Group Va Metal Or Arsenic (sb, Bi, Or As) Patents (Class 423/617)
  • Patent number: 9849449
    Abstract: The amorphous inorganic anion exchanger of the present invention is represented by Formula (1) and has an average primary particle size observed with an electron microscope of at least 1 nm but no greater than 500 nm and an NO3 content of no greater than 1 wt % of the whole: BiO(OH)??Formula (1).
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: December 26, 2017
    Assignee: TOAGOSEI CO., LTD.
    Inventors: Kentarou Miyamura, Tomohisa Iinuma, Yasuharu Ono
  • Patent number: 9844752
    Abstract: A system, a use of such a system and a multi system for cleaning exhaust gas from a combustion engine. The system comprises a first exhaust gas scrubber to communicate with a scrubber water circulation tank. A first outlet of the first exhaust gas scrubber is connectable to a first inlet of the scrubber water circulation tank, and a first inlet of the first exhaust gas scrubber is connectable to a first outlet of the scrubber water circulation tank, to enable circulation of scrubber water between the scrubber water circulation tank and the first exhaust gas scrubber. An air supply device feeds air into the first exhaust gas scrubber to aerate the scrubber water during its passage through the first exhaust gas scrubber. Accordingly, a second inlet of the first exhaust gas scrubber is arranged to be connected to an outlet of the air supply device.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: December 19, 2017
    Assignee: ALFA LAVAL CORPORATE AB
    Inventor: Soren Molgaard
  • Patent number: 9308524
    Abstract: Embodiments of present inventions are directed to an advanced catalyst. The advanced catalyst includes a honeycomb structure with an at least one nano-particle on the honeycomb structure. The advanced catalyst used in diesel engines is a two-way catalyst. The advanced catalyst used in gas engines is a three-way catalyst. In both the two-way catalyst and the three-way catalyst, the at least one nano-particle includes nano-active material and nano-support. The nano-support is typically alumina. In the two-way catalyst, the nano-active material is platinum. In the three-way catalyst, the nano-active material is platinum, palladium, rhodium, or an alloy. The alloy is of platinum, palladium, and rhodium.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: April 12, 2016
    Assignee: SDCmaterials, Inc.
    Inventors: Qinghua Yin, Xiwang Qi, Maximilian A. Biberger
  • Publication number: 20150129089
    Abstract: A hydrogen-free amorphous dielectric insulating film having a high material density and a low density of tunneling states is provided. The film is prepared by e-beam deposition of a dielectric material on a substrate having a high substrate temperature Tsub under high vacuum and at a low deposition rate. In an exemplary embodiment, the film is amorphous silicon having a density greater than about 2.18 g/cm3 and a hydrogen content of less than about 0.1%, prepared by e-beam deposition at a rate of about 0.1 nm/sec on a substrate having Tsub=400° C. under a vacuum pressure of 1×10?8 Torr.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 14, 2015
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Xiao Liu, Daniel R. Queen, Frances Hellman
  • Publication number: 20140286846
    Abstract: A process for preparing a mesoporous metal oxide, i.e., transition metal oxide, Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing a micellar solution comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the micellar solution at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing a micellar solution comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the micellar solution at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.
    Type: Application
    Filed: September 25, 2013
    Publication date: September 25, 2014
    Applicant: UNIVERSITY OF CONNECTICUT
    Inventors: Steven L. Suib, Altug Suleyman Poyraz
  • Publication number: 20140243185
    Abstract: Disclosed is a method for manufacturing a low melting point nano glass powder. The method includes the steps of: preparing a bismuth-based low melting point glass powder precursor of a micro size, having bismuth (Bi) as the main ingredient; injecting the glass powder precursor into a reaction chamber of a plasma treatment device; applying thermal plasma via a direct current power source to the glass powder precursor injected into the reaction chamber, to vaporize the glass powder precursor; and generating nano glass powder having a nano size by quenching the gas generated by vaporizing the glass powder precursor.
    Type: Application
    Filed: June 8, 2012
    Publication date: August 28, 2014
    Applicant: INHA-INDUSTRY PARTNERSHIP INSTITUTE
    Inventors: Hyung Sun Kim, Dong Wha Park, Sung Hwan Cho, Sun ll Kim, Won Kyung Lee, Hyun Jin Shim
  • Patent number: 8664150
    Abstract: Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: March 4, 2014
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Nicholas R. Mann, Troy J. Tranter
  • Patent number: 8658850
    Abstract: It is an object of the present invention to provide a beneficial method for detoxifying a harmful compound to detoxify the harmful compound containing arsenic etc., effectively. The method of detoxifying a harmful compound according to the present invention is characterized in that a methyl radical and/or a carboxymethyl radical is (are) contacted with a harmful compound comprising at least one element selected from the group comprising arsenic, antimony and selenium to detoxify the harmful compound. Furthermore, in a preferred embodiment of the method of detoxifying a harmful compound according to the present invention, the method is characterized in that the radical is generated by the exposure to light.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: February 25, 2014
    Assignee: Nippon Sheet Glass Company, Limited
    Inventor: Koichiro Nakamura
  • Patent number: 8617510
    Abstract: Porous metal oxides are provided. The porous metal oxides are prepared by heat treating a coordination polymer. A method of preparing the porous metal oxide is also provided. According to the method, the shape of the particles of the metal oxide can be easily controlled, and the shape and distribution of pores of the porous metal oxide can be adjusted.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: December 31, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Dong-min Im, Yong-nam Ham
  • Patent number: 8557724
    Abstract: A semiconductor porcelain composition is prepared by separately preparing a composition of (BaR)TiO3 (R is La, Dy, Eu, Gd or Y) and a composition of (BiNa)TiO3, and calcining the composition of (BaR)TiO3 at a temperature of 900° C. through 1300° C. and calcining the composition of (BiNa)TiO3 at a temperature of 700° C. through 950° C., and then mixing, forming and sintering the calcined powders. Similarly, a semiconductor porcelain composition is prepared by separately preparing a composition of (BaM)TiO3 (M is Nb, Ta or Sb) and a composition of (BiNa)TiO3, and calcining the composition of (BaM)TiO3 at a temperature of 900° C. through 1300° C. and calcining the composition of (BiNa)TiO3 at a temperature of 700° C. through 950° C., and then mixing, forming and sintering the calcined powders.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: October 15, 2013
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takeshi Shimada, Koichi Terao, Kazuya Toji
  • Publication number: 20130251608
    Abstract: The present disclosure relates to insulation components and their use, e.g., in regenerative reactors. Specifically, a process and apparatus for managing temperatures from oxidation and pyrolysis reactions in a reactor, e.g., a thermally regeneratating reactor, such as a regenerative, reverse-flow reactor is described in relation to the various reactor components.
    Type: Application
    Filed: January 14, 2013
    Publication date: September 26, 2013
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: ChangMin Chun, Frank Hershkowitz, Paul F. Keusenkothen, Robert L. Antram
  • Publication number: 20130220178
    Abstract: The current invention relates to a method of making metal oxide nanoparticles comprising the reaction of—at least one metal oxide precursor (P) containing at least one metal (M) with—at least one monofunctional alcohol (A) wherein the hydroxy group is bound to a secondary, tertiary or alpha-unsaturated carbon atom—in the presence of at least one aliphatic compound (F) according to the formula Y1—R1—X—R2—Y2, wherein—R1 and R2 each are the same or different and independently selected from aliphatic groups with from 1 to 20 carbon atoms, —Y1 and Y2 each are the same or different and independently selected from OH, NH2 and SH, and —X is selected from the group consisting of chemical bond, —O—, —S—, —NR3—, and CR4R5, wherein R3, R4 and R5 each are the same or different and represent a hydrogen atom or an aliphatic group with from 1 to 20 carbon atoms which optionally carries functional groups selected from OH, NH2 and SH.
    Type: Application
    Filed: October 7, 2010
    Publication date: August 29, 2013
    Applicant: Justus-Liebig-Universitat Giessen
    Inventors: Roman Zieba, Alexander Traut, Cornelia Röger-Göpfert, Torsten Brezesinski, Bernadette Landschreiber, Claudia Grote, Georg Garnweitner, Alexandra Seeber, Bernd Smarsly, Christoph Wiedmann, Till von Graberg, Jan Haetge
  • Patent number: 8435473
    Abstract: Disclosed is a superconducting compound which has a structure obtained by partially substituting oxygen ions of a compound, which is represented by the following chemical formula; LnTMOPh [wherein Ln represents at least one element selected from Y and rare earth metal elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu), TM represents at least one element selected from transition metal elements (Fe, Ru, Os, Ni, Pd and Pt), and Pn represents at least one element selected from pnictide elements (N, P, As and Sb)] and has a ZrCuSiAs-type crystal structure (space group P4/nmm), with at least one kind of monovalent anion (F?, Cl? or Br?). The superconducting compound alternatively has a structure obtained by partially substituting Ln ions of the compound with at least one kind of tetravalent metal ion (Ti4+, Zr4+, Hf4+, C4+, Si4+, Ge4+, Sn4+ or Pb4+) or a structure obtained by partially substituting Ln ions of the compound with at least one kind of divalent metal ion (Mg2+, Ca2+, Sr2+ or Ba2+).
    Type: Grant
    Filed: February 17, 2009
    Date of Patent: May 7, 2013
    Assignee: Japan Science and Technology Agency
    Inventors: Hideo Hosono, Yoichi Kamihara, Masahiro Hirano, Toshio Kamiya, Hiroshi Yanagi
  • Patent number: 8377406
    Abstract: The present invention provides methods for producing bis(fluorosulfonyl) compounds of the formula: F—S(O)2—Z—S(O)2—F??I by contacting a nonfluorohalide compound of the formula: X—S(O)2—Z—S(O)2—X with bismuth trifluoride under conditions sufficient to produce the bis(fluorosulfonyl) compound of Formula I, where Z and X are those defined herein.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: February 19, 2013
    Assignee: Boulder Ionics Corporation
    Inventors: Rajendra P. Singh, Jerry Lynn Martin, Joseph Carl Poshusta
  • Patent number: 8318126
    Abstract: The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: November 27, 2012
    Inventors: Stanislaus S. Wong, Hongjun Zhou
  • Patent number: 8273413
    Abstract: A method of forming a metal oxide nanostructure comprises disposing a chelated oligomeric metal oxide precursor on a solvent-soluble template to form a first structure comprising a deformable chelated oligomeric metal oxide precursor layer; setting the deformable chelated oligomeric metal oxide precursor layer to form a second structure comprising a set metal oxide precursor layer; dissolving the solvent-soluble template with a solvent to form a third structure comprising the set metal oxide precursor layer; and thermally treating the third structure to form the metal oxide nanostructure.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: September 25, 2012
    Assignee: International Business Machines Corporation
    Inventors: Ho-Cheol Kim, Robert D. Miller, Oun Ho Park
  • Publication number: 20120230900
    Abstract: An object of the present invention is to provide a metal salt-containing composition which is applicable to many metal source materials, and can be used for forming a compact and uniform metal oxide film comparable to those formed according to a sputtering method, as well as to provide a substrate having a metal complex film on the surface thereof obtained using the metal salt-containing composition, and a substrate having a metal complex film on the surface thereof obtained by further heating the substrate. Moreover, another object of the present invention is to provide a method for manufacturing a substrate having such a metal complex film on the surface thereof. According to the present invention, a metal salt-containing composition containing a metal salt, a polyvalent carboxylic acid having a cis-form structure, and a solvent, in which: the molar ratio of the polyvalent carboxylic acid to the metal salt is not less than 0.5 and not more than 4.
    Type: Application
    Filed: September 28, 2009
    Publication date: September 13, 2012
    Applicant: Dai-Ichi Kogyo Seiyaku Co., Ltd.
    Inventors: Yasuteru Saito, Naoki Ike
  • Patent number: 8257679
    Abstract: A technique for bonding an organic group with the surface of fine particles such as nanoparticles through strong linkage is provided, whereas such fine particles are attracting attention as materials essential for development of high-tech products because of various unique excellent characteristics and functions thereof. Organically modified metal oxide fine particles can be obtained by adapting high-temperature, high-pressure water as a reaction field to bond an organic matter with the surface of metal oxide fine particles through strong linkage. The use of the same condition enables not only the formation of metal oxide fine particles but also the organic modification of the formed fine particles. The resulting organically modified metal oxide fine particles exhibit excellent properties, characteristics and functions.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: September 4, 2012
    Assignee: Tohoku Techno Arch Co., Ltd.
    Inventor: Tadafumi Ajiri
  • Patent number: 8236277
    Abstract: A process comprises (a) combining (1) at least one base and (2) at least one metal carboxylate salt comprising (i) a metal cation selected from metal cations that form amphoteric metal oxides or oxyhydroxides and (ii) a carboxylate anion comprising from one to four alkyleneoxy moieties, or metal carboxylate salt precursors comprising (i) at least one metal salt comprising the metal cation and a non-interfering anion and (ii) at least one carboxylic acid comprising from one to four alkyleneoxy moieties, at least one salt of the carboxylic acid and a non-interfering, non-metal cation, or a mixture thereof; and (b) allowing the base and the metal carboxylate salt or metal carboxylate salt precursors to react.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: August 7, 2012
    Assignee: 3M Innovative Properties Company
    Inventor: Timothy D. Dunbar
  • Publication number: 20120045520
    Abstract: A method for using a salt of meta-arsenite (AsO2—) to suppress growing of human cancer cells is provided to find a method of curing human cancers. Effects of the salt of meta-arsenite (AsO2—) on various human cancer cells are investigated via in vitro cytotoxic activity and in vivo anticancer activity against nude mice. For in vitro cytotoxic activity, six (6) kinds of human cancer with nine (9) cancer cell lines, eight (8) kinds of human cancers with twelve (12) cancer cell lines and ten (10) kinds of human cancers with forty one (41) cancer cell lines are tested. For in vivo anticancer activity, two (2) kinds of cancers of human renal cancer RXF 944LX and leukemia cells are tested utilizing nude mice.
    Type: Application
    Filed: October 31, 2011
    Publication date: February 23, 2012
    Inventor: Sang Bong LEE
  • Publication number: 20120029214
    Abstract: The present invention relates to a catalyst for the oxidation of o-xylene and/or naphthalene to phthalic anhydride, which has a plurality of catalyst zones which are arranged in series in the reaction tube and have been produced using an antimony trioxide which comprises a significant proportion of valentinite. The present invention further relates to a process for gas-phase oxidation, in which a gas stream comprising at least one hydrocarbon and molecular oxygen is passed through a catalyst produced using an antimony trioxide which comprises a significant proportion of valentinite.
    Type: Application
    Filed: July 29, 2011
    Publication date: February 2, 2012
    Applicant: BASF SE
    Inventors: Stefan Altwasser, Jürgen Zühlke, Frank Rosowski, Michael Krämer
  • Patent number: 8092764
    Abstract: Provided is a method of easily producing easily-filterable and stable scorodite that meets the leaching standard (conformance to Japanese Environmental Agency Notice 13) with excellent reproducibility and without using complex operations, when processing arsenic that is included in non-ferrous smelting intermediates, and particularly when processing arsenic in the form of a sulfide. Scorodite is produced by a leaching step of leaching arsenic from a non-ferrous melting intermediate containing arsenic in the weakly acid region, a solution adjusting step of oxidizing trivalent arsenic to pentavalent arsenic by adding an oxidizing agent to the leaching solution, and a crystallizing step of converting the arsenic in the adjusted solution to scorodite crystals.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: January 10, 2012
    Assignee: Dowa Metals and Mining Co., Ltd.
    Inventors: Mitsuo Abumiya, Yusuke Sato, Hironobu Mikami, Masami Oouchi, Tetsuo Fujita, Masayoshi Matsumoto
  • Patent number: 8048398
    Abstract: Process for preparing a mixed metal oxide powder, in which oxidizable starting materials are evaporated and oxidized, the reaction mixture is cooled after the reaction and the pulverulent solids are removed from gaseous substances, wherein as starting materials, at least one pulverulent metal and at least one metal compound, the metal and the metal component of the metal compound being different and the proportion of metal being at least 80% by weight based on the sum of metal and metal component from metal compound, together with one or more combustion gases, are fed to an evaporation zone of a reactor, where metal and metal compound are evaporated completely under nonoxidizing conditions, subsequently, the mixture flowing out of the evaporation zone is reacted in the oxidation zone of this reactor with a stream of a supplied oxygen-containing gas whose oxygen content is at least sufficient to oxidize the starting materials and combustion gases completely.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: November 1, 2011
    Assignee: Evonik Degussa GmbH
    Inventors: Stipan Katusic, Guido Zimmermann, Michael Kraemer, Peter Kress, Horst Miess
  • Patent number: 8039149
    Abstract: The present invention relates to bismuth oxyfluoride nanocomposites used as positive electrodes in primary and rechargeable electromechanical energy storage systems.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: October 18, 2011
    Assignee: Rutgers, The State University
    Inventors: Glenn G. Amatucci, Mathieu Bervas
  • Publication number: 20110250292
    Abstract: Disclosed is a composition for improving radiotherapy for cancer, containing tetra-arsenic oxide (As4O6) as an active ingredient. The disclosed composition for improving radiotherapy for cancer improves the efficiency of radiotherapy, and thus reduces side effects caused by the high-dose radiation. The disclosed composition uses tetra-arsenic oxide, the safety of which is proven, from among conventional arsenic compound derivatives, to prevent side effects caused by arsenic trioxide, taxol, cisplatin, fluorouracil, leuprolide, or the like, which are known as conventional radiosensitizers.
    Type: Application
    Filed: November 30, 2009
    Publication date: October 13, 2011
    Applicant: CHONJISAN CO., LTD.
    Inventors: Ill Ju Bae, Sae Gwang Park
  • Publication number: 20110230339
    Abstract: Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.
    Type: Application
    Filed: March 16, 2010
    Publication date: September 22, 2011
    Applicant: BATTELLE ENERGY ALLIANCE, LLC
    Inventors: Nicholas R. Mann, Troy J. Tranter
  • Publication number: 20110132645
    Abstract: Embodiments described include a non-polymeric voltage switchable dielectric (VSD) material comprising substantially of a grain structure formed from only a single compound, processes for making same, and applications for using such non-polymeric VSD materials.
    Type: Application
    Filed: November 24, 2010
    Publication date: June 9, 2011
    Inventors: Ning Shi, Robert Fleming, Junjun Wu, Lex Kosowsky
  • Publication number: 20110117004
    Abstract: A closed loop combustion system for the combustion of fuels using a molten metal oxide bed.
    Type: Application
    Filed: October 22, 2010
    Publication date: May 19, 2011
    Applicant: CONOCOPHILLIPS COMPANY
    Inventors: David C. LAMONT, James SEABA, Edward G. LATIMER, Alexandru PLATON
  • Patent number: 7935321
    Abstract: A method of preparing bismuth oxide and an apparatus therefor are disclosed. The method includes: melting bismuth metal; transporting the melted bismuth metal to an open first reactor and oxidizing the melted bismuth metal while stirring at a temperature of 300-650° C.; and transporting bismuth oxide and un-reacted material to a closed second reactor through a screw and oxidizing the bismuth oxide and un-reacted material while rotating the closed second reactor at a temperature of 300-600° C. with a supply of air or oxygen.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: May 3, 2011
    Assignee: Dansuk Industrial Co., Ltd.
    Inventors: Seung Wok Han, Dong Eon Kim, Byung Gil Lim
  • Patent number: 7897138
    Abstract: The invention relates to a process for producing diantimony pentoxide having a high oxidation purity. A process for producing an aqueous sol of diantimony pentoxide, which comprises mixing diantimony trioxide (Sb2O3) and an aqueous hydrogen peroxide solution in an aqueous medium, and after the temperature has reached from 50 to 80° C., reacting the diantimony trioxide with the aqueous hydrogen peroxide solution while keeping the reaction temperature at a level not higher by at least 10° C. than a desired set temperature in the temperature range, to thereby obtain a sol having dispersed in the aqueous medium diantimony pentoxide particles which have a primary particle size of from 2 to 50 nm and which have a diantimony trioxide/diantimony pentoxide weight ratio of not higher than 5 wt %.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: March 1, 2011
    Assignee: Nissan Chemical Industries, Ltd.
    Inventors: Teruyuki Koshi, Makoto Kawashima, Keitaro Suzuki
  • Patent number: 7867471
    Abstract: A process of producing a ceramic powder including providing a plurality of precursor materials in solution, wherein each of the plurality of precursor materials in solution further comprises at least one constituent ionic species of a ceramic powder, combining the plurality of precursor materials in solution with an onium dicarboxylate precipitant solution to cause co-precipitation of the ceramic powder precursor in a combined solution; and separating the ceramic powder precursor from the combined solution. The process may further include calcining the ceramic powder precursor.
    Type: Grant
    Filed: April 3, 2009
    Date of Patent: January 11, 2011
    Assignee: SACHEM, Inc.
    Inventor: Wilfred Wayne Wilson
  • Publication number: 20100266485
    Abstract: A process comprises (a) combining (1) at least one base and (2) at least one metal carboxylate salt comprising (i) a metal cation selected from metal cations that form amphoteric metal oxides or oxyhydroxides and (ii) a lactate or thiolactate anion, or metal carboxylate salt precursors comprising (i) at least one metal salt comprising the metal cation and a non-interfering anion and (ii) lactic or thiolactic acid, a lactate or thiolactate salt of a non-interfering, non-metal cation, or a mixture thereof; and (b) allowing the base and the metal carboxylate salt or metal carboxylate salt precursors to react.
    Type: Application
    Filed: December 16, 2008
    Publication date: October 21, 2010
    Inventor: Timothy D. Dunbar
  • Publication number: 20100215570
    Abstract: To provide a method of generating, with good reproducibility and ease and without complicated operations, scorodite which satisfies the elution standard (in accordance with Notification of No. 13 of Japanese Environment Agency) and which has good filterbility and stability for processing arsenic contained in a non-ferrous smelting intermediate, particularly, for processing a diarsenic trioxide form. A method of processing diarsenic trioxide, including: a leaching step of adding water and alkali to a non-ferrous smelting intermediate that contains diarsenic trioxide to produce slurry, heating the slurry, and leaching arsenic; a solution adjusting step of adding an oxidizing agent to the leachate to oxidize trivalent arsenic to pentavalent arsenic so as to obtain an adjusted solution; and a crystallizing step of converting arsenic in the adjusted solution to scorodite crystal.
    Type: Application
    Filed: July 11, 2008
    Publication date: August 26, 2010
    Applicant: DOWA METALS & MINING CO., LTD.
    Inventors: Mitsuo Abuyima, Yusuke Sato, Hironobu Mikami, Masami Oouchi, Tetsuo Fujita, Masayoshi Matsumoto
  • Publication number: 20100209530
    Abstract: The present invention provides an anti-allergen agent that has excellent heat resistance, low coloration, excellent processability, and excellent water resistance, an anti-allergen product, and a method for processing same. The anti-allergen agent of the present invention comprises as an active ingredient an inorganic solid acid, and the inorganic solid acid preferably has an acid strength as pKa of 4.0 or less. Furthermore, it preferably further comprises a polyphenol compound, and in this case it preferably comprises the inorganic solid acid at 5 to 90 wt % relative to the total amount of the inorganic solid acid and the polyphenol compound.
    Type: Application
    Filed: September 24, 2008
    Publication date: August 19, 2010
    Inventor: Yoshinao Yamada
  • Publication number: 20100196230
    Abstract: Provided is a method of easily producing easily-filterable and stable scorodite that meets the leaching standard (conformance to Japanese Environmental Agency Notice 13) with excellent reproducibility and without using complex operations, when processing arsenic that is included in non-ferrous smelting intermediates, and particularly when processing arsenic in the form of a sulfide. Scorodite is produced by a leaching step of leaching arsenic from a non-ferrous melting intermediate containing arsenic in the weakly acid region, a solution adjusting step of oxidizing trivalent arsenic to pentavalent arsenic by adding an oxidizing agent to the leaching solution, and a crystallizing step of converting the arsenic in the adjusted solution to scorodite crystals.
    Type: Application
    Filed: July 11, 2008
    Publication date: August 5, 2010
    Applicant: DOWA METALS & MINING CO., LTD.
    Inventors: Mitsuo Abumiya, Yusuke Sato, Hironobu Mikami, Masami Oouchi, Tetsuo Fujita, Masayoshi Matsumoto
  • Publication number: 20100196231
    Abstract: The object is to remove arsenic in a stable form from an arsenic-containing smelting intermediate product. Thus, disclosed is a method for treating an arsenic-containing nonferrous smelting intermediate product, which comprises: a leaching step of subjecting a mixed slurry of a nonferrous smelting intermediate product containing arsenic in the form of a sulfide and a nonferrous smelting intermediate product containing arsenic and metal copper to the oxidation/leaching in an acidic range to produce a leaching solution; a solution preparation step of adding an oxidizing agent to the leaching solution to oxidize trivalent arsenic into pentavalent arsenic, thereby producing a preparation solution; and a crystallization step of converting arsenic contained in the preparation solution into a scorodite crystal.
    Type: Application
    Filed: July 11, 2008
    Publication date: August 5, 2010
    Applicant: DOWA METALS & MINING CO., LTD.
    Inventors: Mitsuo Abumiya, Yusuke Sato, Hironobu Mikami, Masami Oouchi, Tetsuo Fujita, Masayoshi Matsumoto
  • Patent number: 7704906
    Abstract: A semiconductor porcelain composition [(BiNa)x(Ba1-yRy)1-x]TiO3 with 0<x?0.2, 0<y?0.02 and R being selected from the group consisting of La, Dy, Eu, Gd or Y is prepared by separately calcining a composition of (BaR)TiO3 at a temperature of 900° C. through 1300° C. and calcining a composition of (BiNa)TiO3 at a temperature of 700° C. through 950° C., and then mixing the two calcined powders and forming and sintering the mixed calcined powder. Similarly, a semiconductor porcelain composition [(BiNa)x(Ba1-x][Ti1-zMz]O3 with 0<x?0.2, 0<z?0.005 and M being selected from the group consisting of Nb, Ta and Sb is prepared by separately calcining a composition of (BaM)TiO3 at a temperature of 900° C. through 1300° C. and calcining a composition of (BiNa)TiO3 at a temperature of 700° C. through 950° C., and then mixing the two calcined powders, and forming and sintering the mixed calcined powders.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: April 27, 2010
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takeshi Shimada, Koichi Terao, Kazuya Toji
  • Patent number: 7700509
    Abstract: A method of producing a semiconductor disk represented by a composition formula [(Bi0.5Na0.5)x(Ba1?yRy)1?x]TiO3, in which R is at least one element of La, Dy, Eu, Gd and Y and x and y each satisfy 0?x?0.14, and 0.002?y?0.02 includes carrying out a sintering in an inert gas atmosphere with an oxygen concentration of 9 ppm to 1% and wherein a treatment at an elevated temperature in an oxidizing atmosphere after the sintering is not carried out.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: April 20, 2010
    Assignee: Hitachi Metals, Ltd.
    Inventors: Takeshi Shimada, Koichi Terao, Kazuya Toji
  • Publication number: 20100092378
    Abstract: A method of preparing bismuth oxide and an apparatus therefor are disclosed. The method includes: melting metal bismuth; transporting the melted metal bismuth to an open first reactor and oxidizing the melted metal bismuth while stirring at the temperature of 300-65O0 C; and transporting bismuth oxide and un-reacted material to an closed second reactor through a screw and oxidizing the bismuth oxide and un-reacted material while rotating the closed second reactor at the temperature of 300-6000 C with supply of air or oxygen.
    Type: Application
    Filed: July 23, 2007
    Publication date: April 15, 2010
    Inventors: Seung Wok Han, Dong Eon Kim, Byung Gil Lim
  • Publication number: 20100055016
    Abstract: Provided is a method of manufacturing oxide-based nano-structured materials using a chemical wet process, and thus, the method can be employed to manufacture oxide-based nano-structured materials having uniform composition and good electrical characteristics in large quantities, the method having a relatively simple process which does not use large growing equipment. The method includes preparing a first organic solution that comprises a metal, mixing the first organic solution with a second organic solution that contains hydroxyl radicals (—OH), filtering the mixed solution using a filter in order to extract oxide-based nano-structured materials formed in the mixed solution, drying the extracted oxide-based nano-structured materials to remove any remaining organic solution, and heat treating the dried oxide-based nano-structured materials.
    Type: Application
    Filed: February 1, 2008
    Publication date: March 4, 2010
    Inventors: Sang-Hyeob Kim, Hye-Jin Myoung, Sung-Lyul Maeng, G.A.J. Amaratunga, Sunyoung Lee
  • Publication number: 20100003469
    Abstract: An oxide material (102) is used as masking for patterning by etching which is performed with respect to a substrate or a material laminated on the substrate (101). The oxide material is also used in a multi-step etching which is performed by using a resist (103) formed on the oxide material as a mask. The etching rate of the oxide material for a reaction gas containing an inert gas or hydrogen is higher than the etching rate of the resist for the reaction gas containing an inert gas or hydrogen, while the etching rate of the oxide material for a fluorine-containing gas is lower than the etching rate of the material, which is to be patterned by using the oxide material as a mask, for the fluorine-containing gas. In addition, the oxide material is soluble in a weak acid.
    Type: Application
    Filed: September 28, 2007
    Publication date: January 7, 2010
    Applicant: PIONEER CORPORATION
    Inventors: Megumi Fujimura, Yasuo Hosoda
  • Publication number: 20090298699
    Abstract: The invention offers a production method of a material powder of an oxide superconductor. The production method is provided with both a step of producing a dry powder by removing solvent from a solution containing elements for constituting the oxide superconductor and a step of producing oxides of the elements for constituting the oxide superconductor by scattering the dry powder in a high-temperature furnace. Provided with the above steps, the production method not only can achieve the uniform presence of the elements for constituting the oxide superconductor but also enables the mass production of the material powder.
    Type: Application
    Filed: March 13, 2008
    Publication date: December 3, 2009
    Applicant: SUMITOMO ELECTRIC INDUSTRIES ,LTD.
    Inventor: Naoki Ayai
  • Patent number: 7622090
    Abstract: The invention relates to a method for separating uranium(VI) from one or more actinides selected from actinides(IV) and actinides(VI) other than uranium(VI), characterized in that it comprises the following steps: a) bringing an organic phase, which is immiscible with water and contains the said uranium and the said actinide or actinides, in contact with an aqueous acidic solution containing at least one lacunary heteropolyanion and, if the said actinide or at least one of the said actinides is an actinide(VI), a reducing agent capable of selectively reducing this actinide(VI); and b) separating the said organic phase from the said aqueous solution. Applications: reprocessing irradiated nuclear fuels, processing rare-earth, thorium and/or uranium ores.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: November 24, 2009
    Assignees: Commissariat a l'Energie Atomique, Compagnie General des Matieres Nucleaires
    Inventors: Binh Dinh, Michaël Lecomte, Pascal Baron, Christian Sorel, Gilles Bernier
  • Patent number: 7601324
    Abstract: The method for synthesizing metal oxide nanopowder produces powders of nanoparticle size from metals having relatively low boiling temperatures, such as zinc, tellurium, bismuth, and strontium by vapor-phase oxidation using a conventional 2.45 GHz microwave oven. The energy that initiates the combustion comes from the microwave through a susceptor tube that absorbs radiant microwave energy and transfers it to the metal, which evaporates to small particles inside the susceptor tube and then combusts in air to form nanosize powder. The susceptor is made of silicon carbide composite material.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: October 13, 2009
    Assignee: King Fahd University of Petroleum and Minerals
    Inventor: Saleh I. Al-Quraishi
  • Patent number: 7582276
    Abstract: The invention relates to nanoscale rutile or oxide powder that is obtained by producing amorphous TiO2 by mixing an alcoholic solution with a titanium alcoholate and with an aluminum alcohalate and adding water and acid. The amorphous, aluminum-containing TiO2 is isolated by removing the solvent, and is redispersed in water in the presence of a tin salt. Thermal or hydrothermal post-processing yields rutile or oxide that can be redispersed to primary particle size. The n-rutile or the obtained oxide having a primary particle size ranging between 5 and 20 nm can be incorporated into all organic matrices so that they remain transparent. Photocatalytic activity is suppressed by lattice doping with trivalent ions. If the amorphous precursor is redispersed in alcohol, or not isolated, but immediately crystallized, an anatase is obtained that can be redispersed to primary particle size.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: September 1, 2009
    Assignee: ITN Nanovation AG
    Inventor: Ralph Nonninger
  • Publication number: 20090202427
    Abstract: Process for preparing mixed metal oxide powders Abstract Process for preparing a mixed metal oxide powder, in which oxidizable starting materials are evaporated in an evaporation zone of a reactor and oxidized in the vaporous state in an oxidation zone of this reactor, the reaction mixture is cooled after the reaction and the pulverulent solids are removed from gaseous substances, wherein at least one pulverulent metal, together with one or more combustion gases, is fed to the evaporation zone, the metal is evaporated completely in the evaporation zone under nonoxidizing conditions, an oxygen-containing gas and at least one metal compound are fed, separately or together, in the oxidation zone to the mixture flowing out of the evaporation zone, the oxygen content of the oxygen-containing gas being at least sufficient to oxidize the metal, the metal compound and the combustion gas completely.
    Type: Application
    Filed: May 16, 2007
    Publication date: August 13, 2009
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Stipan Katusic, Guido Zimmermann, Michael Krämer, Horst Miess, Edwin Staab
  • Patent number: 7572532
    Abstract: The invention relates to an oxide material of general formula (I) A2?x?yA?XA?yM1?z M?Z04+?, wherein A and A? are independently a metal cation of a group formed by lanthanides and/or alkalis and/or alkaline earths, A? is a cationic gap, i.e. a cation vacancy A and/or A?, M and M? are independently a metal of a group formed by transition metals such as 0<y<0.30, preferably 0<y=0.20; 0<?<0.25, preferably 0<?<0.10; 0=x=1; and 0=z=1. An air electrode containing said material and an electric power producing device in the form of a fuel cell provided with at least one electrochemical cell comprising said electrode are also disclosed.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: August 11, 2009
    Assignees: Electricite de France, Centre National de la Recherche
    Inventors: Philippe Stevens, Emmanuelle Boehm, Jean-Marc Basset, Fabrice Mauvy, Jean-Claude Grenier
  • Publication number: 20090123354
    Abstract: A solid material is presented for the partial oxidation of natural gas. The solid material includes a solid oxygen carrying agent and a hydrocarbon activation agent. The material precludes the need for gaseous oxygen for the partial oxidation and provides better control over the reaction.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 14, 2009
    Inventors: Deng-Yang Jan, Joel T. Walenga, Kurt M. Vanden Bussche, Joseph A. Kocal, Lisa M. King
  • Publication number: 20090069166
    Abstract: Optical glass having a refractive index (nd) of 1.85 or greater, and an Abbe number (?d) falling within the range of 10 to 30, which is suited for molding by precision mold press is provided. The optical glass is characterized by including B2O3+SiO2 in an amount of 3 to 60%, Bi2O3 in an amount of 25 to 80%, RO+Rn2O in an amount of 5 to 60% (wherein R represents one or more selected from a group consisting of Zn, Ba, Sr, Ca, and Mg; and Rn represents one or more selected from a group consisting of Li, Na, K, and Cs), with each component in the range expressed in oxide-based mole percentage, and is characterized in that transparency in the visible region is high, and that the transition point (Tg) is 480° C. or lower. The optical glass is characterized by having a spectral transmittance of 70% or greater at a wavelength of 600 nm for a thickness of 10 mm.
    Type: Application
    Filed: April 27, 2006
    Publication date: March 12, 2009
    Inventor: Jie Fu
  • Publication number: 20090069165
    Abstract: Optical glass having a refractive index (nd) of 1.75 or greater, and an Abbe number (?d) falling within the range of 15 to 40, which is suitable for molding by precision mold press is provided. The optical glass is characterized by including B2O3+SiO2 in an amount of 10 to 70%, Bi2O3 in an amount of 5% or more and less than 25%, RO+Rn2O in an amount of 5 to 60% (wherein R represents one or more selected from a group consisting of Zn, Ba, Sr, Ca, and Mg; and Rn represents one or more selected from a group consisting of Li, Na, K, and Cs), with each component in the range expressed in oxide-based mole, and is characterized in that transparency in the visible region is high, and that the transition point (Tg) is 520° C. or lower. The optical glass is characterized by having a spectral transmittance of 70% or greater at a wavelength of 550 nm, for a thickness of 10 mm.
    Type: Application
    Filed: April 27, 2006
    Publication date: March 12, 2009
    Inventor: Jie Fu