Silicon Containing Coating Patents (Class 427/255.18)
  • Patent number: 11820700
    Abstract: A method of depositing a coating utilizing a coating apparatus includes providing a coating apparatus above a glass substrate and forming a coating on a surface of the glass substrate while flowing a fluorine-containing compound into the coating apparatus. The fluorine-containing compound inhibits the formation of the coating on one or more portions of the coating apparatus.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: November 21, 2023
    Assignee: Pilkington Group Limited
    Inventors: Michael Martin Radtke, Steven Edward Phillips
  • Patent number: 11786975
    Abstract: A cutting tool includes a substrate and a coating film, wherein the coating film has a first layer formed from a plurality of hard grains, the hard grains are made of TiSiCN having a cubic crystal structure, the hard grains have a lamellar structure in which a layer having a relatively high silicon concentration and a layer having a relatively low silicon concentration are alternately stacked, and a maximum value of percentage of number ASi of silicon atoms to a sum of the number ASi of silicon atoms and number ATi of titanium atoms in a grain boundary region between the hard grains, {ASi/(ASi+ATi)}×100, is larger than an average value of percentage of number BSi of silicon atoms to a sum of the number BSi of silicon atoms and number BTi of titanium atoms in the first layer, {BSi/(BSi+BTi)}×100.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: October 17, 2023
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Haruko Harada, Satoshi Ono, Anongsack Paseuth, Katsumi Okamura
  • Patent number: 11685849
    Abstract: An abrasive particle can include a coating overlying at least a portion of a core. In an embodiment, the coating can include a first portion overlying at least a portion of the core and a second portion overlying at least a portion of the core, wherein the first portion can include a ceramic material and the second portion can include a silane or a silane reaction product. In a particular embodiment, the first portion can consist essentially of silica. In another particular embodiment, the first portion can include a surface roughness of not greater than 5 nm and a crystalline content of not greater than 60%.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: June 27, 2023
    Assignees: SAINT-GOBAIN ABRASIVES, INC., SAINT-GOBAIN ABRASIFS
    Inventors: Marc Yonger, Leslie Dos Santos, Anne M. Bonner, Mark W. Simon, Subramanian Ramalingam, Anthony Martone, Hua Fan, Darrell K. Everts, Brahmanandam V. Tanikella, Aldric Barbier
  • Patent number: 11643720
    Abstract: Methods for selective deposition of silicon oxide films on metal or metallic surfaces relative to dielectric surfaces are provided. A dielectric surface of a substrate may be selectively passivated relative to a metal or metallic surface, such as by exposing the substrate to a silylating agent. Silicon oxide is then selectively deposited on the metal or metallic surface relative to the passivated oxide surface by contacting the metal surface with a metal catalyst and a silicon precursor comprising a silanol.
    Type: Grant
    Filed: March 29, 2021
    Date of Patent: May 9, 2023
    Assignee: ASM IP HOLDING B.V.
    Inventors: Andrea Illiberi, Giuseppe Alessio Verni, Shaoren Deng, Daniele Chiappe, Eva Tois, Marko Tuominen, Michael Givens
  • Patent number: 11430653
    Abstract: A method of manufacturing a high electron mobility transistor in a furnace, the method including steps of: forming a first SiN film on a surface of a semiconductor stack consisting of a nitride semiconductor and including a barrier layer by a low pressure chemical vapor deposition method at a first furnace temperature of 700° C. or more and 900° C. or less; forming an interface oxide layer on the first SiN film by moisture and oxygen in the furnace at a second furnace temperature of 700° C. or more and 900° C. or less and a furnace pressure to 1 Pa or lower; and forming a second SiN film on the interface oxide layer by the low pressure chemical vapor deposition method at a third furnace temperature of 700° C. or more and 900° C. or less.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: August 30, 2022
    Assignee: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takuji Yamamura, Kenya Nishiguchi, Kazuhide Sumiyoshi
  • Patent number: 11424264
    Abstract: A three-dimensional semiconductor memory device is disclosed. The device may include a first source conductive pattern comprising a polycrystalline material including first crystal grains on a substrate, the substrate may comprising a polycrystalline material including second crystal grains, a grain size of the first crystal grains being smaller than a grain size of the second crystal grains, a stack including a plurality of gate electrodes, the plurality of gates stacked on the first source conductive pattern, and a vertical channel portion penetrating the stack and the first source conductive pattern, and the vertical channel portion being in contact with a side surface of the first source conductive pattern.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: August 23, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Hwan Kim, Sunggil Kim, Dongkyum Kim, Seulye Kim, Ji-Hoon Choi
  • Patent number: 11414750
    Abstract: Provided is a method for forming a silicon oxycarbonitride film (SiOCN) with varying proportions of each element, using a disilane precursor under vapor deposition conditions, wherein the percent carbon incorporation into the SiOCN film may be varied between about 5 to about 60%, by utilizing co-reactants chosen from oxygen, ammonia, and nitrous oxide gas. The carbon-enriched SiOCN films thus formed may be converted to pure silicon dioxide films after an etch stop protocol by treatment with O2 plasma.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: August 16, 2022
    Assignee: ENTEGRIS, INC.
    Inventors: Sungsil Cho, Seobong Chang, Jae Eon Park, Bryan C. Hendrix, Thomas H. Baum
  • Patent number: 11050033
    Abstract: A light emitting film including a plurality of quantum dots and an electronic device including the same. The plurality of quantum dots constitute at least a portion of a surface of the light emitting film, the plurality of quantum dots do not include cadmium, and the at least a portion of a surface of the light emitting film includes a metal halide bound to at least one quantum dot of the plurality of quantum dots.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: June 29, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kwanghee Kim, Oul Cho, Chan Su Kim, Tae Hyung Kim, Eun Joo Jang, Moon Gyu Han
  • Patent number: 10253192
    Abstract: The present disclosure provides a barrier-coating structure that includes a polymer-matrix composite having a first surface and a second surface. The barrier-coating structure includes a flexible layer having a first surface and a second surface and a sol-gel layer having a first surface and a second surface. The first surface of the flexible layer contacts the second surface of the flexible layer. The barrier-coating structure includes a barrier layer having a first surface and a second surface. The sol-gel and/or the barrier layer may comprise one or more reactive substituents. The first surface of the barrier layer may be a laser-ablated surface.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: April 9, 2019
    Assignee: THE BOEING COMPANY
    Inventor: Thomas K. Tsotsis
  • Patent number: 10153351
    Abstract: In a method of manufacturing a semiconductor device, a first contact hole is formed in one or more dielectric layers disposed over a source/drain region or a gate electrode. An adhesive layer is formed in the first contact hole. A first metal layer is formed on the adhesive layer in the first contact hole. A silicide layer is formed on an upper surface of the first metal layer. The silicide layer includes a same metal element as the first metal layer.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: December 11, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Ming Hsu, Chih-Pin Tsao, Jyh-Huei Chen, Kuang-Yuan Hsu, Pei-Yu Chou
  • Patent number: 9947539
    Abstract: Atomic layer deposition in selected zones of a workpiece surface is accomplished by transforming the surfaces outside the selected zones to a hydrophobic state while the materials in the selected zones remain hydrophilic.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: April 17, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Ludovic Godet, Srinivas D. Nemani, Tobin Kaufman-Osborn
  • Patent number: 9716005
    Abstract: Atomic layer deposition in selected zones of a workpiece surface is accomplished by transforming the surfaces outside the selected zones to a hydrophobic state while the materials in the selected zones remain hydrophilic.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: July 25, 2017
    Assignee: Applied Materials, Inc.
    Inventors: Ludovic Godet, Srinivas D. Nemani, Tobin Kaufman-Osborn
  • Patent number: 9653536
    Abstract: A method for fabricating a structure comprising, in succession, a support substrate, a dielectric layer, an active layer, a separator layer of polycrystalline silicon, comprising the steps of: a) providing a donor substrate, b) forming an embrittlement area in the donor substrate, c) providing the support structure, d) forming the separator layer on the support substrate, e) forming the dielectric layer, f) assembling the donor substrate and the support substrate, g) fracturing the donor substrate along the embrittlement area, h) subjecting the structure to a strengthening annealing of at least 10 minutes, the fabrication method being noteworthy in that step d) is executed in such a way that the polycrystalline silicon of the separator layer exhibits an entirely random grain orientation, and in that the strengthening annealing is executed at a temperature strictly greater than 950° C. and less than 1200° C.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: May 16, 2017
    Assignee: Soitec
    Inventors: Alexandre Chibko, Isabelle Bertrand, Sylvain Peru, Sothachett Van, Patrick Reynaud
  • Patent number: 9437429
    Abstract: In order to obtain a polycrystalline silicon rod having an excellent shape, the placement relation between a source gas supplying nozzle 9 and metal electrodes 10 that are provided in a reactor is appropriately designed. The area of a disc-like base plate 5 is S0. An imaginary concentric circle C (radius c) centered at the center of the disc-like base plate 5 has an area S=S0/2. Further, a concentric circle A and a concentric circle B are imaginary concentric circles having the same center as that of the concentric circle C and having a radius a and a radius b, respectively (a<b<c). In the present invention, the electrode pairs 10 are placed inside of the imaginary concentric circle C and outside of the imaginary concentric circle B, and the gas supplying nozzle 9 is placed inside of the imaginary concentric circle A.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: September 6, 2016
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventors: Yasushi Kurosawa, Shigeyoshi Netsu, Naruhiro Hoshino
  • Patent number: 9157150
    Abstract: Provided herein is a method of processing an electronic device including operating a processing chamber at a first temperature while a workpiece is being processed and removing the workpiece and a carrier holding the workpiece from the processing chamber while decreasing the temperature within the processing chamber to a second temperature significantly lower than the first temperature. The method also includes increasing the temperature within the processing chamber to a third temperature significantly greater than the second temperature and significantly less than the first temperature while the processing chamber has no workpiece or carrier within.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: October 13, 2015
    Assignee: Cypress Semiconductor Corporation
    Inventors: Michael B. Allen, Jesse C. Ramos, Jeffrey P. Geuea, Allan T. Nelson
  • Patent number: 9011994
    Abstract: A gas-barrier multilayer film including: a base member; and at least one thin film layer formed on at least one surface of the base member, wherein at least one layer of the thin film layer(s) satisfies at least one of requirements (A) and (B).
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: April 21, 2015
    Assignee: Sumitomo Chemical Company, Limited
    Inventors: Akira Hasegawa, Toshiya Kuroda, Masamitsu Ishitobi, Takashi Sanada, Toshihiko Tanaka
  • Patent number: 8993056
    Abstract: An improved process and apparatus for uniform gas distribution in chemical vapor deposition (CVD) Siemens type processes is provided. The process comprises introduction of a silicon-bearing gas tangentially to and uniformly along the length of a growing silicon rod in a CVD reactor, resulting in uniform deposition of polysilicon along the rod. The apparatus comprises an improved gas nozzle design and arrangement along the length of the rod, promoting uniform deposition of polysilicon.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: March 31, 2015
    Assignee: Savi Research, Inc.
    Inventors: Vithal Revankar, Sanjeev Lahoti
  • Publication number: 20140370309
    Abstract: Hard-material-coated bodies composed of metal, cemented hard material, cermet or ceramic, coated with a TiSiCN composite layer or with a multilayer layer system which contains at least one TiSiCN composite layer. The TiSiCN composite layer is a nanocomposite layer which has been produced by a thermal CVD process without additional plasma excitation and contains a nanocrystalline phase composed of TiCxN1-x having a crystallite size in the range from 5 nm to 150 nm and a second phase composed of amorphous SiCxNy. The layer is characterized by a high hardness, a high oxidation and heat resistance and a high adhesive strength.
    Type: Application
    Filed: November 28, 2012
    Publication date: December 18, 2014
    Applicant: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e. V.
    Inventors: Ingolf Endler, Sebastian Scholz
  • Patent number: 8895457
    Abstract: To provide a method of manufacturing a semiconductor device, including: forming a thin film different from a silicon oxide film on a substrate by supplying a processing gas into a processing vessel in which the substrate is housed; removing a deposit including the thin film adhered to an inside of the processing vessel by supplying a fluorine-containing gas into the processing vessel after executing forming the thin film prescribed number of times; and forming a silicon oxide film having a prescribed film thickness on the inside of the processing vessel by alternately supplying a silicon-containing gas, and an oxygen-containing gas and a hydrogen-containing gas into the heated processing vessel in which a pressure is set to be less than an atmospheric pressure after removing the deposit.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: November 25, 2014
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Naonori Akae, Kotaro Murakami, Yoshiro Hirose, Kenji Kameda
  • Patent number: 8889566
    Abstract: A method of forming a dielectric layer is described. The method deposits a silicon-containing film by chemical vapor deposition using a local plasma. The silicon-containing film is flowable during deposition at low substrate temperature. A silicon precursor (e.g. a silylamine, higher order silane or halogenated silane) is delivered to the substrate processing region and excited in a local plasma. A second plasma vapor or gas is combined with the silicon precursor in the substrate processing region and may include ammonia, nitrogen (N2), argon, hydrogen (H2) and/or oxygen (O2). The equipment configurations disclosed herein in combination with these vapor/gas combinations have been found to result in flowable deposition at substrate temperatures below or about 200° C. when a local plasma is excited using relatively low power.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: November 18, 2014
    Assignee: Applied Materials, Inc.
    Inventors: Amit Chatterjee, Abhijit Basu Mallick, Nitin K. Ingle, Brian Underwood, Kiran V. Thadani, Xiaolin Chen, Abhishek Dube, Jingmei Liang
  • Publication number: 20140329011
    Abstract: Silicon precursors for forming silicon-containing films in the manufacture of semiconductor devices, such as films including silicon carbonitride, silicon oxycarbonitride, and silicon nitride (Si3N4), and a method of depositing the silicon precursors on substrates using low temperature (e.g., <550° C.) chemical vapor deposition processes, for fabrication of ULSI devices and device structures.
    Type: Application
    Filed: July 17, 2014
    Publication date: November 6, 2014
    Inventors: Ziyun Wang, Chongying Xu, Bryan Hendrix, Jeffrey Roeder, Tianniu Chen, Thomas H. Baum
  • Patent number: 8859052
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability include providing a component, applying an environmental barrier coating to the component, where the environmental barrier coating includes a CMAS mitigation composition selected from the group consisting of zinc aluminate spinel, alkaline earth zirconates, alkaline earth hafnates, rare earth gallates, beryl, and combinations thereof.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 14, 2014
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, John Frederick Ackerman
  • Patent number: 8834686
    Abstract: A metallic nanoparticle coated microporous substrate, the process for preparing the same and uses thereof are described.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: September 16, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Donald J. McClure, Mario A. Perez
  • Publication number: 20140227512
    Abstract: The invention provides methods for forming silicon oxide-containing layer(s) on a substrate, such as glass, by heating a substrate, vaporizing at least one precursor comprising a monoalkylsilane having an alkyl group with greater than two carbon atoms to form a vaporized precursor stream, and contacting a surface of the heated substrate with the vaporized precursor stream at about atmospheric pressure to deposit one or more layers comprising silicon oxide onto the surface of the substrate. The invention is particularly useful for applying an anti-iridescent coating to glass in an online float glass process.
    Type: Application
    Filed: September 13, 2012
    Publication date: August 14, 2014
    Applicant: Arkema Inc.
    Inventors: Ryan C. Smith, Jeffery L. Stricker
  • Publication number: 20140227866
    Abstract: A method of making a Si containing gas distribution member for a semiconductor plasma processing chamber comprises forming a carbon member into an internal cavity structure of the Si containing gas distribution member. The method includes depositing Si containing material on the formed carbon member such that the Si containing material forms a shell around the formed carbon member. The Si containing shell is machined into the structure of the Si containing gas distribution member wherein the machining forms gas inlet and outlet holes exposing a portion of the formed carbon member in an interior region of the Si containing gas distribution member.
    Type: Application
    Filed: February 13, 2013
    Publication date: August 14, 2014
    Applicant: Lam Research Corporation
    Inventor: Travis Robert Taylor
  • Publication number: 20140170318
    Abstract: The present disclosure relates to methods and systems for reducing silica recession of silicon-containing ceramics or silicon-containing ceramic composites, particularly those exposed to a combustion gas or to combustion gas environments, including those exposed to high temperature combustion gas environments. The methods and systems involve silicon-doping of compressed air and/or removal of moisture from compressed air prior to co-mingling the treated compressed air with the combustion gas to which the silicon-containing ceramics or silicon-containing ceramic composites are exposed.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 19, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Krishan Lal LUTHRA
  • Patent number: 8734903
    Abstract: A chemical vapor deposition process for the deposition of a silica layer on a glass substrate is provided. The process includes providing a glass substrate. The process also includes forming a gaseous precursor mixture comprising a silane compound, oxygen, water vapor, and a radical scavenger and directing the precursor mixture toward and along the glass substrate. The mixture reacts over the glass substrate to form a silica coating thereon.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: May 27, 2014
    Assignee: Pilkington Group Limited
    Inventor: Douglas M. Nelson
  • Patent number: 8673393
    Abstract: Methods are provided for vapor deposition coating of hydrophobic materials and applications thereof. The method for making a hydrophobic material includes providing a natural mineral, providing a silicone-based material, heating the silicone-based material to release vaporous molecules of the silicone-based material, and depositing the vaporous molecules of the silicone-based material to form a layer of the silicone-based material on surfaces of the natural mineral.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: March 18, 2014
    Assignee: InnovaNano, Inc.
    Inventors: Jikang Yuan, He Dong
  • Patent number: 8658246
    Abstract: A seed substrate is placed to face a formation substrate, and then a gas containing silicon is introduced and chemical vapor deposition is performed. There is no particular limitation on a kind of a material used for the formation substrate as long as the material can withstand the temperature at which the reduced pressure chemical vapor deposition is performed. A group of silicon whiskers which does not include a seed atom can be grown directly on and in contact with the formation substrate. Further, the substrate provided with the group of whiskers can be applied to a solar cell, a lithium ion secondary battery, and the like, by utilizing surface characteristics of the group of whiskers.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: February 25, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Toshihiko Takeuchi, Makoto Ishikawa, Yuki Murakami
  • Patent number: 8658255
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability involving providing a component; applying an environmental barrier coating to the component, the environmental barrier coating having a separate CMAS mitigation layer including a CMAS mitigation composition selected from rare earth elements, rare earth oxides, zirconia, hafnia partially or fully stabilized with alkaline earth or rare earth elements, zirconia partially or fully stabilized with alkaline earth or rare earth elements, magnesium oxide, cordierite, aluminum phosphate, magnesium silicate, and combinations thereof.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: February 25, 2014
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, Ming Fu, Bangalore Aswatha Nagaraj, Brian Thomas Hazel
  • Patent number: 8617704
    Abstract: A coated medical implant, such as a coated dental component, is provided, the coated medical implant including a substrate surface formed of a material comprising available hydroxyl groups and a silicon oxide coating layer chemisorbed on the substrate surface. A method for the preparation of such coated implants is also provided, the method involving application of the silicon oxide coating layer to the substrate surface by chemical vapor deposition. A dental structure is also provided, which includes a first dental component having a substrate surface formed of a material comprising available hydroxyl groups; a silicon oxide coating layer chemisorbed on the substrate surface; a silane coupling agent overlying and covalently attached to the silicon oxide layer; a dental cement overlying and coupled to the silane coupling agent; and a second dental component having a surface bonded to the dental cement.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: December 31, 2013
    Assignees: Research Triangle Institute, Nova Southeastern University
    Inventors: Jeffrey Robert Piascik, Jeffrey Yates Thompson, Sonia Grego, Brian R. Stoner
  • Patent number: 8592005
    Abstract: A method for forming a film by atomic layer deposition wherein vertical growth of a film is controlled, includes: (i) adsorbing a metal-containing precursor for film formation on a concave or convex surface pattern of a substrate; (ii) oxidizing the adsorbed precursor to form a metal oxide sub-layer; (iii) adsorbing a metal-free inhibitor on the metal oxide sub-layer more on a top/bottom portion than on side walls of the concave or convex surface pattern; and (iv) repeating steps (i) to (iii) to form a film constituted by multiple metal oxide sub-layers while controlling vertical growth of the film by step (iii). The adsorption of the inhibitor is antagonistic to next adsorption of the precursor on the metal oxide sub-layer.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: November 26, 2013
    Assignee: ASM Japan K.K.
    Inventor: Shintaro Ueda
  • Patent number: 8557687
    Abstract: A microcrystalline semiconductor film having a high crystallinity is formed. Further, a thin film transistor having preferable electric characteristics and high reliability and a display device including the thin film transistor are manufactured with high mass productivity. A step in which a deposition gas containing silicon or germanium is introduced at a first flow rate and a step in which the deposition gas containing silicon or germanium is introduced at a second flow rate are repeated while hydrogen is introduced at a fixed rate, so that the hydrogen and the deposition gas containing silicon or germanium are mixed, and a high-frequency power is supplied. Therefore, a microcrystalline semiconductor film is formed over a substrate.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: October 15, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Ryota Tajima, Tetsuhiro Tanaka, Ryo Tokumaru, Hidekazu Miyairi, Mitsuhiro Ichijo, Taichi Nozawa
  • Patent number: 8541053
    Abstract: Densifying a multi-layer substrate includes providing a substrate with a first dielectric layer on a surface of the substrate. The first dielectric layer includes a multiplicity of pores. Water is introduced into the pores of the first dielectric layer to form a water-containing dielectric layer. A second dielectric layer is provided on the surface of the water-containing first dielectric layer. The first and second dielectric layers are annealed at temperature of 600° C. or less. In an example, the multi-layer substrate is a nanoimprint lithography template. The second dielectric layer may have a density and therefore an etch rate similar to that of thermal oxide, yet may still be porous enough to allow more rapid diffusion of helium than a thermal oxide layer.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: September 24, 2013
    Assignee: Molecular Imprints, Inc.
    Inventors: Marlon Menezes, Frank Y. Xu, Fen Wan
  • Patent number: 8512595
    Abstract: Surface-modified, pyrogenically prepared silica is prepared by subjecting the pyrogenically prepared silica, which is in the form of aggregates of primary particles having a BET surface area of 300±25 m2/g and the aggregates have an average area of 4800-6000 nm2, an average equivalent circle diameter (ECD) of 60-80 nm and an average circumference of 580-750 nm, to surface-modification in a known way. It can be used as a filler for controlling the rheology of liquid silicone rubber (LSR) systems.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: August 20, 2013
    Assignee: Evonik Degussa GmbH
    Inventors: Juergen Meyer, Mario Scholz, Kai Schumacher
  • Publication number: 20130209684
    Abstract: A method and a device for igniting silicon rods outside a CVD-reactor. A silicon rod is disposed inside a chamber of a casing of an ignition device. At least one pair of contact electrodes applies a first voltage supplied by a transformer with an open circuit voltage sufficiently high to initialize a current flow in and ignite the silicon rod. Optionally, the silicon rod may be heated by a current flow and/or an external heating unit to a temperature within a predetermined range. The silicon rod is removed from the ignition device and may be exposed to a depositing process inside a CVD-reactor. The ignition of the silicon rod outside the CVD-reactor facilitates a new ignition for the depositing process.
    Type: Application
    Filed: July 25, 2011
    Publication date: August 15, 2013
    Applicant: CENTROTHERM SITEC GMBH
    Inventor: Wilfried Vollmar
  • Patent number: 8501277
    Abstract: A method of providing a durable protective coating structure which comprises at least three layers, and which is stable at temperatures in excess of 400° C., where the method includes vapor depositing a first layer deposited on a substrate, wherein the first layer is a metal oxide adhesion layer selected from the group consisting of an oxide of a Group IIIA metal element, a Group IVB metal element, a Group VB metal element, and combinations thereof; vapor depositing a second layer upon said first layer, wherein said second layer includes a silicon-containing layer selected from the group consisting of silicon oxide, silicon nitride, and silicon oxynitride; and vapor depositing a third layer upon said second layer, wherein said third layer is a functional organic-comprising layer. Numerous articles useful in electronics, MEMS, nanoimprinting lithography, and biotechnology applications can be fabricated using the method.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: August 6, 2013
    Assignee: Applied Microstructures, Inc.
    Inventors: Boris Kobrin, Dangaria Nikunji Hirji, Romuald Nowak, Michael T. Grimes
  • Patent number: 8486487
    Abstract: A gas barrier film comprising a resin substrate provided thereon at least one layer of a ceramic film, wherein the density ratio Y (=?f/?b) satisfies 1?Y?0.95 and the ceramic film has a residual stress being a compression stress of 0.01 MPa or more and 100 Mpa or less, wherein ?f is the density of the ceramic film and ?b is the density of a comparative ceramic film being formed by thermal oxidation or thermal nitridation of a metal as a mother material of the ceramic film so as to being the same composition ratio of the ceramic film.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: July 16, 2013
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Kazuhiro Fukuda, Chikao Mamiya, Hiroaki Arita
  • Patent number: 8470434
    Abstract: The invention relates to a transparent glass substrate, associated with a transparent electro-conductive layer capable of constituting an electrode of a photovoltaic cell and composed of a doped oxide, characterized by the interposition, between the glass substrate and the transparent electroconductive layer, of a mixed layer of one or more first nitride(s) or oxynitride(s), or oxide(s) or oxycarbide(s) having good adhesive properties with glass, and one or more second nitride(s) or oxynitride(s) or oxide(s) or oxycarbide(s) capable of constituting, possibly in the doped state, a transparent electroconductive layer; a method for producing this substrate; a photovoltaic cell, a tempered and/or curved glass, a shaped heating glass, a plasma screen and a flat lamp electrode having this substrate.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: June 25, 2013
    Assignee: Saint-Gobain Glass France
    Inventors: Bernard Nghiem, Emilie Viasnoff, Bertrand Kuhn, David Le Bellac, Anne Durandeau, Fabrice Abbott, Eddy Royer, Georges Zagdoun, Olivier Dubois
  • Patent number: 8449941
    Abstract: Disclosed is a method for formation of a thermal bather coating on a gas turbine during operation thereof, which includes addition of an organic compound containing silicon to a fuel under a first condition in order to form a base layer on the surface of a part coming into contact with a combustion gas of the fuel in the gas turbine during operation thereof, as well as addition of the organic compound containing silicon to the fuel under a second condition in order to form a porous layer having more pores than the base layer above the base layer.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: May 28, 2013
    Assignees: Korea Electric Power Corporation, Korea Southern Power Co., Ltd
    Inventors: Min Tae Kim, Doo Soo Kim, Won Young Oh
  • Patent number: 8440037
    Abstract: A coated article is provided that may be heat treated in certain example embodiments. A coating of the coated article includes a zinc oxide inclusive layer located over and contacting a contact layer that is in contact with an infrared (IR) reflecting layer of a material such as silver. It has been found that the use of such a zinc oxide inclusive layer results in improved thermal stability upon heat treatment, increased visible transmission, and/or lower sheet resistance (Rs).
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: May 14, 2013
    Assignees: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.), Guardian Industries Corp.
    Inventors: Anton Dietrich, Philip J. Lingle, Jens-Peter Muller, Jean-Marc Lemmer
  • Publication number: 20130115374
    Abstract: A chemical vapor deposition (CVD) reactor system has a reaction chamber enclosed by a reaction chamber wall with an inner surface disposed towards the interior of the chamber. At least a portion of the wall is a heat control layer that faces the chamber and that consists of a material, such as electrolytic ally deposited nickel, that has an emissivity coefficient, as measured at 300K, of 0.1 or less and a hardness of at least 3.5 Moh. Polycrystalline silicon is produced from silicon-rich gases using such a CVD reactor system.
    Type: Application
    Filed: July 19, 2011
    Publication date: May 9, 2013
    Inventors: Krishnakumar M. Jayakar, Urban Robert Kultgen, II
  • Patent number: 8430972
    Abstract: A metal surface treatment composition including at least one compound selected from the group consisting of a zirconium compound and a titanium compound, and an organosiloxane, which is a polycondensate of organosilane and has in a molecule thereof of at least two amino groups, in which the Degree of polycondensation of the organosiloxane is at least 40%, the content of at least one compound selected from the group consisting of the zirconium compound and the titanium compound is predetermined content, the content of the organosiloxane in the metal surface treatment composition is predetermined content, and the mass ratio of at least one element selected from the group consisting of the zirconium element and the titanium element contained in the zirconium compound and the titanium compound, respectively, to the silicon element contained in the organosiloxane is a predetermined ratio.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: April 30, 2013
    Assignees: Nippon Paint Co., Ltd., Chemetall GmbH
    Inventors: Toshio Inbe, Thomas Kolberg
  • Patent number: 8430097
    Abstract: A medicinal inhalation device having a non-metal coating coated on at least a portion thereof, and onto which non-metal coating an at least partially fluorinated compound is then covalently bonded.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: April 30, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Philip A. Jinks, Moses M. David, Rudolf J. Dams
  • Patent number: 8414970
    Abstract: Certain example embodiments relate to a method of forming a coating on a glass substrate using combustion deposition. A glass substrate having at least one surface to be coated is provided. An organosiloxane inclusive precursor having a ring- or cage-like structure to be combusted is introduced. Using at least one flame, at least a portion of the precursor is combusted to form a combusted material, the combusted material including non-vaporized material. The glass substrate is provided in an area so that the glass substrate is heated sufficiently to allow the combusted material to form the coating, directly or indirectly, on the glass substrate. In certain example embodiments, the precursor is a cyclic siloxane based and/or polyhedral silsesquioxane (POSS) based precursor, which advantageously may affect the coating's transmission and/or reflection properties compared to conventionally used silicon precursors.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: April 9, 2013
    Assignee: Guardian Industries Corp.
    Inventor: Michael P. Remington
  • Patent number: 8414974
    Abstract: Provided is a method of manufacturing silicon nanotubes including forming non-catalytic metal islands on a substrate; forming catalyst metal doughnuts to surround the non-catalytic metal islands; and growing silicon nanotubes on the catalyst metal doughnuts. The silicon nanotubes are efficiently grown using the catalyst metal doughnuts.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: April 9, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Rae-Man Park, Sang-Hyeob Kim, Sunglyul Maeng, Jonghyurk Park
  • Publication number: 20130071566
    Abstract: A chemical vapor deposition process for the deposition of a silica layer on a glass substrate is provided. The process includes providing a glass substrate. The process also includes forming a gaseous precursor mixture comprising a silane compound, oxygen, water vapor, and a radical scavenger and directing the precursor mixture toward and along the glass substrate. The mixture reacts over the glass substrate to form a silica coating thereon.
    Type: Application
    Filed: September 5, 2012
    Publication date: March 21, 2013
    Applicant: Pilkington Group Limited
    Inventor: Douglas M. Nelson
  • Publication number: 20130052349
    Abstract: This invention relates to organometallic compounds represented by the formula HaM(NR1R2)x(NR3H)y(NH2)z wherein M is a metal or metalloid, each of R1, R2 and R3 is the same or different and is independently a hydrocarbon group or a heteroatom-containing group, a is a value from 0 to 3, x is a value from 0 to 3, y is a value from 0 to 4, z is a value from 0 to 4, and a+x+y+z is equal to the oxidation state of M, provided that at least one of y and z is a value of at least 1, a process for producing the organometallic compounds, and a method for producing a film or coating from organometallic precursor compounds.
    Type: Application
    Filed: October 25, 2012
    Publication date: February 28, 2013
    Inventor: Scott Houston Meiere
  • Patent number: 8377343
    Abstract: The invention relates to a novel optical function layer and its production, the function layer imparting to materials coated with it protection against uv radiation while transmitting electromagnetic radiation of larger wavelengths. The function layer of the invention and the manufacturing method of the invention offer advantages over the state of the art by allowing very accurate and precise adjustability in the uv range of the relatively sharp absorption constant.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: February 19, 2013
    Assignee: Justus-Liebig-Universität Giessen
    Inventors: Bruno K. Meyer, Baker Farangis, Detlev Hofmann, Thorsten Krämer, Angelika Polity
  • Patent number: 8343589
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability including providing a component; applying an environmental barrier coating to the component, the environmental barrier coating having a separate CMAS mitigation layer including a CMAS mitigation composition selected from the group consisting of zinc aluminate spinel, alkaline earth zirconates, alkaline earth hafnates, rare earth gallates, beryl, and combinations thereof.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: January 1, 2013
    Assignee: General Electric Company
    Inventors: Glen Harold Kirby, Brett Allen Boutwell, John Frederick Ackerman