Titanium Dioxide Patents (Class 423/610)
  • Publication number: 20080260626
    Abstract: A powdery photocatalyst based on titanium dioxide displays a bimodal particle size distribution of primary particles, with one particle component under about 30 nm and a second particle component over about 100 nm. The photocatalyst is manufactured by mixing at least two TiO2 components. One component is a TiO2 photocatalyst which is active in UV light and/or in visible light and which displays a specific surface according to BET of at least about 120 m2/g. The second component is anatase and/or rutile displaying a specific surface according to BET of less than about 50 m2/g. The two components are contained in the photocatalyst at a weight ratio of 1:1000 to 1000:1.
    Type: Application
    Filed: March 11, 2008
    Publication date: October 23, 2008
    Inventors: Stephan Peter Bloss, Bruno Charruey, Lothar Elfenthal, Peter Gross, Volker Schmitt
  • Patent number: 7431903
    Abstract: The process for preparing tubular titanium oxide particles comprises subjecting a water dispersion sol, which is obtained by dispersing (i) titanium oxide particles and/or (ii) titanium oxide type composite oxide particles comprising titanium oxide and an oxide other than titanium oxide in water, said particles having an average particle diameter of 2 to 100 nm, to hydrothermal treatment in the presence of an alkali metal hydroxide. After the hydrothermal treatment, reduction treatment (including nitriding treatment) may be carried out. The tubular titanium oxide particles obtained in this process are useful as catalysts, catalyst carriers, adsorbents, photocatalysts, decorative materials, optical materials and photoelectric conversion materials. Especially when the particles are used for semiconductor films for photovoltaic cells or photocatalysts, prominently excellent effects are exhibited.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: October 7, 2008
    Assignee: Catalysts & Chemicals Industries Co., Ltd.
    Inventors: Tsuguo Koyanagi, Katsuhiro Shirono, Atsushi Tanaka, Michio Komatsu
  • Publication number: 20080241123
    Abstract: A micelle formable from at least one nanotube in a process of self-assembly, the nanotube comprising an amphophilic nanotube (2, 8, 14) made from one or more species selected from the group of carbon, silicon, a noble metal, silicon dioxide and titanium dioxide. A part of the nanotube (2, 8, 14) is functionalised and a surfactant molecule or emulsifying agent is attached to the functionalised part. The nanotube (2, 8, 14) may have magnetic properties. A therapeutic agent may be incorporated in the micelle. The micelle may be coated to form a capsule (24). The capsule (24) can be introduced to the human or animal body for treatment of tumors or targeted drug delivery when a magnetic field or near-IR radiation is applied.
    Type: Application
    Filed: April 14, 2008
    Publication date: October 2, 2008
    Inventor: Dewan Fazlul Hoque Chowdhury
  • Patent number: 7429364
    Abstract: A sulfate process for producing titania from a titaniferous material is disclosed. The process includes leaching the titaniferous material and producing a leach liquor, precipitating iron sulfate from the leach liquor, solvent extraction of titanyl sulfate from leach liquor, hydrolysis of the extracted titanyl sulfate, and thereafter calcining the solid phase produced in the hydrolysis step. The process is characterised by using at least part of the raffinate from the solvent extraction step as at least part of the leach solution in the initial leach step.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: September 30, 2008
    Assignee: BHP Billiton Innovation Pty. Ltd.
    Inventors: Eric Girvan Roche, Alan David Stuart, Philip Ernest Grazier
  • Publication number: 20080223713
    Abstract: The present invention involves increasing the quantum efficiency in titania photocatalysts for photocatalytic (oxidation of acetaldehyde) and photosynthetic (photosplitting of water) reactions by integrating the titania photocatalyst with a polar mineral having surface electrical fields due to pyroelectric and piezoelectric effects, and by adjusting the nanostructure of the photocatalyst materials. The photocatalytic reactivity of titania powder is increased due to the effect of electric field present on the surface of polar mineral material on the photocatalytic effect of commercial titania with respect to photolysis of water. Additionally, the photocatalytic performance of pure phase rutile and anatase nanostructures with well defined morphologies was found to improved with respect to certain photocatalytic reactions in comparison with non-structured titania.
    Type: Application
    Filed: March 14, 2008
    Publication date: September 18, 2008
    Inventors: Huifang Xu, Rakesh Reddy Yeredla, Kuang-sheng Hong
  • Publication number: 20080206124
    Abstract: Disclosed is a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm, and often between 0.34 nm and 1.02 nm. The method comprises: (a) subjecting the layered material in a powder form to a halogen vapor at a first temperature above the melting point or sublimation point of the halogen at a sufficient vapor pressure and for a duration of time sufficient to cause the halogen molecules to penetrate an interlayer space of the layered material, forming a stable halogen-intercalated compound; and (b) heating the halogen-intercalated compound at a second temperature above the boiling point of the halogen, allowing halogen atoms or molecules residing in the interlayer space to exfoliate the layered material to produce the platelets.
    Type: Application
    Filed: February 22, 2007
    Publication date: August 28, 2008
    Inventors: Bor Z. Jang, Aruna Zhamu
  • Patent number: 7416655
    Abstract: An adsorbent composition comprising a nanostructured titanium oxide material of the formula TiO2-, where 0?×?1 with nanotubular and/or nanofibrilar morphology, high oxygen deficiency, having an orthorhombic JT crystalline phase described by at least one of the space groups 59 Pmmn, 63 Amma, 71Immm or 63 Bmmb, and comprising between 0 and 20 weight percent of a transition metal oxide is used for the selective adsorption of nitrogen compounds and/or sulfur compounds from light and intermediate petroleum fractions.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: August 26, 2008
    Assignee: Instituto Mexicano del Petroleo
    Inventors: José Antonio Toledo Antonio, María Antonia Cortés Jacome, Gerardo Ferrat Torres, Carlos Angeles Chávez, Luis Francisco Flores Ortiz, Maria de Lourdes Araceli Mosqueira Mondragon, Esteban López Salinas, Jose Escobar Aguilar, Rodolfo Juventino Mora Vallejo, Fernando Alvarez Ramírez, Yosadara Ruiz Morales, Marcelo Lozada y Cassou
  • Patent number: 7416600
    Abstract: Silicon-titanium mixed oxide powder produced by flame hydrolysis, which consists of aggregates of primary particles, with a BET surface area of 90±15 m2/g, a titanium dioxide proportion of 50±8 wt. % and an anatase/rutile ratio of 60:40 to 70:30. It is produced in that a mixture of silicon halide, titanium halide, hydrogen and primary air is ignited in a burner and the flame is burned into a reaction chamber closed off from the surrounding air, and secondary air and a gas, which increases the temperature in the reaction chamber by combustion and/or which slows down the cooling in the reaction chamber because of low heat transfer, are additionally introduced into the reaction chamber. It can be used in toner compositions.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: August 26, 2008
    Assignee: Degussa AG
    Inventors: Kai Schumacher, Martin Moerters, Uwe Diener, Oswin Klotz
  • Patent number: 7413726
    Abstract: The present invention provides a low temperature process for the synthesis of ultrafine rutile phase titanium dioxide particles through vapor phase hydrolysis of titanium tetra chloride.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: August 19, 2008
    Assignee: Council of Scientific and Industrial Research
    Inventors: Gerald D. Surender, Ani K. John, Kumara P. Rajendra Prasad, Savithri Sivaraman
  • Patent number: 7404937
    Abstract: A reactor 20 has a plurality of tubular downcomers 32, 34, 36, 38, 40 and risers 42, 44, 46, 48, 50, joined by sections 86, 88 in a continuous serpentine path the tubes dimensioned to provide substantially plug flow conditions for solid and liquid reagents fed into a first downcomer 24 with the products extracted from final riser 52. The reactor 20 is designed for a desired residence time by the number, height and diameter of the tubes. The downcomers 24, 32, 34, 36, 38, 40 may include a bend to improve residence time and to thereby reduce the number of tubes required for a desired overall residence time. The reactor 20 can be used in a leaching operation for producing synthetic rutile, where a pre-treated feedstock including ilmenite, leueoxene or titania slag is leached with hot HCl.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: July 29, 2008
    Assignee: Austpac Resources N.L.
    Inventor: John Winter
  • Publication number: 20080152560
    Abstract: A catalyst for treating exhaust gases having excellent durability and performance for removing nitrogen oxides and organic halogen compounds and a low SO2 oxidation rate, a titanium oxide suitable for preparing the catalyst and a method for treating exhaust gases containing nitrogen oxides and/or organic halogen compounds using the catalyst are provided. The BET specific surface areas of the titanium oxide and the catalyst for treating exhaust gases are in the range of 85 to 250 m2/g and in the range of 50 to 200 m2/g respectively. The titanium oxide and the catalyst for treating exhaust gases have each a ratio in the range of 15 to 145%, the ratio of the intensity of the peak indicating an anatase crystal present in the range of 2?=24.7° to 2?=25.7° of powder X-ray diffraction thereof (Ia) to the intensity of the peak indicating an anatase crystal present in the range of 2?=24.7° to 2?=25.
    Type: Application
    Filed: May 26, 2006
    Publication date: June 26, 2008
    Applicant: NIPPON SHOKUBAI CO., LTD.
    Inventors: Atsushi Morita, Ryoji Kuma, Shinyuki Masaki, Motonobu Kobayashi
  • Publication number: 20080112880
    Abstract: Titanium dioxide having a ratio Dtop/D50 of 1 to 3, between the maximum particle diameter Dtop and the average particle diameter D50, as determined based on observing the primary particles by a field emission-type scanning electron microscope. A production process of the titanium dioxide comprises performing a vapor phase process of reacting a titanium tetrachloride-containing gas with an oxidative gas to produce titanium dioxide, wherein when the titanium tetrachloride-containing gas and the oxidative gas are reacted by introducing each gas into a reaction tube, the temperature in the reaction tube is from 1,050 to less than 1,300° C.
    Type: Application
    Filed: February 28, 2006
    Publication date: May 15, 2008
    Applicant: SHOWA DENKO K.K.
    Inventors: Susumu Kayama, Hisao Kogoi
  • Patent number: 7371276
    Abstract: The titanium dioxide pigment of the present invention contains an anatase type crystal in an amount of 98-100% and has an average particle diameter of 0.2-0.4 ?m and a whiteness of 95-97 in terms of L value of linseed oil. The titanium dioxide pigment of the present invention has characteristics peculiar to anatase type, for example, optical characteristics such as bluish color tone and physical characteristics such as low hardness, and furthermore has high opacity which is not possessed by conventional anatase type titanium oxide pigments.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: May 13, 2008
    Assignee: Ishihara Sangyo Kaisha, Ltd.
    Inventors: Hideo Takahashi, Toshihiko Akamatsu, Kazuhiro Tominaga, Taku Katou, Yoshio Nagai, Yoshitaka Muraki, Yukako Ota
  • Patent number: 7344591
    Abstract: Titanium dioxide nanoparticles are formed using a dispersing agent to form nanoparticles with desired size, shape, and uniformity. The titanium dioxide nanoparticles are formed by reacting an inorganic titanium compound with water or ice to form an aqueous titanium compound. The aqueous titanium compound is reacted or combined with a dispersing agent. Titanium dioxide nanoparticles are precipitated to form a suspension. The formation of the titanium dioxide nanoparticles is influenced by the presence of bonding of the dispersing agent. The size of the nanoparticles can be advantageously controlled by selecting the ratio of titanium to dispersing agent. In addition, the titanium dioxide nanoparticles can be used in suspension form or filtered and dried to form a powder.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: March 18, 2008
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Sukesh Parasher, Zhihua Wu, Zhenhua Zhou
  • Patent number: 7335620
    Abstract: An object of the present invention is to provide a photocatalytic powder containing titanium dioxide fine particles containing an anionically active substance, where the electrokinetic potential of the fine particle is from about ?100 to 0 mV in an aqueous environment at pH 5. Another object of the present invention is to provide a photocatalytic slurry containing the powder, and a polymer composition, a coating agent, a photocatalytic functional molded article and a photocatalytic functional structure using the powder.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: February 26, 2008
    Assignee: Showa Denko K.K.
    Inventors: Katsura Ito, Hiroyuki Hagihara
  • Publication number: 20080038176
    Abstract: The invention relates to unsymmetrical nanoscale or mesoscopic particles, and to a method for preparing the same. Said particles are characterized by a surface F1 and the zone Z2 carries groups F2 different from the groups F1, the zone Z1 being free of groups F2 and the zone Z2 being free of groups F1. The method of preparation comprises the following steps: 1) the zone Z2 of the surface of the initial particles is masked by fixing a polymer nodule thereto; 2) the masked particles obtained at the end of step 1) are treated in order to modify the nonmasked surface zone Z1 thereof; 3) the polymer nodule is removed after modifying the zone Z1; 4) optionally, the surface of the zone Z2 of the particles is modified following the demasking process.
    Type: Application
    Filed: November 4, 2004
    Publication date: February 14, 2008
    Applicants: Centre National De La Recherche Scientifique, Cpe Lyon Formation Continue Et Recherche, Universite Paul Sabatier, Universite Des Sciences Et Technologies
    Inventors: Etienne Duguet, Celine Poncet-Legrand, Serge Ravaine, Elodie Bourgeat-Lami, Stephane Reculusa, Christophe Mingotaud, Marie-Helene Delville, Franck Pereira
  • Publication number: 20080031806
    Abstract: The present invention is directed to a continuous process for forming a hydrated Group IVB metal oxide using continuous mixing followed by calcination to form a nanocrystalline mesoporous Group IVB metal oxide and particles produced thereby. The particles thus formed are readily dispersible.
    Type: Application
    Filed: September 16, 2005
    Publication date: February 7, 2008
    Inventors: John Gavenonis, Carmine Torardi
  • Publication number: 20080031832
    Abstract: A particle of TiO2 or ZnO which has been doped with one or more other elements such that the concentration of dopant in the surface of the particle is greater than that at the core of the particle, and compositions containing such particles for use as sunscreens or in veterinary, agricultural or horticultural compositions or as coatings for plastics and other materials.
    Type: Application
    Filed: January 26, 2005
    Publication date: February 7, 2008
    Applicant: Oxonica Limited
    Inventors: Gareth Wakefield, George Barry Park, Sarah Lipscomb, Edward Holland
  • Patent number: 7326398
    Abstract: A method for preparation for mesoporous oxide comprising a non silica oxide having a hexagonal pore structure periodicity and an average maximum pore length of from 2 nm to 5 nm, characterized by comprising blending 0.003 mol to 0.01 mol of TaCl5, NbCl5 or a mixture thereof and Al isopropoxide comprising 10 g of an aliphatic linear alcohol and 1 g of a template compound to prepare a mixture for forming a sol solution, adding 5 mol to 35 mol (based on the metal compounds) of water or an aqueous inorganic acid solution to the mixture followed by hydrolysis and polycondensation to give a sol solution, transferring the sol into an oxygen containing atmosphere followed by again at 40° C. to 100° C. to form a gel, and then calcinating the gel in an oxygen containing atmosphere at 350° C. to 550° C.; and the mesoporous oxide obtained by the method.
    Type: Grant
    Filed: November 11, 2002
    Date of Patent: February 5, 2008
    Assignee: Japan Science and Technology Agency
    Inventors: Kazunari Domen, Junko Nomura, Tokumitsu Kato
  • Patent number: 7326390
    Abstract: A sulfate process for producing titania from titaniferous material is disclosed. The process includes precipitating titanyl sulfate from leach liquors containing acidic solutions of titanyl sulfate. The process is characterised by: (a) multiple stage leaching to produce leach liquors containing acidic solutions of titanyl sulfate; (b) using depleted leach liquor from a titanyl sulfate precipitation reactor in the leach steps; and (c) controlling acid concentration in the leach steps to avoid premature hydrolysis and premature precipitation.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: February 5, 2008
    Assignee: BHP Billiton Innovation Pty Ltd.
    Inventors: Eric Girvan Roche, Alan David Stuart, Philip Ernest Grazier, Sarah Nicholson
  • Patent number: 7326399
    Abstract: Titanium dioxide nanoparticles are formed using a dispersing agent to form nanoparticles with desired size, shape, and uniformity. The titanium dioxide nanoparticles are formed by reacting an inorganic titanium compound with water or ice to form an aqueous titanium compound. The aqueous titanium compound is reacted or combined with a dispersing agent. Titanium dioxide nanoparticles are precipitated to form a suspension. The formation of the titanium dioxide nanoparticles is influenced by the presence of bonding of the dispersing agent. The size of the nanoparticles can be advantageously controlled by selecting the ratio of titanium to dispersing agent. In addition, the titanium dioxide nanoparticles can be used in suspension form or filtered and dried to form a powder.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: February 5, 2008
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Sukesh Parasher, Zhihua Wu, Zhenhua Zhou
  • Publication number: 20070297972
    Abstract: Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.
    Type: Application
    Filed: June 21, 2006
    Publication date: December 27, 2007
    Inventors: Edward B. Ripley, Roland D. Seals, Jonathan S. Morrell
  • Patent number: 7303738
    Abstract: The present invention provides a method for producing a titanium oxide. The method can be applied to produce a titanium oxide having a large specific surface area. The method typically entails calcinating at least one titanium oxide precursor selected from a titanium hydroxide and titanium peroxide, wherein the calcination occurs in the presence of nitrogen and at a steam pressure of at most about 8,000 Pa.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: December 4, 2007
    Assignee: Sumitomo Chemical Company, Limited
    Inventor: Kensen Okusako
  • Patent number: 7297323
    Abstract: A method of manufacturing fine particles of the invention includes introducing a reactive gas flow containing a fine particle source material into a reactor from one side, growing fine particles in a gas phase by heating the fine particle source material in the reactive gas flow, introducing a diluting gas flow into the reactor from another side being almost counter-flow to the reactive gas flow, equalizing flow rates of the reactive gas flow and the diluting gas flow substantially with respect to a cross section of a flow channel, and then stopping growth of the fine particles by merging the reactive gas flow and the diluting gas flow.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: November 20, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Isao Matsui
  • Patent number: 7285188
    Abstract: Embodiments of the present disclosure provide for methods of transforming from one crystal structure to another crystal structure in TiO2 nanocolloids and TiO2-xNx nanocolloids.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: October 23, 2007
    Assignee: Georgia Tech Research Corporation
    Inventor: James L. Gole
  • Patent number: 7258847
    Abstract: A method of recovering titanium dioxide from a raw material additionally containing aluminium includes the steps of grinding the titanium dioxide raw material, reacting the particulate raw feed material with sulphuric acid under specified conditions, digesting and filtering the resultant cake material containing titanyl sulphate, if present, treating the solution to remove calcium and/or iron, precipitating out the aluminium as aluminium ammonium sulphate, hydrolysing the remaining titanyl sulphate solution and, after washing the hydrolysate, calcining the hydrolysate to produce titanium dioxide.
    Type: Grant
    Filed: July 16, 2002
    Date of Patent: August 21, 2007
    Assignees: Highveld Steel and Vanadium Corporation Limited, Rossmali Technology Holdings (Pty) Ltd
    Inventors: Jan Hendrik Becker, Daniel Frederick Dutton
  • Patent number: 7255847
    Abstract: This invention relates to methods of making single phase nanocrystalline titanium dioxide. It is hereby provided a method for preparing single-phase anatase type titanium dioxide photocatalyst having a particle size of nano level at near room temperatures without the need for a sintering process at high temperatures.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: August 14, 2007
    Assignee: The Hong Kong Polytechnic University
    Inventors: Walid Abdelhamid Daoud, John Haozhong Xin, Kaihong Qi
  • Patent number: 7247200
    Abstract: This disclosure relates to process for producing titanium dioxide (TiO2) pigments, comprising the following steps: a) oxidizing a mixture of titanium tetrahalide and a rutile forming agent, such as aluminum halide, present in the vapor phase and in the presence of a nucleant to form a gaseous suspension comprising titanium dioxide particles; b) passing the gaseous suspension to a cooling conduit; c) introducing scouring material into the cooling conduit; wherein the particles of the scouring material have a diameter in the range of about 0.25 mm to about 12.7 mm; d) separating the vapor phase to form a powder comprising the titanium dioxide particles and the scouring material; and e) simultaneously subjecting the powder to substantially uniform heating at a temperature of about 300° C. to about 600° C.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: July 24, 2007
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Russell Bertrum Diemer, Jr., Alan Roger Eaton, Narayanan Sankara Subramanian, Stephen William Taylor, George A. Schurr, David A Zimmerman
  • Patent number: 7232556
    Abstract: Nanoparticles comprising titanium, such as nanoscale doped titanium metal compounds, inorganic titanium compounds, and organic titanium compounds, their methods of manufacture, and methods of preparation of products from nanoparticles comprising titanium are provided.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: June 19, 2007
    Assignee: NanoProducts Corporation
    Inventor: Tapesh Yadav
  • Patent number: 7217407
    Abstract: The present invention is a method of increasing particle surface area and decreasing the concentration of over-sized particles in a process for making metal oxide particles, particularly nanoparticle TiO2, in an inlet-fed, plug flow, plasma reactor by vapor phase reaction of titanium tetrachloride and oxygen in the presence of a source of hydrogen to form titanium dioxide particles.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: May 15, 2007
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Lu Zhang
  • Patent number: 7208126
    Abstract: Titanium dioxide nanopowder is produced by a process, comprising: (a) reacting titanium tetrachloride and an oxygen containing gas in the vapor phase in a flame reactor, at a flame temperature of at least about 800° C. in the presence of (i) water vapor in an amount ranging from about 1000 to about 50,000 parts per million, based on the weight of titanium dioxide under production, (ii) a diluent gas in an amount greater than about 100 mole percent based on the titanium tetrachloride and oxygen containing gas and (iii) a nucleant consisting essentially of a cesium substance wherein the cesium substance is present in an amount ranging from about 10 to about 5000 parts per million, based on the weight of the titanium dioxide under production, the pressure of reaction being sufficient to form titanium dioxide nanopowder.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: April 24, 2007
    Assignee: E. I. du Pont de Nemours and Company
    Inventors: Charles David Musick, Austin H. Reid, Jr., Lu Zhang
  • Patent number: 7182929
    Abstract: A method for producing nanostructured multi-component or doped oxide particles and the particles produced therein. The process includes the steps of (i) dissolving salts of cations, which are either dopants or components of the final oxide, in an organic solvent; (ii) adding a dispersion of nanoparticles of a single component oxide to the liquid solution; (iii) heating the liquid solution to facilitate diffusion of cations into the nanoparticles; (iv) separating the solids from the liquid solution; and (v) heat treating the solids either to form the desired crystal structure in case of multi-component oxide or to render the homogeneous distribution of dopant cation in the host oxide structure. The process produces nanocrystalline multi-component or doped oxide nanoparticles with a particle size of 5–500 nm, more preferably 20–100 nm; the collection of particles have an average secondary (or aggregate) particle size is in the range of 25–2000 nm, preferably of less than 500 nm.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: February 27, 2007
    Assignee: NEI, Inc.
    Inventors: Amit Singhal, Ganesh Skandan, Mohit Jain
  • Patent number: 7175825
    Abstract: Titania is dissolved in a hydrogen peroxide solution to produce an amorphous titania gel, then the amorphous titania gel and a hydrogen peroxide solution are mixed together to produce an amorphous titania sol, and then an alkali solution is supplied to the solution containing the amorphous titania sol to thereby adjust a pH of the solution to 2 to 10. Even if the obtained solution containing amorphous titania is, for example, left to stand at normal temperature for a long time, gelling or aggregation of titania can be suppressed. That is, it is possible to obtain a titania solution that can maintain the state where fine particles of titania are highly dispersed in the solution, over a long term.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: February 13, 2007
    Assignee: Sundecor Co., Ltd.
    Inventors: Katsuyuki Nakano, Eiko Higashi, Takeshi Hayakawa
  • Patent number: 7172747
    Abstract: Spiral shaped fibers were utilized to prepare completely novel metal oxide nanotubes comprising solely metal oxides. The metal oxide nanotubes comprise solely a hollow cylinder shaped metal oxide which may contain hydroxyl groups constituting a double helix and having hole diameter distributions containing two peak hole diameters ranging from 1 to 2 nm and from 3 to 7 nm. The tubes may be obtained by forming spiral shaped fibers from a solution of compound 1 and compound 2 and using the fibers as a template for making the nanotubes. The hydrogen adsorption and storage capacity of the metal oxide nanotubes are extremely good.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: February 6, 2007
    Assignees: Japan Science and Technology Agency, National Institute of Advanced Industrial Science and Technology
    Inventors: Toshimi Shimizu, John Hwa Jung
  • Patent number: 7169375
    Abstract: Disclosed is a method of preparing treated metal oxide nanoparticles from sols prepared from metal alkoxides and organosilanes. The treated nanoparticles are useful high refractive index additives in the manufacture of optical articles.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: January 30, 2007
    Assignee: General Electric Company
    Inventor: Bret Ja Chisholm
  • Patent number: 7166157
    Abstract: A method and material for improved TiO2 pigment for paper and laminates is described. Phosphorous, titanium, and aluminum compounds are successively added to a TiO2 pigment suspension. Resulting pigments show improved greying resistance and hiding power over prior art pigments, and show improved results as pigments in tests of paper and laminates.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: January 23, 2007
    Assignee: Kronos International Inc
    Inventors: Lydia Drews-Nicolai, Siegfried Bluemel, Lothar Elfenthal, Volker Schmitt
  • Patent number: 7153488
    Abstract: The present invention is directed to the suppression of the formation noxious compounds such as furans. According to the present invention, a venturi device is used to rapidly quench a chlorinator reaction gas. The rapid quench minimizes the resonance time that furan precursors are at conditions conducive to furan formation.
    Type: Grant
    Filed: August 3, 2004
    Date of Patent: December 26, 2006
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Thomas Messer, Peter Carter
  • Patent number: 7150862
    Abstract: A method of manufacturing a powder, by which it is possible to adjust the strength of the obtained powder is provided. The manufacturing method of a powder involves a step of preparing a slurry containing agglomerated particles of a synthetic material which is produced by reacting a first material and a second material under agitation, and a step of drying the slurry to obtain a powder of the synthetic material. The method has a feature that the particle size of the agglomerated particles is adjusted by, in the step of preparing a slurry, controlling agitation power for agitating the slurry. In the step of preparing a slurry, it is preferable that the slurry is initially agitated at a first agitation power, and at the time when the viscosity of the slurry approaches its maximum value, or at the time when the pH value of the slurry reaches the vicinity of the isoelectric point of the synthetic material, the agitation power is lowered from the first agitation power to a second agitation power.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: December 19, 2006
    Assignee: PENTAX Corporation
    Inventors: Tsuyoshi Ishikawa, Masanori Nakasu, Takatoshi Kudou, Yoshiyuki Ogawara, Tsutomu Takahashi, Katsumi Kawamura
  • Patent number: 7144840
    Abstract: The present invention relates to a titanium dioxide material for coating on a substrate and method of making the same. The coated material is resistant to delamination and can be used for air-purification purposes.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: December 5, 2006
    Assignee: Hong Kong University of Science and Technology
    Inventors: King Lun Yeung, Nan Yao
  • Patent number: 7138357
    Abstract: The invention relates to a photocatalyst containing titanium dioxide, to a method for using it and to its application. A sulphurous titanium dioxide hydrate precipitate is precipitated from an acid titanium oxysulphate solution at a temperature below the boiling point of the solution, e.g. in the range from 70 to 100° C., using crystal nuclei and without addition of base. The precipitate is separated, washed and calcinated. The photocatalytic titanium dioxide thus obtained has a specific area in the range from 100 to 250 m2/g and a 0.3 to 5% sulphur concentration. Catalytic activity has been confirmed in asetal dehyde decomposition and in anionic (SNC?)2 radical formation.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: November 21, 2006
    Assignee: Kemira Pigments Oy
    Inventors: Saila Marjatta Karvinen, Ralf-Johan Lamminmäki
  • Patent number: 7135206
    Abstract: A method for producing nanoscale titanium dioxide particles which are coated with an oxide, a hydroxide or an oxide hydroxide of Al, Ce, Zr and/or Si wherein the enzymatic precipitant system urease/urea is used. Said coated titanium dioxide particles can have an average size of less than 50 nm, the coating providing effective protection against photocatalytic reactions. The coated particles are suitable, in particular, as UV absorbers in a transparent organic matrix.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: November 14, 2006
    Assignee: Leibniz-Institut Fuer Neue Materialien Gemeinnuetzige GmbH
    Inventor: Martin Schichtel
  • Patent number: 7135065
    Abstract: The invention relates to a method for the post-treatment of titanium dioxide, in order to produce particularly weather-resistant titanium dioxide pigments with good optical properties. The method is characterized in that, together with the hydrous oxides of tin and zirconium, at least one other from the group comprising aluminium, silicon and titanium is additionally precipitated onto the particle surface. The post-treatment components are added to the aqueous TiO2 suspension either in the acidic range (pH value of 3 at most) or in the alkaline range (pH value of 10 at least). The pH value is subsequently set to between 6 and 8. Final tempering of the pigment at elevated temperatures from over 125° C. to up to 500° C. can improve the tone b. The pigment is particularly suitable for use in paints, coatings and plastics.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: November 14, 2006
    Assignee: Kronos International
    Inventors: Lydia Drews-Nicolai, Siegfried Bluemel
  • Patent number: 7125536
    Abstract: This invention relates to a composition comprising nano-structured metal oxide particles (particularly, zirconia) and at least one stabilizing agent, a method to produce the composition, and a method to produce the thermally stable nano-structured particles. The method to produce the nano-structured particles comprises first preparing a base solution and a nanoparticle precursor solution, then combining these solutions at a final pH 7 or greater to precipitate a colloidal hydrous oxide. The colloidal hydrous oxide is then treated with at least one silicate, phosphate, or aluminum phosphate stabilizing agent and dried. These nano-structured particle products have high thermal stability and are particularly advantageous in applications as catalysts or catalyst supports that operate at high temperatures.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: October 24, 2006
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Guoyi Fu, BillieJo Monk, Corinne Lehaut
  • Patent number: 7090823
    Abstract: A method for preparing a gel containing nanometer titanium dioxide particles for visible light photocatalysis, the method has the following acts of: obtaining titanium hydroxide; inverting titanium hydroxide into titanium dioxide by adding an oxidant, an improving agent, an optional acid, and an optional surfactant to compose a solution; and aging the solution by heating to make the solution become a gel. The gel made by the present invention has photocatalystic characteristic and self-cleaning efficiency particularly in visible light but not in ultraviolet light as conventional gel.
    Type: Grant
    Filed: June 1, 2004
    Date of Patent: August 15, 2006
    Assignee: ONID Technology Corp.
    Inventor: Wen-Chuan Liu
  • Patent number: 7090821
    Abstract: The present invention relates to a metal oxide powder for high precision polishing and prepartion thereof, comprising aggregates formed by cohesion of primary particles, which has a cohesive degree (?) of 1.1 to 2.0 and a cohesive scale (?) of 3 to 10, the cohesive degree (?) and the cohesive scale (?) being defined by formula (I) and formula (II), respectively: ?=6/(S×?×d(XRD)) ??(I) ?=weight average particle diameter/d(XRD) ??(II) wherein, S is the specific surface area of the powder; ?, the density; and d(XRD), the particle diameter of the powder determined by X-ray diffraction analysis. In accordance with the present invention, it is possible to provide a high polishing speed and reduce scratches.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: August 15, 2006
    Assignee: Samsung Corning Co., Ltd.
    Inventors: Hyukjin Kwon, Myungho Ahn, Youngkwon Joung, Inyeon Lee
  • Patent number: 7081234
    Abstract: A process of treating metal oxide nanoparticles that includes mixing metal oxide nanoparticles, a solvent, and a surface treatment agent that is preferably a silane or siloxane is described. The treated metal oxide nanoparticles are rendered hydrophobic by the surface treatment agent being surface attached thereto, and are preferably dispersed in a hydrophobic aromatic polymer binder of a charge transport layer of a photoreceptor, whereby ?—? interactions can be formed between the organic moieties on the surface of the nanoparticles and the aromatic components of the binder polymer to achieve a stable dispersion of the nanoparticles in the polymer that is substantially free of large sized agglomerations.
    Type: Grant
    Filed: April 5, 2004
    Date of Patent: July 25, 2006
    Assignee: Xerox Corporation
    Inventors: Yu Qi, Nan-Xing Hu, Ah-Mee Hor, Cheng-Kuo Hsiao, Yvan Gagnon, John F. Graham
  • Patent number: 7022303
    Abstract: Polycrystalline materials of macroscopic size exhibiting Single-Crystal-Like properties are formed from a plurality of Single-Crystal Particles, having Self-Aligning morphologies and optionally ling morphology, bonded together and aligned along at least one, and up to three, crystallographic directions.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: April 4, 2006
    Assignee: Rutgers, The State University
    Inventors: Richard E. Riman, Larry E. McCandlish
  • Patent number: 7018608
    Abstract: A pigment comprises a titanium oxide having a BET specific surface area of from about 3 m2/g to about 200 m2/g, and a D90 diameter corresponding to 90% of a particle size cumulative distribution on a weight basis of about 2.2 ?m or less. Also disclosed is a photocatalyst composition, a cosmetic, a cloth, an ultraviolet ray-shielding material and a silicone rubber, each containing a titanium oxide.
    Type: Grant
    Filed: October 29, 2004
    Date of Patent: March 28, 2006
    Assignee: Showa Denko K.K.
    Inventors: Jun Tanaka, Susumu Kayama, Shin-ichiro Tomikawa
  • Patent number: 7011808
    Abstract: A titanium oxide showing sufficiently high photocatalytic activities by irradiation of visible light is provided. Using the titanium oxide, an excellent photocatalyst and photocatalyst coating composition are also provided. The titanium oxide has a selected ion chromatogram in which an evolution gas having 28 of a ratio of mass number to electric charge quantity exhibits at least one peak at about 600° C. or higher, the selected ion chromatogram being measured in a thermogravimetry-mass-spectroscopy.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: March 14, 2006
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Yoshiaki Sakatani, Hiroyuki Ando, Hironobu Koike
  • Patent number: 7008602
    Abstract: Processes for the efficient and economical beneficiation of titaniferous ore are provided. A unique process for beneficiating ore comprising pretreatment of the ore by oxidation and reduction, followed by acid leaching with sulfuric acid has been developed. The acid used in this process may be recycled, which will thereby increase the efficiency of the process. Preferably the ore treated according to the present invention is ilmenite ore.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: March 7, 2006
    Assignee: Millennium Inorganic Chemicals, Inc.
    Inventors: Earl Smith, Michael Robinson, Kirit Talati