Metal Coating Patents (Class 427/123)
-
Publication number: 20150013480Abstract: A component comprises a non-metallic core having an outer surface, a first catalyst deposited onto at least a first portion of the outer surface of the non-metallic core, a second catalyst deposited onto at least a second portion of the outer surface of the non-metallic core, an electrical interface, and a metallic coating. The electrical interface is plated onto the first catalyst, and includes a first interface layer electroless plated onto the first catalyst. The metallic coating is plated onto the second catalyst.Type: ApplicationFiled: July 15, 2014Publication date: January 15, 2015Inventors: Shari L. Bugaj, Wendell V. Twelves, JR., Grant O. Cook, III
-
Publication number: 20150017414Abstract: Disclosed herein are a conducting network for storing gas such as hydrogen, carbon dioxide, or the like, and a method for preparing the same, and particularly, a conducting network composite including: dopant-doped polyaniline nanofiber supporter; and a polypyrrole layer laminated on the supporter, and a method for preparing the same. According to the present invention, a novel conducting network composite suitable for being used as an energy storage material for various purposes may be provided by a simple and economical method, and since a polyaniline nanofiber having the entangled structure may function as an excellent supporter for forming a network composite material and a thickness of the polypyrrole layer may be easily adjusted, the nanocomposite for being used in various fields may be simply and economically prepared.Type: ApplicationFiled: December 31, 2013Publication date: January 15, 2015Applicant: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGYInventors: Kurt E. GECKELER, Nour Fathi Attia
-
Publication number: 20150017341Abstract: A method and an arrangement are disclosed for producing an electrically conductive pattern on a surface. Electrically conductive solid particles are transferred onto an area of predetermined form on a surface of a substrate. The electrically conductive solid particles are heated to a temperature that is higher than a characteristic melting point of the electrically conductive solid particles, thus creating a melt. The melt is pressed against the substrate in a nip, wherein a surface temperature of a portion of the nip that comes against the melt is lower than said characteristic melting point.Type: ApplicationFiled: January 30, 2013Publication date: January 15, 2015Inventors: Petri Sirviö, Juha Maijala
-
Publication number: 20150010696Abstract: The present invention provides a method of finely depositing lithium metal powder or thin lithium foil onto a substrate while avoiding the use of a solvent. The method includes depositing lithium metal powder or thin lithium foil onto a carrier, contacting the carrier with a substrate having a higher affinity for the lithium metal powder as compared to the affinity of the carrier for the lithium metal powder, subjecting the substrate while in contact with the carrier to conditions sufficient to transfer the lithium metal powder or lithium foil deposited on the carrier to the substrate, and separating the carrier and substrate so as to maintain the lithium metal powder or lithium metal foil, deposited on the substrate.Type: ApplicationFiled: September 25, 2014Publication date: January 8, 2015Inventors: Marina Yakovleva, Yuan Gao, Yangxing Li, Kenneth Brian Fitch
-
Publication number: 20150009432Abstract: A method for manufacturing of a conductive member include forming one of a conductive layer including metal nanowires or a light-scattering layer including insulating light-scattering fine particles on a substrate in a pattern shape; and forming the other of the conductive layer including metal nanowires or the light-scattering layer including insulating light-scattering fine particles on a space of the substrate wherein the one of the conductive layer or the light-scattering layer is not formed.Type: ApplicationFiled: September 22, 2014Publication date: January 8, 2015Applicant: FUJIFILM CorporationInventor: Kensuke KATAGIRI
-
Publication number: 20150010738Abstract: A pattern forming method which includes ejecting, through a nozzle, a liquid material containing a solvent and metal particles, and depositing droplets of the liquid material onto a pattern formation object, to thereby form a pattern thereon, wherein the viscosity of the liquid material before ejection thereof through the nozzle is lower than that of the liquid material at the time of deposition of droplets thereof onto the pattern formation object.Type: ApplicationFiled: March 28, 2013Publication date: January 8, 2015Inventors: Yuri Saito, Daisuke Uematsu, Nobuhiro Hayakawa, Ryouma Nakayama, Kentarou Mori
-
Publication number: 20150004470Abstract: Disclosed are solid-state batteries having improved energy density and methods of manufacturing the solid-state batteries having improved energy density. In some embodiments, the solid-state battery may include a substrate of yttria-stabilized zirconia, a cathode current collector formed on the substrate, an anode current collector formed on the substrate, a cathode of lithium cobalt oxide in electrical contact with the cathode current collector, an anode of lithium in electrical contact with the anode current collector, and a solid-state electrolyte of lithium phosphorous oxynitride formed between the cathode and the anode.Type: ApplicationFiled: June 28, 2013Publication date: January 1, 2015Inventors: Ramesh C. Bhardwaj, Simon Prakash
-
Publication number: 20150004361Abstract: Antimicrobial devices such as molded components can include surfaces which have a microbial field disruptive hyper-conductive layer covered by a dielectric surface layer, to continuously disinfect said surfaces. Also, the present invention relates to generally antimicrobial dressings and more particularly to dermal dressings and bandages providing antiseptic disinfection, comprising typical modern dressings and bandages stratified in close proximity to microbial field disruptive hyper-conductive elements or alloys which deactivate microbes by disrupting the electric field generated by and used by the microbes, and isolated the wound or surgical site tissue from said conductors with a layer or layers of dielectric film.Type: ApplicationFiled: June 27, 2014Publication date: January 1, 2015Inventor: Taylor C. Culpepper
-
Publication number: 20150004485Abstract: Amorphous silicon anode electrodes and devices for a rechargeable batteries having enhanced structural stabilities are provided. An amorphous silicon anode can include an electrically conductive substrate and an electrode layer deposited onto the substrate, where the electrode layer is comprised of one or more amorphous silicon structures, and the amorphous silicon structures have at least one dimension that is less than or equal to about 500 nm.Type: ApplicationFiled: June 28, 2013Publication date: January 1, 2015Inventors: Zhaohui Chen, Donald S. Gardner, Bum Ki Moon, Yang Liu
-
Patent number: 8920672Abstract: The present invention relates to negative active materials for rechargeable lithium batteries, manufacturing methods thereof, and rechargeable lithium batteries including the negative active materials. A negative active material for a rechargeable lithium battery includes a core including a material capable of carrying out reversible oxidation and reduction reactions and a coating layer formed on the core. The coating layer has a reticular structure.Type: GrantFiled: January 10, 2012Date of Patent: December 30, 2014Assignee: Samsung SDI Co., Ltd.Inventors: Nam-Soon Choi, Sung-Soo Kim, Yong-Mook Kang, Kyoung-Han Yew
-
Patent number: 8920887Abstract: A method of bonding a conductive material to stainless steel includes: a first step of applying a conductive paste to a surface of a base plate made of the stainless steel; and a second step of removing, in an area located within the surface of the base plate and covered with the conductive paste, a part of a passivation film on a surface of the stainless steel without allowing a base material of the stainless steel of the base plate to come into contact with air. The removing of the passivation film is achieved, for example, by irradiation of laser light.Type: GrantFiled: December 29, 2011Date of Patent: December 30, 2014Assignee: Suncall CorporationInventors: Kenji Mashimo, Syuuichi Kashimoto
-
Publication number: 20140377457Abstract: A metal nanoparticle dispersion is made by mixing ingredients. The ingredients comprise a solvent; a plurality of metal nanoparticles, the metal nanoparticles comprising an oxide formed thereon; and a reducing agent. The reducing agent is included in an amount sufficient to react with the oxide to significantly increase a conductivity of a metal film that is formable from the nanoparticle dispersion using a deposition and heating process compared with the conductivity of a metal film formable from the same nanoparticle composition without the reducing agent using the same deposition and heating process. Methods for making the metal nanoparticle dispersion, as well as for making a film from the dispersion, are also disclosed.Type: ApplicationFiled: June 24, 2013Publication date: December 25, 2014Inventors: Ping Liu, Yiliang Wu, Anthony James Wigglesworth
-
Publication number: 20140377670Abstract: A lithium ion conducting protective film produced using a layer-by-layer assembly process. The lithium ion conducting protective film is assembled on a substrate by a sequential exposure of the substrate to a first poly(ethylene oxide) (PEO) layer including a cross-linking silane component on the first side of the substrate, a graphene oxide (GO) layer on the first PEO layer, a second poly(ethylene oxide) (PEO) layer including a cross-linking silane component on the GO layer and a poly(acrylic acid) (PAA) layer on the second PEO layer.Type: ApplicationFiled: December 6, 2013Publication date: December 25, 2014Applicant: Samsung Electronics, Co. Ltd.Inventors: Mariya Khiterer, Paula T. Hammond, Sun Hwa Lee
-
Patent number: 8911904Abstract: Compositions and methods of making are provided for treated mesoporous metal oxide microspheres electrodes. The compositions comprise (a) microspheres with an average diameter between 200 nanometers (nm) and 10 micrometers (?m); (b) mesopores on the surface and interior of the microspheres, wherein the mesopores have an average diameter between 1 nm and 50 nm and the microspheres have a surface area between 50 m2/g and 500 m2/g, and wherein the composition has an electrical conductivity of at least 1×10?7 S/cm at 25° C. and 60 MPa. The methods of making comprise forming a mesoporous metal oxide microsphere composition and treating the mesoporous metal oxide microspheres by at least one method selected from the group consisting of: (i) annealing in a reducing atmosphere, (ii) doping with an aliovalent element, and (iii) coating with a coating composition.Type: GrantFiled: October 5, 2012Date of Patent: December 16, 2014Assignee: UT-Battelle, LLCInventors: Mariappan Parans Paranthaman, Zhonghe Bi, Craig A. Bridges, Gilbert M. Brown
-
Publication number: 20140360762Abstract: A metal precursor powder, a method of manufacturing a conductive metal layer or pattern, and an electronic device including the same, are provided, and in the metal precursor powder, the Gibbs free energy change of hydrogen removal at a temperature range of ?25° C. to 25° C. is ?100 kJ/mol to 300 kJ/mol.Type: ApplicationFiled: November 27, 2013Publication date: December 11, 2014Applicant: KOREA INSTITUTE OF MACHINERY & MATERIALSInventor: Hye Moon LEE
-
Publication number: 20140361945Abstract: A patch for a device in an electronic housing including an aluminum layer having a threshold thickness, a non-conductive layer on a first side of the aluminum layer, and a radio-frequency (RF) transparent layer on a second side of the aluminum layer is provided. A method for manufacturing an antenna window including a patch as above is also provided, the method including determining a thickness of the aluminum layer adjacent to an anodized aluminum layer. A method for manufacturing an antenna window including coating an aluminum layer having a threshold thickness on a radio-frequency (RF) transparent layer to form an RF transparent laminate is also provided. A method for manufacturing an antenna window including removing a thickness of aluminum is also provided. A method for manufacturing an antenna window including disposing a mask on an aluminum substrate and anodizing the aluminum substrate to a selected thickness is also provided.Type: ApplicationFiled: June 7, 2013Publication date: December 11, 2014Inventors: Abhijeet MISRA, Brian S. TRYON, Charles J. KUEHMANN, Stephen B. LYNCH, James A. WRIGHT
-
Publication number: 20140363568Abstract: A method of manufacturing a composite materials in which a carbon material and a metal compound can maintain a nanosized form as a final product is realized, and a method for manufacturing a superior electrode material is provided. A metal compound precursor is formed from a metal compound material source, and a mixture of the metal compound precursor and a carbon material is calcinated. In the treatment to form the precursor, a treatment of absorbing one of the metal compound material sources to the functional group of the carbon material and a treatment of producing on the carbon material a treatment of reacting the remaining material source of the adsorbed metal compound material source on the carbon material to produce a metal compound precursor are performed in separate steps.Type: ApplicationFiled: October 29, 2012Publication date: December 11, 2014Inventors: Shunzo Suematsu, Daisuke Horii, Katsuhiko Naoi, Wako Naoi
-
Publication number: 20140363699Abstract: A current-perpendicular-to-plane magnetoresistive read sensor includes a stack of layers extending along a stacking direction, and an edge surface parallel to the stacking direction that forms at least part of a bearing surface of the read sensor, the bearing surface designed to face a recording medium. The stack of layers includes a first contact layer, a ferromagnetic free layer whose magnetic orientation varies according to an applied magnetic field, above the first contact layer, a non-magnetic layer above the ferromagnetic layer, a ferromagnetic spin injection layer above the non-magnetic layer, and a second contact layer above the spin injection layer, such that a current can flow between the second contact layer and the first contact layer along a current-perpendicular-to-plane direction, parallel to the stacking direction. The stack of layers further includes a series of structures extending along a direction parallel to the bearing surface and perpendicular to the stacking direction.Type: ApplicationFiled: June 2, 2014Publication date: December 11, 2014Applicant: International Business Machines CorporationInventors: Giovanni Cherubini, Simeon Furrer, Jens Jelitto, Mark A. Lantz
-
Publication number: 20140353675Abstract: An electrode used in contact with an insulator comprises a layer mainly consisting of aluminum (Al) and a titanium nitride (TiN) layer that is placed between the layer mainly consisting of aluminum (Al) and the insulator and is arranged in contact with the layer mainly consisting of aluminum (Al). A ratio of thickness of the layer mainly consisting of aluminum (Al) to thickness of the titanium nitride (TiN) layer is in a range of not less than 3.00 and not greater than 12.00.Type: ApplicationFiled: May 19, 2014Publication date: December 4, 2014Applicant: TOYODA GOSEI CO., LTD.Inventors: Junya Nishii, Toru Oka
-
Patent number: 8895441Abstract: One aspect of the present invention includes a method of fabricating an electronic device. According to one embodiment, the method comprises providing a substrate having dielectric oxide surface areas adjacent to electrically conductive surface areas, chemically bonding an anchor compound with the dielectric oxide surface areas so as to form an anchor layer, initiating the growth of a metal using the electrically conductive surface areas and growing the metal so that the anchor layer also bonds with the metal. The anchor compound has at least one functional group capable of forming a chemical bond with the oxide surface and has at least one functional group capable of forming a chemical bond with the metal. Another aspect of the present invention is an electronic device. A third aspect of the present invention is a solution comprising the anchor compound.Type: GrantFiled: February 24, 2012Date of Patent: November 25, 2014Assignee: Lam Research CorporationInventor: Artur Kolics
-
Publication number: 20140342228Abstract: The present invention is to provide a lithium titanate (LTO) material for a lithium ion battery. The LTO material has hierarchical micro/nano architecture, and comprises a plurality of micron-sized secondary LTO spheres, and a plurality of pores incorporated with metal formed by a metal dopant. Each of the micron-sized secondary LTO spheres comprises a plurality of nano-sized primary LTO particles. A plurality of the nano-sized primary LTO particles is encapsulated by a non-metal layer formed by a non-metal dopant. The LTO material of the present invention has high electrical conductivity for increasing the capacity at high charging/discharging rates, and energy storage capacity.Type: ApplicationFiled: April 10, 2014Publication date: November 20, 2014Applicant: Nano and Advanced Materials Institute LimitedInventors: Chenmin LIU, Lifeng CAI, Shing Yan CHOI
-
Publication number: 20140338961Abstract: In the present invention, a copper electrode having a nanohole structure is prepared by using a polymer substrate in the form of nanopillars in order to avoid fatigue fracture that causes degradation of electrical and mechanical properties of a flexible electrode during repetitive bending of a typical metal electrode. The nanohole structure may annihilate dislocations to suppress the initiation of fracture and may blunt crack tips to delay the propagation of damage. Therefore, the nanohole electrode exhibits very small changes in electrical resistance during a bending fatigue test.Type: ApplicationFiled: November 26, 2012Publication date: November 20, 2014Inventors: Young Chang Joo, In Suk Choi, Myoung Woon Moon, Byoung Joon Kim, Min Suk Jung
-
Publication number: 20140338191Abstract: A method of manufacturing includes printing a first plurality of patterned ink seed layers on a first side of a substrate. A second plurality of patterned ink seed layers are printed on a second side of the substrate. The first plurality of patterned ink seed layers and the second plurality of patterned ink seed layers are electroless plated with a first conductive material. A coating is printed over the first side of the substrate. A graphic design is printed on the second side of the substrate.Type: ApplicationFiled: May 15, 2013Publication date: November 20, 2014Applicant: UNI-PIXEL DISPLAYS, INC.Inventor: Robert J. Petcavich
-
Publication number: 20140342236Abstract: Articles including an array of one-dimensional or three-dimensional nanopillar arrays disposed on a substrate and methods for the formation thereof. The methods can include filling a plurality of hollow nanopillars, which are supported on a substrate, with a first conductive material and removing the plurality of hollow nanopillars to leave a plurality of vertically-aligned, epitaxial nanopillars, comprising the first conductive material, on the substrate.Type: ApplicationFiled: July 31, 2014Publication date: November 20, 2014Inventor: Amit GOYAL
-
Patent number: 8889218Abstract: A foam mount has a shape of an enclosed frame surrounding an open area, the frame in cross section having a peripheral surface; an inside surface opposite to the peripheral surface, the inside surface defining the open area. The inside surface includes a groove having an open end and the open end of the groove faces the open area of the foam mount. A coating is applied over selected surfaces of the foam mount, wherein the coating has a visible light transmission of less than 15%. Also disclosed is a method of coating an electric conductive coating over the visible light blocking coating and a decorative coating over selected surfaces of the foam mount.Type: GrantFiled: May 2, 2012Date of Patent: November 18, 2014Assignee: PPG Industries Ohio, Inc.Inventors: Joseph Cole Eberle, Jeffrey B. Masiwchuk, Mitchell V. Bruce, Brian L. Smith, Thomas R. Scarniac
-
Patent number: 8889471Abstract: For solar cell fabrication, the addition of precursors to printable media to assist etching through silicon nitride or silicon oxide layer thus affording contact with the substance underneath the nitride or oxide layer. The etching mechanism may be by molten ceramics formed in situ, fluoride-based etching, as well as a combination of the two.Type: GrantFiled: May 7, 2012Date of Patent: November 18, 2014Assignee: Sichuan Yinhe Chemical Co., Ltd.Inventors: Ovadia Abed, Yunjun Li, James P. Novak, Samuel Kim, Patrick Ferguson
-
Publication number: 20140333484Abstract: This antenna (10) has an underlying print layer (2) which is upon the surface of a material (1) to be printed in a predetermined antenna pattern, and an electro-less plating layer (3) applied to the surface of the underlying print layer (2). The underlying print layer (2) is formed from an ink (2a) and a metallic powder (2b). A portion of the particles of the metallic powder (2b) are entrained within the ink layer in which the ink (2a) has been printed in a substantially uniform thickness. Some particles which are of large particle size project from the ink layer, and a portion of the ink (2a) covering the projecting portions is removed.Type: ApplicationFiled: August 4, 2011Publication date: November 13, 2014Applicant: SHUHOU CO., LTD.Inventor: Kouji Muraoka
-
Patent number: 8883046Abstract: The present invention relates to a conductive metal ink composition which is properly applied for roll-printing process to form conductive pattern, and the method of preparing a conductive pattern using the same. The conductive metal ink composition comprises a conductive metal powder; a non-aqueous solvent comprising a first non-aqueous solvent having a vapor pressure of 3 torr or lower at 25° C. and a second non-aqueous solvent having a vapor pressure of higher than 3 torr at 25° C.; and a coatability improving polymer and is coated for forming the conductive pattern by the roll printing method.Type: GrantFiled: August 24, 2010Date of Patent: November 11, 2014Assignee: LG Chem, Ltd.Inventors: Jie-Hyun Seong, Soo-Yeon Heo, Jong-Taik Lee, Kyoung-Su Jeon, Sang-Ho Kim, Ji-Young Hwang
-
Patent number: 8877320Abstract: A microfluidic device comprising: a substrate having a microfluidic channel, an electrically conductive feature comprising an electrically conductive layer arranged on a primer layer and positioned with reference to the microfluidic channel, wherein the primer layer comprises: (i) an organic polymer selected from the group consisting of. (a) a homopolymer or copolymer including a vinyl lactam repeating unit, (b) a cellulose ether; (c) polyvinyl alcohol; and (d) unmodified or modified gelatin; and (ii) a porous particulate material, the organic polymer being dispersed in the porous particulate material, is provided. Methods for manufacturing the microfluidic devices and their use in a number of applications are also provided.Type: GrantFiled: February 17, 2012Date of Patent: November 4, 2014Assignee: Sony DADC Austria AGInventors: Andrew John Naisby, Miguel Angel Torello Arevalo, Josef Kugler, Wolfgang Franz Reiter
-
Publication number: 20140322868Abstract: Some implementations provide a semiconductor device that includes a die, an under bump metallization (UBM) structure coupled to the die, and a barrier layer. The UBM structure has a first oxide property. The barrier layer has a second oxide property that is more resistant to oxide removal from a flux material than the first oxide property of the UBM structure. The barrier layer includes a top portion, a bottom portion and a side portion. The top portion is coupled to the UBM structure, and the side portion is substantially oxidized.Type: ApplicationFiled: July 10, 2014Publication date: October 30, 2014Inventors: Omar James Bchir, Milind Pravin Shah, Houssam Wafic Jomaa, Manuel Aldrete, Chin-Kwan Kim
-
Publication number: 20140312003Abstract: A mechanism is provided for forming a nanodevice. A reservoir is filled with a conductive fluid, and a membrane is formed to separate the reservoir in the nanodevice. The membrane includes an electrode layer having a tunneling junction formed therein. The membrane is formed to have a nanopore formed through one or more other layers of the membrane such that the nanopore is aligned with the tunneling junction of the electrode layer. The tunneling junction of the electrode layer is narrowed to a narrowed size by electroplating or electroless deposition. When a voltage is applied to the electrode layer, a tunneling current is generated by a base in the tunneling junction to be measured as a current signature for distinguishing the base. When an organic coating is formed on an inside surface of the tunneling junction, transient bonds are formed between the electrode layer and the base.Type: ApplicationFiled: August 20, 2013Publication date: October 23, 2014Applicant: International Business Machines CorporationInventors: Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Deqiang Wang
-
Publication number: 20140312002Abstract: A mechanism is provided for forming a nanodevice. A reservoir is filled with a conductive fluid, and a membrane is formed to separate the reservoir in the nanodevice. The membrane includes an electrode layer having a tunneling junction formed therein. The membrane is formed to have a nanopore formed through one or more other layers of the membrane such that the nanopore is aligned with the tunneling junction of the electrode layer. The tunneling junction of the electrode layer is narrowed to a narrowed size by electroplating or electroless deposition. When a voltage is applied to the electrode layer, a tunneling current is generated by a base in the tunneling junction to be measured as a current signature for distinguishing the base. When an organic coating is formed on an inside surface of the tunneling junction, transient bonds are formed between the electrode layer and the base.Type: ApplicationFiled: April 18, 2013Publication date: October 23, 2014Inventors: Hongbo Peng, Stephen M. Rossnagel, Ajay K. Royyuru, Gustavo A. Stolovitzky, Deqiang Wang
-
Publication number: 20140311915Abstract: An electrode for electrochemical processes comprises a substrate of titanium or other valve metal, an intermediate protection layer based on valve metal oxides and a catalytic layer based on oxides of tin and of iridium doped with small amounts of oxides of elements selected between bismuth, antimony, tantalum and niobium. The electrode used in electrometallurgical processes, for example in the electrowinning of metals, as anode for anodic oxygen evolution presents a reduced overvoltage and a higher duration.Type: ApplicationFiled: June 22, 2012Publication date: October 23, 2014Applicant: INDUSTRIE DE NORA S.p.A.Inventors: Fabio Timpano, Alice Calderara
-
Patent number: 8865251Abstract: The present invention relates to a metal nanobelt and a method of manufacturing the same, and a conductive ink composition and a conductive film including the same. The metal nanobelt can be easily manufactured at a normal temperature and pressure without requiring the application of high temperature and pressure, and also can be used to form a conductive film or conductive pattern that exhibits excellent conductivity if the conductive ink composition including the same is printed onto a substrate before a heat treatment or a drying process is carried out at low temperature. Therefore, the metal nanobelt and the conductive ink composition may be applied very appropriately for the formation of conductive patterns or conductive films for semiconductor devices, displays, solar cells in environments requiring low temperature heating. The metal nanobelt has a length of 500 nm or more, a length/width ratio of 10 or more, and a width/thickness ratio of 3 or more.Type: GrantFiled: September 10, 2009Date of Patent: October 21, 2014Assignee: LG Chem, Ltd.Inventors: Won-Jong Kwon, Jae-Hong Kim, Sun-Mi Jin, Sang-Uck Lee, Young-Soo Lim
-
Patent number: 8864045Abstract: Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.Type: GrantFiled: November 18, 2011Date of Patent: October 21, 2014Assignee: STC.UNMInventors: Xingmao Jiang, C. Jeffrey Brinker
-
Publication number: 20140308459Abstract: A biosensor is disclosed comprising a support; a conductive layer composed of an electrical conductive material such as a noble metal, for example gold or palladium, and carbon; slits parallel to and perpendicular to the side of the support; working, counter, and detecting electrodes; a spacer which covers the working, counter, and detecting electrodes on the support; a rectangular cutout in the spacer forming a specimen supply path; an inlet to the specimen supply path; a reagent layer formed by applying a reagent containing an enzyme to the working, counter, and detecting electrodes, which are exposed through the cutout in the spacer; and a cover over the spacer. The biosensor can be formed by a simple method, and provides a uniform reagent layer on the electrodes regardless of the reagent composition.Type: ApplicationFiled: April 12, 2013Publication date: October 16, 2014Inventors: Shoji Miyazaki, Hiroyuki Tokunaga, Masaki Fujiwara, Eriko Yamanishi
-
Publication number: 20140302232Abstract: Apparatuses and methods for depositing materials on both side of a web while it passes a substantially vertical direction are provided. In particular embodiments, a web does not contact any hardware components during the deposition. A web may be supported before and after the deposition chamber but not inside the deposition chamber. At such support points, the web may be exposed to different conditions (e.g., temperature) than during the deposition.Type: ApplicationFiled: April 14, 2014Publication date: October 9, 2014Applicant: Amprius,Inc.Inventors: Ronald J. Mosso, Ghyrn E. Loveness
-
Patent number: 8852460Abstract: Methods and compositions for the deposition of a film on a substrate. In general, the disclosed compositions and methods utilize a precursor containing calcium or strontium.Type: GrantFiled: March 18, 2009Date of Patent: October 7, 2014Assignees: Air Liquide Electronics U.S. LP, American Air Liquide, Inc.Inventors: Olivier Letessier, Christian Dussarrat, Benjamin J. Feist, Vincent M. Omarjee
-
Publication number: 20140295070Abstract: An electroconductive material includes a Cu or Cu alloy base member, a Cu—Sn alloy coating layer, and a Sn coating layer. The Cu—Sn alloy coating layer has a Cu content of 20 to 70 atomic %, and an average thickness of 0.2 to 3.0 ?m. The Sn coating layer has an average thickness of 0.2 to 5.0 ?m. A surface of the electroconductive material has an arithmetic average roughness Ra of at least 0.15 ?m in at least one direction along the surface and 3.0 ?m or less in all directions along the surface. The Cu—Sn alloy coating layer is partially exposed at the surface of the electroconductive material. An area ratio of the Cu—Sn alloy coating layer exposed at the surface of the electroconductive material is 3 to 75%. An average crystal grain size on a surface of the Cu—Sn alloy coating layer is less than 2 ?m.Type: ApplicationFiled: March 14, 2014Publication date: October 2, 2014Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (Kobe Steel Ltd.)Inventor: Masahiro TSURU
-
Publication number: 20140291591Abstract: A nanocomposite structure, including: TiO2 nanotubes; and nanoparticles uniformly formed on surfaces of the TiO2 nanotubes.Type: ApplicationFiled: January 17, 2014Publication date: October 2, 2014Applicant: Intellectual Discovery Co., Ltd.Inventors: Hyeong tag Jeon, Seokyoon Shin, Hagyoung Choi, Giyul Ham
-
Publication number: 20140290863Abstract: A ceramic member 30 according to the present invention includes a ceramic base 32, which contains a solid solution Mg(Al)O(N) in which Al and N components are dissolved in magnesium oxide as the main phase, and an electrode 34 disposed on a portion of the ceramic base 32 and containing at least one of nitrides, carbides, carbonitrides, and metals as an electrode component. The ceramic base 32 may have an XRD peak of a (111), (200), or (220) plane of Mg(Al)O(N) measured using a CiK? ray at 2?=36.9 to 39, 42.9 to 44.8, or 62.3 to 65.2 degrees, respectively, between a magnesium oxide cubic crystal peak and an aluminum nitride cubic crystal peak.Type: ApplicationFiled: April 7, 2014Publication date: October 2, 2014Applicant: NGK Insulators, Ltd.Inventors: Morimichi WATANABE, Asumi JINDO, Yuji KATSUDA, Yosuke SATO, Yoshinori ISODA, Atsushi WATANABE
-
Publication number: 20140295274Abstract: A rechargeable lithium battery includes a non-aqueous electrolyte, a negative electrode including a silicon-based negative active material, and a positive active material including a compound represented by a Chemical Formula 1, Li1+xCo1?yMyO2, wherein, ?0.2?x?0.2, 0<y?0.2, and M includes Ni and one selected from Mn, B, Mg, Ca, Sr, Ba, Ti, V, Cr, Fe, Cu, Al, and a combination thereof.Type: ApplicationFiled: February 18, 2014Publication date: October 2, 2014Applicant: SAMSUNG SDI CO., LTD.Inventors: Young-Ki Kim, Young-Hun Lee, Na-Leum Yoo, Na-Ri Park, Soon-Rewl Lee, Ick-Kyu Choi, Yong-Chul Park
-
Publication number: 20140293485Abstract: A flexure for a suspension of a head gimbal assembly includes a substrate layer, a dielectric layer formed thereon, a conducting layer formed on the dielectric layer, and an insulating cover layer covered on the conducting layer, wherein at least one window is configured at a surface of the insulating cover layer thereby a portion of the conducting layer is exposed, and an antistatic adhesive is adhered to at least one side wall of the window and contacted with the conducting layer. The new structure of the flexure can avoid or eliminate electro-static discharges enduringly without dipping water. A head gimbal assembly and a disk drive unit with the same, a manufacturing method for the flexure are also disclosed.Type: ApplicationFiled: May 6, 2013Publication date: October 2, 2014Applicant: SAE Technologies Development (Dongguan) Co., Ltd.Inventors: Bing Hui Li, Wei Qiang Zhou, Dong Lan Huang, Cheng Yuan Luo, Zong Qiang Yu
-
Publication number: 20140293164Abstract: Disclosed are a touch panel and a method for manufacturing the electrode. The touch panel includes a substrate, and a transparent electrode provided on the substrate to detect a contact position. The transparent electrode includes a metallic nanowire having a length of 30 um to 50 um. The method includes preparing a nanowire, coating the nanowire on a substrate, and curing the substrate.Type: ApplicationFiled: July 4, 2012Publication date: October 2, 2014Applicant: LG INNOTEK CO., LTD.Inventors: Hyun Jong Kim, Young Sun You, Kyoung Hoon Chai
-
Patent number: 8846162Abstract: A manufacturing method for a liquid-discharge head substrate including a base material provided with an energy generating element that generates energy utilized for discharging liquid, a noble metal layer including noble metal provided on a surface of the base material on energy generating element side, and a material layer provided to come into contact with the noble metal layer. The manufacturing method includes preparing the base material on which the material layer is provided, oxidizing a part of a surface of the material layer by discharging electricity in oxygen-containing gas, and providing the noble metal layer on the base material.Type: GrantFiled: February 8, 2011Date of Patent: September 30, 2014Assignee: Canon Kabushiki KaishaInventors: Makoto Sakurai, Ichiro Saito, Takahiro Matsui, Yuzuru Ishida
-
Publication number: 20140287251Abstract: This PZT-based ferroelectric thin film-forming composition comprises: a PZT precursor; a diol; one of polyvinyl pyrrolidones and a polyethylene glycol; water, and a linear monoalcohol having 6 to 12 carbon chains. In this composition, a concentration of the PZT precursor in 100 wt % of the composition is 17 wt % to 35 wt % in terms of oxides, the ratio of the diol to 100 wt % of the composition is 16 wt % to 56 wt %, the ratio of the one of the polyvinyl pyrrolidones and the polyethylene glycol to 1 mol of the PZT precursor is 0.01 mol to 0.25 mol, the ratio of the water to 1 mol of the PZT precursor is 0.5 mol to 3 mol, and the ratio of the linear monoalcohol to 100 wt % of the composition is 0.6 wt % to 10 wt %.Type: ApplicationFiled: February 19, 2014Publication date: September 25, 2014Applicant: MITSUBISHI MATERIALS CORPORATIONInventors: Toshihiro Doi, Hideaki Sakurai, Nobuyuki Soyama
-
Publication number: 20140287244Abstract: A substrate assembly includes a first hexagonal boron nitride sheet directly bonded to a surface of a substrate, and a metal layer on the first hexagonal boron nitride sheet.Type: ApplicationFiled: October 25, 2013Publication date: September 25, 2014Applicants: Sungkyunkwan University Foundation for Corporate Collaboration, SAMSUNG ELECTRONICS CO., LTD.Inventors: Hyeon-jin SHIN, Sang-Woo KIM, Jin yeong LEE
-
Publication number: 20140272116Abstract: The invention relates to titanium diboride granules comprising aggregates of titanium diboride primary particles, wherein the titanium diboride granules have a rounded shape and are fracture-resistant. The invention further relates to a method for producing these titanium diboride granules, the use thereof for covering graphite cathodes in electrolytic cells in Al fused-salt electrolysis or for repairing holes in cathode bases of electrolytic cells and also a method for repairing holes in cathode bases of electrolytic cells.Type: ApplicationFiled: August 2, 2012Publication date: September 18, 2014Applicant: ESK CERAMICS GMBH & CO. KGInventors: Martin Engler, Georg Victor
-
Publication number: 20140272561Abstract: A thin film battery has one or more current collectors with a substantially mesh configuration. The mesh current collector may include a network or web of thin strands of current collector material. The thin strands may overlap each other and/or may be arranged to define a plurality of individual cells within the mesh current collector. The strands of the mesh current collector may also be arranged to have a grid-like configuration. Additionally, in some configurations, the anode or cathode may fill the cells within the current collector layer to optimize the amount of active material within the battery.Type: ApplicationFiled: September 30, 2013Publication date: September 18, 2014Applicant: Apple Inc.Inventors: Lili Huang, Richard M. Mank, Seung Jae Hong
-
Publication number: 20140272597Abstract: An electrode structure and its method of manufacture are disclosed. The disclosed electrode structures may be manufactured by depositing a first release layer on a first carrier substrate. A first protective layer may be deposited on a surface of the first release layer and a first electroactive material layer may then be deposited on the first protective layer.Type: ApplicationFiled: March 13, 2014Publication date: September 18, 2014Applicant: Sion Power CorporationInventors: Yuriy V. Mikhaylik, Michael G. Laramie, John Joseph Christopher Kopera