic powder, and a resin binder capable of dissolving in a solvent, wherein the magnetic sheet has a gradient of the content ratio of the magnetic powder to the resin binder in a thickness direction thereof, wherein, in use, the magnetic sheet is folded so that, of the front and back surfaces thereof, one surface whose magnetic powder content is lower than that of the other is folded inward, and wherein the difference in glossiness measured at a light-incident angle of 60° between the front and back surfaces is 9.4 or more.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: October 23, 2012
    Assignee: Sony Chemical & Information Device Corporation
    Inventors: Keisuke Aramaki, Junichiro Sugita, Morio Sekiguchi
  • Patent number: 8282906
    Abstract: A method of synthesizing nanoparticles, comprising providing a precursor comprising a titanium alkoxide compound; forming a plasma from oxygen gas at a first location, wherein the plasma comprises plasma products that contain oxygen atoms; causing the plasma products to flow to a second location remote from the first location; contacting the precursor with the plasma products at the second location so as to oxidize the precursor and form nanoparticles; and collecting the nanoparticles with a collector.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: October 9, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Rajesh K. Katare, Moses M. David
  • Patent number: 8273322
    Abstract: A sulfate process for producing titania from a titaniferous material (such as an iron-containing titaniferous material; such as ilmenite) is disclosed. The process includes precipitating titanyl sulfate from a process solution produced in the process. The titanyl sulfate precipitation step includes subjecting the precipitated titanyl sulfate to a shearing action during the course of precipitating titanyl sulfate from the process solution or after precipitation has been completed.
    Type: Grant
    Filed: September 6, 2007
    Date of Patent: September 25, 2012
    Assignee: BHP Billiton Innovation Pty. Ltd.
    Inventors: Eric Girvan Roche, Philip Ernest Grazier, Alan David Stuart
  • Patent number: 8273413
    Abstract: A method of forming a metal oxide nanostructure comprises disposing a chelated oligomeric metal oxide precursor on a solvent-soluble template to form a first structure comprising a deformable chelated oligomeric metal oxide precursor layer; setting the deformable chelated oligomeric metal oxide precursor layer to form a second structure comprising a set metal oxide precursor layer; dissolving the solvent-soluble template with a solvent to form a third structure comprising the set metal oxide precursor layer; and thermally treating the third structure to form the metal oxide nanostructure.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: September 25, 2012
    Assignee: International Business Machines Corporation
    Inventors: Ho-Cheol Kim, Robert D. Miller, Oun Ho Park
  • Patent number: 8268203
    Abstract: A method for producing microcrystalline titanium dioxide in the rutile form having a crystal size below 15 nm by an aqueous method, and a titanium dioxide product doped with silicon obtained by the method. The method generally includes adding a silicon containing compound during crystal formation to provide said titanium dioxide product with a small crystal size.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: September 18, 2012
    Assignee: Sachtleben Pigments Oy
    Inventors: Ralf-Johan Lamminmäki, Johanna Niinimäki
  • Patent number: 8268175
    Abstract: A method for transferring inorganic oxide nanoparticles from aqueous phase to organic phase. A modifier is used to change the surface polarity of inorganic oxide nanoparticles, followed by using proper solvents to transfer the modified inorganic oxide nanoparticles form aqueous phase to organic phase. The organic dispersion of modified inorganic oxide nanoparticles can be combined with a polymer to provide a polymer composite with the nanoparticles uniformly dispersed therein.
    Type: Grant
    Filed: September 2, 2009
    Date of Patent: September 18, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Guang-Way Jang, Yin-Ju Yang, Mei-Chih Hung, Hsiu-Yu Cheng, Jian-Yi Hang, Jen-Min Chen, Shu-Jiuan Huang
  • Patent number: 8268268
    Abstract: A method for preparing titania or precursor thereof with a controllable structure from micropore to mesopore is provided. The method is characterized in that the alkali metal titanate as raw material is reacted for 0.5˜72 hours in the wet atmosphere with humidity of 2˜100% at temperature of 20˜250° C., then washed with water or acid, finally performed by air roasting or solvent thermal treatment. The method has advantages that the raw material is easy to be obtained, the conditions and preparation are controllable, the pore structure may be adjusted from micropore to mesopore, crystal mixing and doping are easy, reacting time is short, preparing cost is low, and the said method is suitable for large scale production and so on. The most probable aperture of titanium oxide or precursor thereof with a controllable structure from micropore to mesopore is in the range of 1˜20 nm, the pore volume thereof is in the range of 0.05˜0.4 cm3/g, and the specific surface area thereof is more than 30 m2/g.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: September 18, 2012
    Assignees: Nanjing University of Technology, Nanjing Taiwei Technology Co., Ltd.
    Inventors: Xiaohua Lu, Yaxin Zhou, Chang Liu, Xin Feng, Zhuhong Yang, Changsong Wang
  • Publication number: 20120225355
    Abstract: The present invention relates to the preparation of a mesoporous substantially pure anatase titanium oxide (meso-TiO2) and its use in electrochemical devices, in particular lithium-ion batteries.
    Type: Application
    Filed: November 8, 2010
    Publication date: September 6, 2012
    Inventors: Palani Balaya, Ananthanarayanan Krishnamoorthy, Saravanan Kuppan
  • Patent number: 8257679
    Abstract: A technique for bonding an organic group with the surface of fine particles such as nanoparticles through strong linkage is provided, whereas such fine particles are attracting attention as materials essential for development of high-tech products because of various unique excellent characteristics and functions thereof. Organically modified metal oxide fine particles can be obtained by adapting high-temperature, high-pressure water as a reaction field to bond an organic matter with the surface of metal oxide fine particles through strong linkage. The use of the same condition enables not only the formation of metal oxide fine particles but also the organic modification of the formed fine particles. The resulting organically modified metal oxide fine particles exhibit excellent properties, characteristics and functions.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: September 4, 2012
    Assignee: Tohoku Techno Arch Co., Ltd.
    Inventor: Tadafumi Ajiri
  • Patent number: 8247343
    Abstract: The present invention is directed to compositions and processes for the production of stable, alkaline, high solids, low viscosity, low surface tension, low flammability, sub-micron titania sols that have minimal offensive odor and methods of their use. Compositions of the present invention include, for example, mixtures of strong and weak organic bases used as dispersants to stabilize the titania sols. The dispersant mixtures have been found to result in relatively high titania solids content, low surface tension, low viscosity suspensions that are low in flammability. Sols produced according to the present invention can be used, for example, in catalytic applications such as catalyst supports for diesel emission control, or in pollutant photocatalyst applications in which it is desirable to have the titania in sol form.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: August 21, 2012
    Inventor: David M. Chapman
  • Patent number: 8241604
    Abstract: A method for making a metal-titania pulp and photocatalyst is provided, including firstly acidically hydrolyzing a titanium alkoxide solution in presence of an alcohol solvent to get a colloidal solution; then, adding at least one metal salt solution into the colloidal solution to produce a nano-porous metal/titania photocatalyst under appropriate conditions by appropriate reaction. The nano-porous metal/titania photocatalyst thus prepared has excellent optical activity and is applicable in research of water decomposition with light to improve production efficiency of hydrogen energy. In addition, the photocatalyst is further processed in the form of powder or film to facilitate industrial application in wastewater treatment.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: August 14, 2012
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Jen-Chieh Chung, Yu-Zhen Zeng, Yu-Chang Liu, Yun-Fang Lu
  • Patent number: 8226911
    Abstract: A method is provided for producing TiO2 nanoparticles. The nanoparticles can be further processed by neutralization, calcination, and/or micronization. The TiO2 nanoparticle size is controlled by controlling synthetic and process conditions. TiO2 nanoparticles produced are of the anatase polymorph, of the rutile polymorph, or a mixture thereof, and have particle sizes in the range of from 10 nm to 100 nm.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: July 24, 2012
    Assignee: The National Titanium Dioxide Co., Ltd. (Cristal)
    Inventors: Ahmed Y. Vakayil, Sami M. Bashir, Fadi M. S. Trabzuni
  • Publication number: 20120183836
    Abstract: According to one embodiment, a negative electrode active material for a nonaqueous electrolyte battery is provided. The active material includes a titanium oxide compound having a crystal structure of a monoclinic titanium dioxide and having a crystallite, the crystallite having a crystallite size of 5 to 25 nm when it is calculated by using the half width of the peak of a (110) plane obtained by a powder X-ray diffraction (XRD) method using a Cu-K? ray.
    Type: Application
    Filed: January 31, 2012
    Publication date: July 19, 2012
    Inventors: Yasuhiro HARADA, Norio TAKAMI, Hiroki INAGAKI, Keigo HOSHINA, Yuki OTANI
  • Patent number: 8221655
    Abstract: This invention pertains to mesoporous oxide of titanium and processes of making mesoporous oxide of titanium particularly crystalline oxide of titanium.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: July 17, 2012
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Carmine Torardi
  • Publication number: 20120171113
    Abstract: The present invention relates to a process for the preparation of materials with nanometric dimensions and controlled shape, based on titanium dioxide. The invention also relates to a process for the preparation of titanium dioxide nanorods and nanocubes with anatase phase composition, which are highly suitable for photocatalytic use, in particular for applications involving photovoltaic cells, for example Dye Sensitized Solar Cells (DSSC), photoelectrolysis cells and tandem cells for the conversion of solar energy and the production of hydrogen.
    Type: Application
    Filed: July 15, 2010
    Publication date: July 5, 2012
    Applicant: DAUNIA SOLAR CELL S.R.L.
    Inventors: Isabella Zama, Francesco Matteucci, Christian Martelli, Giuseppe Ciccarella
  • Patent number: 8207085
    Abstract: A photocatalytic coating composition comprising photocatalytic titanium oxide, silver, copper and a quaternary ammonium hydroxide. The photocatalytic coating composition may include a photocatalytic titanium oxide sol dispersed in a binder. Furthermore, a photocatalytic member includes a substrate having a surface coated with the photocatalytic coating composition. The photocatalyst coating composition can contain highly antibacterial silver by skillfully utilizing copper and a quaternary ammonium hydroxide, and accordingly can show an antibacterial effect not only in a dark place simply due to silver, but also a higher antibacterial effect in a conventional application of employing ultraviolet sterilization by concomitantly using the photocatalyst titanium oxide sol according to the present invention and an ultraviolet sterilizer.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: June 26, 2012
    Assignees: Taki Chemical Co., Ltd., Toto Ltd.
    Inventors: Taketoshi Kuroda, Hiroyuki Izutsu, Isamu Yamaguchi, Yoshiyuki Nakanishi
  • Publication number: 20120152336
    Abstract: Aggregate particles comprising titanium dioxide (TiO2) nanotubes, methods for making the aggregate particles, photoelectrodes for solar cells including aggregate particles of nanomaterials, methods for making the photoelectrodes, and solar cells that include the photoelectrodes.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 21, 2012
    Applicants: PACIFIC NORTHWEST NATIONAL LABORATORY, UNIVERSITY OF WASHINGTON
    Inventors: Guozhong Cao, Xiaoyuan Zhou, Jun Liu, Zimin Nie, Qifeng Zhang
  • Publication number: 20120156492
    Abstract: The invention relates to a feedstock for reduction in an electrolytic cell, for example a non-metallic feedstock that can be reduced to metal on a commercial scale. The feedstock comprises a plurality of three-dimensional elements which are shaped such that a volume of the feedstock has between 35% and 90% free space (not including any microscopic porosity of the elements). The elements are also shaped as randomly-packable elements to minimise any settling, ordering or alignment of the feedstock, which would otherwise hinder or prevent fluid flow and/or current flow through the feedstock.
    Type: Application
    Filed: June 18, 2010
    Publication date: June 21, 2012
    Applicant: METALYSIS LIMITED
    Inventors: Peter G. Dudley, Allen Richard Wright
  • Publication number: 20120148479
    Abstract: Disclosed is a reactor, a retained catalyst structure, and a method for increasing the rate of decomposition of polysulfides and removal of hydrogen sulfide in liquid sulfur. The reactor, the retained catalyst structure, and the method include a retained catalyst structure arranged and disposed for contacting a first stream and a second stream in a reactor including a catalyst. The catalyst increases the rate of decomposition of polysulfides and facilitates the removal of hydrogen sulfide in the liquid sulfur of the first stream with the second stream. The first stream includes liquid sulfur containing polysulfides and dissolved hydrogen sulfide. The second stream includes an inert gas or a low oxygen-containing gas.
    Type: Application
    Filed: December 8, 2010
    Publication date: June 14, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Uday Navin Parekh, Stephen Neal Fenderson, Diwakar Garg, Guglielmo Nasato
  • Publication number: 20120132515
    Abstract: Provided are: novel rutile titanium dioxide nanoparticles each having a high photocatalytic activity; a photocatalyst including the rutile titanium dioxide nanoparticles; and a method for oxidizing an organic compound using the photocatalyst. The rutile titanium dioxide nanoparticles each have an exposed crystal face (001). The rutile titanium oxide nanoparticles may be produced by subjecting a titanium compound to a hydrothermal treatment in an aqueous medium in the presence of a hydrophilic polymer. A polyvinylpyrrolidone, for example, is used as the hydrophilic polymer. An organic compound having an oxidizable moiety can be oxidized with molecular oxygen or a peroxide under photoirradiation in the presence of the photocatalyst including the rutile titanium oxide nanoparticles.
    Type: Application
    Filed: July 13, 2010
    Publication date: May 31, 2012
    Applicant: DAICEL CORPORATION
    Inventor: Teruhisa Ohno
  • Publication number: 20120128963
    Abstract: An embodiment of a superhydrophilic nanostructure includes nanoparticles. The nanoparticles are formed into porous clusters. The porous clusters are formed into aggregate clusters. An embodiment of an article of manufacture includes the superhydrophilic nanostructure on a substrate. An embodiment of a method of fabricating a superhydrophilic nanostructure includes applying a solution that includes nanoparticles to a substrate. The substrate is heated to form aggregate clusters of porous clusters of the nanoparticles.
    Type: Application
    Filed: May 6, 2010
    Publication date: May 24, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Samuel S. Mao, Vasileia Zormpa, Xiaobo Chen
  • Patent number: 8184930
    Abstract: A titania nanotube suitable as an optical sensor or gas sensor is provided. The titania nanotube has a length of 1 ?m or more; preferably a diameter of 0.1 ?m or less and an aspect ratio of 100 or more.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: May 22, 2012
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Akira Hasegawa, Kazuyuki Hirao
  • Patent number: 8182602
    Abstract: The invention relates to a method of preparing a well-dispersable, rutile-structured, microcrystalline titanium dioxide product, a product prepared by the method, and an effect paint and a lacquer provided by means of the product. In the method, the titanium dioxide starting material is first treated with a base to have an alkaline pH value, after which it is treated with an acid to have a hydrochloric acid content of 8 to 30 g/l, neutralized, processed, and calcinated. In particular, the preparation method is characterized by the use of a pretreatment chemical before the calcination stage to improve the dispersability.
    Type: Grant
    Filed: August 15, 2008
    Date of Patent: May 22, 2012
    Assignee: Sachtleben Pigments Oy
    Inventors: Ralf-Johan Lamminmäki, Esa Latva-Nirva, Riitta Linho, Johanna Niinimäki, Visa Vehmanen
  • Patent number: 8178073
    Abstract: The present invention relates to a method of manufacturing titania nanoparticles, and specifically to a method of manufacturing titania nanoparticles wherein the particle size is uniform, it is possible to manufacture monodisperse particles without aggregation among particles, a uniform coating can be applied, that is suitable to large-scale production, and that can obtain high-resolution images by maintaining the toner electric charge and electric charge distribution; and the developer included in said titania nanoparticles.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: May 15, 2012
    Assignee: Sukgyung AT Co., Ltd.
    Inventors: Hyung Sup Lim, Hyung Joon Lim, Young Cheol Yoo, Osung Kwon
  • Publication number: 20120115032
    Abstract: According to one embodiment, a negative electrode active material includes a compound having a crystal structure of monoclinic titanium dioxide. The compound has a highest intensity peak detected by an X-ray powder diffractometry using a Cu-K? radiation source. The highest intensity peak is a peak of a (001) plane, (002) plane, or (003) plane. A half-width (2?) of the highest intensity peak falls within a range of 0.5 degree to 4 degrees.
    Type: Application
    Filed: November 15, 2011
    Publication date: May 10, 2012
    Inventors: Yasuhiro HARADA, Norio Takami, Hiroki Inagaki, Keigo Hoshina, Yuki Otani
  • Patent number: 8173098
    Abstract: A catalyst for treating exhaust gases having excellent durability and performance for removing nitrogen oxides and organic halogen compounds and a low SO2 oxidation rate, a titanium oxide suitable for preparing the catalyst and a method for treating exhaust gases containing nitrogen oxides and/or organic halogen compounds using the catalyst are provided. The BET specific surface areas of the titanium oxide and the catalyst for treating exhaust gases are in the range of 85 to 250 m2/g and in the range of 50 to 200 m2/g respectively. The titanium oxide and the catalyst for treating exhaust gases have each a ratio in the range of 15 to 145%, the ratio of the intensity of the peak indicating an anatase crystal present in the range of 2?=24.7° to 2?=25.7° of powder X-ray diffraction thereof (Ia) to the intensity of the peak indicating an anatase crystal present in the range of 2?=24.7° to 2?=25.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: May 8, 2012
    Assignee: Nippon Shokubai Co., Ltd.
    Inventors: Atsushi Morita, Ryoji Kuma, Shinyuki Masaki, Motonobu Kobayashi
  • Publication number: 20120107671
    Abstract: An isolated salt comprising a compound of formula (H2X)(TiO(Y)2) or a hydrate thereof, wherein X is 1,4-diazabicyclo[2.2.2]octane (DABCO), and Y is oxalate anion (C2O4?2), when heated in an oxygen-containing atmosphere at a temperature in the range of at least about 275° C. to less than about 400° C., decomposes to form an amorphous titania/carbon composite material comprising about 40 to about 50 percent by weight titania and about 50 to about 60 percent by weight of a carbonaceous material coating the titania. Heating the composite material at a temperature of about 400 to 500° C. crystallizes the titania component to anatase. The titania materials of the invention are useful as components of the anode of a lithium or lithium ion electrochemical cell.
    Type: Application
    Filed: October 28, 2010
    Publication date: May 3, 2012
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: John T. Vaughey, Andrew Jansen, Christopher D. Joyce