Base Includes An Inorganic Compound Containing Silicon Or Metal (e.g., Glass, Ceramic, Brick, Etc.) Patents (Class 427/255.11)
-
Patent number: 11056344Abstract: There is provided a method of forming a layer, comprising depositing a seed layer on the substrate and depositing a bulk layer on the seed layer. Depositing the seed layer comprises supplying a first precursor comprising metal and halogen atoms to the substrate; and supplying a first reactant to the substrate. Depositing the bulk layer comprises supplying a second precursor comprising metal and halogen atoms to the seed layer and supplying a second reactant to the seed layer.Type: GrantFiled: August 30, 2017Date of Patent: July 6, 2021Assignee: ASM IP Holding B.V.Inventors: Chiyu Zhu, Kiran Shrestha, Qi Xie
-
Patent number: 10487402Abstract: Coated articles are disclosed. One embodiment of a coated article includes a substrate capable of being subjected to corrosion and a deposited coating on the substrate. The deposited coating has silicon with the substrate resisting corrosion with the deposited coating on the substrate when exposed to 15% NaClO by a rate of at least 5% greater than the corrosion rate of a coating applied with the same process but without introducing the deposition gas at the sub-decomposition temperature and/or the substrate with the deposited coating having a 15% NaClO corrosion rate of between 0 and 3 mils per year.Type: GrantFiled: February 13, 2018Date of Patent: November 26, 2019Assignee: SILCOTEK CORPInventors: Min Yuan, David A. Smith, Paul H. Silvis, James B. Mattzela
-
Patent number: 10400329Abstract: Siemens reactors for polysilicon deposition may employ faster and/or more economical deposition conditions without reduction in yield, by pre-sorting polysilicon rods into different quality classifications prior to comminution, and further sorting the polysilicon fragments in each classification into further classifications.Type: GrantFiled: March 24, 2014Date of Patent: September 3, 2019Assignee: WACKER CHEMIE AGInventors: Michael Kerscher, Reiner Pech, Armin Sandner
-
Patent number: 9968715Abstract: The invention relates to medical technology products, for example a medical implant or a medical instrument, having colored markings based on titanium oxides, to the use of coatings based on titanium oxides for the production of coated materials, such as medical technology products, in particular for titanium oxide-based coating for the colored marking of the surface of medical technology products, and to a method for depositing colored markings based on titanium oxides on medical technology products.Type: GrantFiled: August 1, 2014Date of Patent: May 15, 2018Assignee: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTENInventors: Andreas Keil, Ralph Wilken, Jörg Ihde, Thomas Lukasczyk, Dirk Salz, Jost Degenhardt
-
Patent number: 9915001Abstract: A chemical vapor deposition process and coated article are disclosed. The chemical vapor deposition process includes positioning an article in a chemical vapor deposition chamber, then introducing a deposition gas to the chemical vapor deposition chamber at a sub-decomposition temperature that is below the thermal decomposition temperature of the deposition gas, and then heating the chamber to a super-decomposition temperature that is equal to or above the thermal decomposition temperature of the deposition gas resulting in a deposited coating on at least a surface of the article from the introducing of the deposition gas. The chemical vapor deposition process remains within a pressure range of 0.01 psia and 200 psia and/or the deposition gas is dimethylsilane. The coated article includes a substrate subject to corrosion and a deposited coating on the substrate, the deposited coating having silicon, and corrosion resistance.Type: GrantFiled: August 10, 2015Date of Patent: March 13, 2018Assignee: Silcotek Corp.Inventors: Min Yuan, David A. Smith, Paul H. Silvis, James B. Mattzela
-
Patent number: 9820539Abstract: Methods of forming larger sintered compacts of PCD and other sintered ultrahard materials are disclosed. Improved solvent metal compositions and layering of the un-sintered construct allow for sintering of thicker and larger high quality sintered compacts. Jewelry may also be made from sintered ultrahard materials including diamond, carbides, and boron nitrides. Increased biocompatibility is achieved through use of a sintering metal containing tin. Methods of sintering perform shapes are provided.Type: GrantFiled: February 28, 2014Date of Patent: November 21, 2017Assignee: DIMICRON, INC.Inventors: David P Harding, Mark E Richards, Richard H Dixon, Victoriano Carvajal, Bao-Khang Ngoc Nguyen, German A Loesener, A Ben Curnow, Troy J Medford, Trenton T Walker, Jeffery K Taylor, Bill J Pope
-
Patent number: 9314847Abstract: Cemented carbide material comprising tungsten carbide (WC) material in particulate form having a mean grain size D in terms of equivalent circle diameter of at least 0.5 microns and at most 10 microns, and a binder phase comprising cobalt (Co) of at least 5 weight per cent and at most 12 weight per cent, W being present in the binder at a content of at least 10 weight per cent of the binder material; the content of the WC material being at least 75 weight per cent and at most 95 weight per cent; and nanoparticles dispersed in the binder material, the nanoparticles comprising material according to the formula CoxWyCz, where X is a value in the range from 1 to 7, Y is a value in the range from 1 to 10 and Z is a value in the range from 0 to 4; the nanoparticles having a mean particle size at most 10 nm, at least 10 per cent of the nanoparticles having size of at most 5 nm; the cemented carbide material having a magnetic coercive force in the units kA/m of at least ?2.1XD+14.Type: GrantFiled: September 2, 2014Date of Patent: April 19, 2016Assignee: Element Six GmbHInventors: Igor Yurievich Konyashin, Bernd Heinrich Ries, Frank Friedrich Lachmann
-
Patent number: 9040121Abstract: Vacuum deposited thin films of material are described to create an interface that non-preferentially interacts with different domains of an underlying block copolymer film. The non-preferential interface prevents formation of a wetting layer and influences the orientation of domains in the block copolymer. The purpose of the deposited polymer is to produce nanostructured features in a block copolymer film that can serve as lithographic patterns.Type: GrantFiled: February 7, 2013Date of Patent: May 26, 2015Assignee: Board of Regents The University of Texas SystemInventors: C. Grant Willson, William Durand, Christopher John Ellison, Christopher Bates, Takehiro Seshimo, Julia Cushen, Logan Santos, Leon Dean, Erica Rausch
-
Patent number: 9017762Abstract: The invention relates to sputter targets and methods for depositing a layer from a sputter target. The method preferably includes the steps of: placing a sputter target in a vacuum chamber; placing a substrate having a substrate surface in the vacuum chamber; reducing the pressure in the vacuum chamber to about 100 Torr or less; removing atoms from the surface of the sputter target while the sputter target is in the vacuum chamber (e.g., using a magnetic field and/or an electric field). The deposited layer preferably is a molybdenum containing alloy including about 50 atomic percent or more molybdenum, 0.5 to 45 atomic percent of a second metal element selected from the group consisting of niobium and vanadium; and 0.5 to 45 atomic percent of a third metal element selected from the group consisting of tantalum, chromium, vanadium, niobium, and titanium.Type: GrantFiled: April 4, 2013Date of Patent: April 28, 2015Assignee: H.C. Starck, Inc.Inventors: Gary Alan Rozak, Mark E. Gaydos, Patrick Alan Hogan, Shuwei Sun
-
Publication number: 20150110975Abstract: A method for forming a manganese-containing film to be formed between an underlayer and a copper film includes reacting a manganese compound gas with a nitrogen-containing reaction gas to form a nitrogen-containing manganese film on the underlayer; and reacting a manganese compound gas with a reducing reaction gas, thermally decomposing a manganese compound gas, or performing a decomposition reaction on a manganese compound gas through irradiation of energy or active species to form a metal manganese film on the nitrogen-containing manganese film.Type: ApplicationFiled: December 11, 2014Publication date: April 23, 2015Inventors: Kenji MATSUMOTO, Kaoru MAEKAWA, Tatsufumi HAMADA, Hiroyuki NAGAI
-
Patent number: 8993056Abstract: An improved process and apparatus for uniform gas distribution in chemical vapor deposition (CVD) Siemens type processes is provided. The process comprises introduction of a silicon-bearing gas tangentially to and uniformly along the length of a growing silicon rod in a CVD reactor, resulting in uniform deposition of polysilicon along the rod. The apparatus comprises an improved gas nozzle design and arrangement along the length of the rod, promoting uniform deposition of polysilicon.Type: GrantFiled: December 16, 2010Date of Patent: March 31, 2015Assignee: Savi Research, Inc.Inventors: Vithal Revankar, Sanjeev Lahoti
-
Patent number: 8927056Abstract: A dielectric layer 2 is formed on a region including grid-shaped convex portions 1a of a resin substrate 1 having the grid-shaped convex portions 1a with pitches of 80 nm to 120 nm on its surface, and metal wires 3 are formed on the dielectric layer 2. It is thereby possible to obtain a wire grid polarizer having a microstructural concavo-convex grid with pitches of the level of 120 nm or less that has not been implemented.Type: GrantFiled: October 16, 2006Date of Patent: January 6, 2015Assignee: Asahi Kasei Kabushiki KaishaInventors: Hiroshi Yamaki, Yusuke Sato, Takuji Namatame, Yasuyuki Kawazu
-
Publication number: 20140360247Abstract: Method for producing an extrusion die having a functional surface for metal extrusion material, comprising the following steps: providing a die support body, depositing a weldable substance containing cobalt and/or nickel onto a subsection of the die support body by means of an effective bonding application process to produce an inseparable deposition layer, machining the deposition layer in a chipping and/or material removal process to form the functional surface of the extrusion die, and carrying out a CVD coating process with a reaction gas at least on the functional surface.Type: ApplicationFiled: June 10, 2014Publication date: December 11, 2014Inventors: Oliver Maier, Joachim Maier
-
Patent number: 8906206Abstract: The invention provides a coater, and methods of using the coater, for depositing thin films onto generally-opposed major surfaces of a sheet-like substrate. The coater has a substrate transport system adapted for supporting the substrate in a vertical-offset configuration wherein the substrate is not in a perfectly vertical position but rather is offset from vertical by an acute angle. The transport system defines a path of substrate travel extending through the coater. The transport system is adapted for conveying the substrate along the path of substrate travel. Preferably, the transport system includes a side support for supporting a rear major surface of the substrate. The preferred side support bounds at least one passage through which coating material passes when such coating material is deposited onto the substrate's rear major surface. Preferably, the coater includes at least one coating apparatus (e.g.Type: GrantFiled: February 26, 2010Date of Patent: December 9, 2014Assignee: Cardinal CG CompanyInventor: Klaus Hartig
-
Publication number: 20140295178Abstract: Provided is a process for producing satisfactory particles held in porous silica. The process comprises (a) the step of preparing porous silica, (b) the step of bringing the porous silica into contact with a liquid which contains either a metal or a compound that has the metal as a component element and infiltrating the liquid into the pores of the porous silica, and (c) the step of subjecting, after the step (b), the impregnated porous silica to a heat treatment to thereby form fine particles comprising the metal or the metal compound in the pores of the porous silica. When porous silica is synthesized by hydrolyzing an alkoxysilane in a solvent-free system, it is possible to synthesize porous silica having a fine pore diameter. Use of this porous silica as a template facilitates formation of particles (e.g., W, Cu, Cr, Mn, Fe, Co, or Ni or an oxide of any of these metals) that show peculiar properties not observed in the bulk material.Type: ApplicationFiled: August 28, 2012Publication date: October 2, 2014Applicant: Tokyo Metropolitan Industrial Technology Research InstituteInventors: Hiroto Watanabe, Hiroaki Imai, Yuya Oaki
-
Patent number: 8834686Abstract: A metallic nanoparticle coated microporous substrate, the process for preparing the same and uses thereof are described.Type: GrantFiled: January 11, 2010Date of Patent: September 16, 2014Assignee: 3M Innovative Properties CompanyInventors: Donald J. McClure, Mario A. Perez
-
Patent number: 8815123Abstract: A method for fabricating an IBIIIAVIA-group amorphous compound used for thin-film solar cells is provided. A mixture solution including elements of Group IB, IIIA, VIA or combinations thereof is provided. The mixture solution is heated and filtered. IBIIIAVIA-group amorphous powders are acquired after drying the heated and filtered mixture solution.Type: GrantFiled: April 4, 2009Date of Patent: August 26, 2014Assignee: Industrial Technology Research InstituteInventors: Yu Huang, Chiou Yen Chiou, Bing Joe Hwang, Hsuan-Fu Wang, Shih-Hong Chang, Chih-Lung Lin, Chih-Chung Wu
-
Patent number: 8815343Abstract: The invention relates to a process for the synthesis of conducting polymer films by vapor phase polymerization. The invention relates particularly to the synthesis of polymerized thiophene films, for example poly(3,4-ethylenedioxythiophene) (PEDOT) films.Type: GrantFiled: January 7, 2010Date of Patent: August 26, 2014Assignee: Imperial Innovation LimitedInventors: Lichun Chen, Donal Donat Conor Bradley
-
Patent number: 8802183Abstract: The system of the present invention includes a conductive element, an electronic component, and a partial power source in the form of dissimilar materials. Upon contact with a conducting fluid, a voltage potential is created and the power source is completed, which activates the system. The electronic component controls the conductance between the dissimilar materials to produce a unique current signature. The system can also measure the conditions of the environment surrounding the system.Type: GrantFiled: July 11, 2011Date of Patent: August 12, 2014Assignee: Proteus Digital Health, Inc.Inventors: Jeremy Frank, Peter Bjeletich, Hooman Hafezi, Robert Azevedo, Robert Duck, Iliya Pesic, Benedict Costello, Eric Snyder
-
Patent number: 8795773Abstract: Certain example embodiments relate to coatings comprising nano-particle loaded metal oxide matrices deposited via combustion deposition. The matrix and the nano-particles comprising the coating may be of or include the same metal or a different metal. For example, the coating may include a silicon oxide matrix (e.g., SiO2, or other suitable stoichiometry) having silicon oxide (e.g., silica), titanium oxide (e.g., TiO2, titania, or other suitable stoichiometry), and/or other nano-particles embedded therein. In certain example embodiments, the coating may serve as an anti-reflective (AR) coating and, in certain example embodiments, a percent visible transmission gain of at least about 2.0%, and more preferably between about 3.0-3.5%, may be realized through the growth of a film on a first surface of the substrate. In certain example embodiments, the microstructure of the final deposited coating may resemble the microstructure of coatings produced by wet chemical (e.g., sol gel) techniques.Type: GrantFiled: March 13, 2008Date of Patent: August 5, 2014Assignee: Guardian Industries Corp.Inventor: Michael P. Remington, Jr.
-
Patent number: 8791018Abstract: The present method of forming an electronic structure includes providing a tantalum base layer and depositing a layer of copper on the tantalum layer, the deposition being undertaken by physical vapor deposition with the temperature of the base layer at 50° C. or less, with the deposition taking place at a power level of 300 W or less.Type: GrantFiled: December 19, 2006Date of Patent: July 29, 2014Assignee: Spansion LLCInventors: Wen Yu, Stephen B. Robie, Jeremias D. Romero
-
Publication number: 20140186620Abstract: Embodiments described herein are related to methods for processing substrates such as silicon substrates. In some cases, the method may provide the ability to passivate a silicon surface at relatively low temperatures and/or in the absence of a solvent. Methods described herein may be useful in the fabrication of a wide range of devices, including electronic devices such as photovoltaic devices, solar cells, organic light-emitting diodes, sensors, and the like.Type: ApplicationFiled: November 20, 2013Publication date: July 3, 2014Inventors: Karen K. Gleason, Rong Yang, Yaron Segal, Tonio Buonassisi, Baby Reeja Jayan
-
Patent number: 8741800Abstract: A high surface area catalyst with a mesoporous support structure and a thin conformal coating over the surface of the support structure. The high surface area catalyst support is adapted for carrying out a reaction in a reaction environment where the thin conformal coating protects the support structure within the reaction environment. In various embodiments, the support structure is a mesoporous silica catalytic support and the thin conformal coating comprises a layer of metal oxide resistant to the reaction environment which may be a hydrothermal environment.Type: GrantFiled: July 22, 2010Date of Patent: June 3, 2014Assignee: UChicago Argonne, LLCInventors: Jeffrey W. Elam, Christopher L. Marshall, Joseph A. Libera, James A. Dumesic, Yomaira J. Pagan-Torres
-
Patent number: 8734903Abstract: A chemical vapor deposition process for the deposition of a silica layer on a glass substrate is provided. The process includes providing a glass substrate. The process also includes forming a gaseous precursor mixture comprising a silane compound, oxygen, water vapor, and a radical scavenger and directing the precursor mixture toward and along the glass substrate. The mixture reacts over the glass substrate to form a silica coating thereon.Type: GrantFiled: September 5, 2012Date of Patent: May 27, 2014Assignee: Pilkington Group LimitedInventor: Douglas M. Nelson
-
Publication number: 20140093711Abstract: A scratch-resistant glass substrate is prepared by forming a hard, scratch-resistant layer over a major surface of the substrate. The layer is formed from an inorganic material such as a metal oxide, metal nitride, metal carbide, or metal boride using, for example, physical vapor deposition such as reactive or non-reactive sputtering at a process temperature of less than 500° C. The inorganic layer is resistant to micro-ductile scratching, which can safeguard the visible appearance of the glass substrate in use. The glass substrate can include chemically-strengthened glass.Type: ApplicationFiled: October 1, 2013Publication date: April 3, 2014Applicant: Corning IncorporatedInventor: Charles Andrew Paulson
-
Patent number: 8658255Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability involving providing a component; applying an environmental barrier coating to the component, the environmental barrier coating having a separate CMAS mitigation layer including a CMAS mitigation composition selected from rare earth elements, rare earth oxides, zirconia, hafnia partially or fully stabilized with alkaline earth or rare earth elements, zirconia partially or fully stabilized with alkaline earth or rare earth elements, magnesium oxide, cordierite, aluminum phosphate, magnesium silicate, and combinations thereof.Type: GrantFiled: December 19, 2008Date of Patent: February 25, 2014Assignee: General Electric CompanyInventors: Glen Harold Kirby, Brett Allen Boutwell, Ming Fu, Bangalore Aswatha Nagaraj, Brian Thomas Hazel
-
Patent number: 8647714Abstract: In a nickel film forming method, an initial Ni film is formed on a substrate by a chemical vapor deposition (CVD) process by using a nickel-containing compound having a molecular structure in which a ligand containing a nitrogen-carbon bond is included and nitrogen of the ligand coordinates with nickel as a film forming source material and at least one selected from ammonia, hydrazine, and derivatives thereof as a reduction gas. Further, a main Ni film is formed on the initial Ni film by CVD by using the nickel-containing compound as the film forming source material and hydrogen gas as the reduction gas.Type: GrantFiled: August 30, 2012Date of Patent: February 11, 2014Assignee: Tokyo Electron LimitedInventor: Hideki Yuasa
-
Patent number: 8591990Abstract: An arrangement of elongated nanowires that include titanium silicide or tungsten silicide may be grown on the exterior surfaces of many individual electrically conductive microfibers of much larger diameter. Each of the nanowires is structurally defined by an elongated, centralized titanium silicide or tungsten silicide nanocore that terminates in a distally spaced gold particle and which is co-axially surrounded by a removable amorphous nanoshell. A gold-directed catalytic growth mechanism initiated during a low pressure chemical vapor deposition process is used to grow the nanowires uniformly along the entire length and circumference of the electrically conductive microfibers where growth is intended. The titanium silicide- or tungsten silicide-based nanowires can be used in a variety electrical, electrochemical, and semiconductor applications.Type: GrantFiled: March 25, 2011Date of Patent: November 26, 2013Assignees: GM Global Technology Operations LLC, The University of Western OntarioInventors: Mei Cai, Xueliang Sun, Yong Zhang, Mohammad Norouzi Banis, Ruying Li
-
Patent number: 8551558Abstract: Photovoltaic devices and techniques for enhancing efficiency thereof are provided. In one aspect, a photovoltaic device is provided. The photovoltaic device comprises a photocell having a photoactive layer and a non-photoactive layer adjacent to the photoactive layer so as to form a heterojunction between the photoactive layer and the non-photoactive layer; and a plurality of high-aspect-ratio nanostructures on one or more surfaces of the photoactive layer. The plurality of high-aspect-ratio nanostructures are configured to act as a scattering media for incident light. The plurality of high-aspect-ratio nanostructures can also be configured to create an optical resonance effect in the incident light.Type: GrantFiled: February 29, 2008Date of Patent: October 8, 2013Assignee: International Business Machines CorporationInventors: Supratik Guha, Oki Gunawan
-
Patent number: 8541053Abstract: Densifying a multi-layer substrate includes providing a substrate with a first dielectric layer on a surface of the substrate. The first dielectric layer includes a multiplicity of pores. Water is introduced into the pores of the first dielectric layer to form a water-containing dielectric layer. A second dielectric layer is provided on the surface of the water-containing first dielectric layer. The first and second dielectric layers are annealed at temperature of 600° C. or less. In an example, the multi-layer substrate is a nanoimprint lithography template. The second dielectric layer may have a density and therefore an etch rate similar to that of thermal oxide, yet may still be porous enough to allow more rapid diffusion of helium than a thermal oxide layer.Type: GrantFiled: July 7, 2011Date of Patent: September 24, 2013Assignee: Molecular Imprints, Inc.Inventors: Marlon Menezes, Frank Y. Xu, Fen Wan
-
Patent number: 8524319Abstract: Methods for producing crucibles for holding molten material that contain a reduced amount of gas pockets are disclosed. The methods may involve use of molten silica that may be outgassed prior to or during formation of the crucible. Crucibles produced from such methods and ingots and wafers that are produced from crucibles with a reduced amount of gas pockets are also disclosed.Type: GrantFiled: November 18, 2011Date of Patent: September 3, 2013Assignee: MEMC Electronic Materials, Inc.Inventors: Steven L. Kimbel, Harold W. Korb, Richard J. Phillips, Shailendra B. Rathod
-
Patent number: 8455372Abstract: The present invention belongs to the technical field of semiconductor materials and specifically relates to a method for cleaning and passivizing gallium arsenide (GaAs) surface autologous oxide and depositing an Al2O3 dielectric. This method includes: use a new-type of sulfur passivant to react with the autologous oxide on the GaAs surface to clean it and generate a passive sulfide film to separate the GaAs from the outside environment, thus preventing the GaAs from oxidizing again; further cleaning the residuals such as autologous oxides and sulfides on the GaAs surface through the pretreatment reaction of the reaction source trimethyl aluminum (TMA) of the Al2O3 ALD with the GaAs surface, and then deposit high-quality Al2O3 dielectric through ALD as the gate dielectric which fully separates the GaAs from the outside environment. The present invention features a simple process and good effects, and can provide preconditions for manufacturing the GaAs devices.Type: GrantFiled: June 20, 2012Date of Patent: June 4, 2013Assignee: Fudan UniversityInventors: Qingqing Sun, Runchen Fang, Wen Yang, Pengfei Wang, Wei Zhang
-
Patent number: 8449941Abstract: Disclosed is a method for formation of a thermal bather coating on a gas turbine during operation thereof, which includes addition of an organic compound containing silicon to a fuel under a first condition in order to form a base layer on the surface of a part coming into contact with a combustion gas of the fuel in the gas turbine during operation thereof, as well as addition of the organic compound containing silicon to the fuel under a second condition in order to form a porous layer having more pores than the base layer above the base layer.Type: GrantFiled: November 10, 2009Date of Patent: May 28, 2013Assignees: Korea Electric Power Corporation, Korea Southern Power Co., LtdInventors: Min Tae Kim, Doo Soo Kim, Won Young Oh
-
Patent number: 8440261Abstract: A surface treating method for making a housing have a metallic glass main body comprising: coating a primer on the metallic glass main body to form a bottom layer; forming a plating layer on the bottom layer; coating an adhesive on the plating layer to form an adhesive layer; and coating a lacquer on the adhesive layer to form an outer layer.Type: GrantFiled: June 7, 2011Date of Patent: May 14, 2013Assignee: Hon Hai Precision Industry Co., Ltd.Inventor: Chwan-Hwa Chiang
-
Patent number: 8440259Abstract: A combinatorial processing chamber and method are provided. In the method a fluid volume flows over a surface of a substrate with differing portions of the fluid volume having different constituent components to concurrently expose segregated regions of the substrate to a mixture of the constituent components that differ from constituent components to which adjacent regions are exposed. Differently processed segregated regions are generated through the multiple flowings.Type: GrantFiled: January 14, 2008Date of Patent: May 14, 2013Assignee: Intermolecular, Inc.Inventors: Tony P. Chiang, Sunil Shanker, Chi-I Lang
-
Patent number: 8440037Abstract: A coated article is provided that may be heat treated in certain example embodiments. A coating of the coated article includes a zinc oxide inclusive layer located over and contacting a contact layer that is in contact with an infrared (IR) reflecting layer of a material such as silver. It has been found that the use of such a zinc oxide inclusive layer results in improved thermal stability upon heat treatment, increased visible transmission, and/or lower sheet resistance (Rs).Type: GrantFiled: October 24, 2006Date of Patent: May 14, 2013Assignees: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.), Guardian Industries Corp.Inventors: Anton Dietrich, Philip J. Lingle, Jens-Peter Muller, Jean-Marc Lemmer
-
Patent number: 8436093Abstract: A metal surface treatment composition including at least one compound selected from the group consisting of a zirconium compound and a titanium compound, and an organosiloxane, which is a polycondensate of organosilane and has in a molecule thereof of at least two amino groups, in which the Degree of polycondensation of the organosiloxane is at least 40%, the content of at least one compound selected from the group consisting of the zirconium compound and the titanium compound is predetermined content, the content of the organosiloxane in the metal surface treatment composition is predetermined content, and the mass ratio of at least one element selected from the group consisting of the zirconium element and the titanium element contained in the zirconium compound and the titanium compound, respectively, to the silicon element contained in the organosiloxane is a predetermined ratio.Type: GrantFiled: March 21, 2011Date of Patent: May 7, 2013Assignees: Nippon Paint Co., Ltd., Chemetall GmbHInventors: Toshio Inbe, Thomas Kolberg
-
Patent number: 8394457Abstract: Disclosed is a precursor composition comprising: a compound selected from a compound represented by the formula: Si(OR1)4 and a compound represented by the formula Ra(Si)(OR2)4?a (in the formulas R1 represents a monovalent organic group; R represents a hydrogen atom, a fluorine atom or a monovalent organic group; R2 represents a monovalent organic group; and a is an integer ranging from 1 to 3, provided that R, R1 and R2 may be the same or different from one another) a thermally degradable organic compound; an element having a catalyst activity; urea; and the like. A porous thin film produced from the precursor composition is irradiated with ultraviolet ray, and then subjected to gas-phase reaction with a hydrophobic compound. A porous thin film thus prepared can be used for the manufacture of a semiconductor device.Type: GrantFiled: May 16, 2007Date of Patent: March 12, 2013Assignee: Ulvac, Inc.Inventors: Nobutoshi Fujii, Takahiro Nakayama, Kazuo Kohmura, Hirofumi Tanaka
-
Patent number: 8354146Abstract: Methods for repairing gas turbine engine components are provided. In this regard, a representative method includes: applying a surface treatment to the component such that locations at an exterior surface of the component exhibiting inter-granular attack are protected from erosion during a cleaning process; and cleaning the component using hydrogen fluoride ion cleaning to clean the component.Type: GrantFiled: May 19, 2009Date of Patent: January 15, 2013Assignee: Turbine Overhaul Services PTE LtdInventors: Balaji Rao Garimella, Sor Tin Ng, Yap Wai Ping
-
Patent number: 8327664Abstract: A method for producing transparent conductive glass by a) depositing two barrier layers on the surface of hot glass by chemical vapor deposition; and b) depositing two conductive film layers on the surface of the glass ribbon having the two barrier layers. The method is easy to control and suitable for mass production. The resultant transparent conductive glass has low surface resistance and moderate haze.Type: GrantFiled: July 12, 2010Date of Patent: December 11, 2012Assignee: Hangzhou Bluestar New Materials Technology Co., Ltd.Inventors: Qiying Liu, Jianxun Wang, Ming Zhao, Nianwei Zhao, Yayan Cao, Junbo Liu, Fanhua Kong, Defa Wei, Yankai Ge, Chunjia Peng, Yongxiu Cai, Zhihui Ye, Molong Xiao
-
Patent number: 8323723Abstract: An intraocular lens with a hydrophilic polymer coating composition and method of preparing same are provided. Specifically, a composition suitable for reducing tackiness in intraocular lenses is provided wherein an acrylic intraocular lens is treated by vapor deposition with an alkoxy silyl terminated polyethylene glycol polymer composition.Type: GrantFiled: May 13, 2011Date of Patent: December 4, 2012Inventors: Michael D Lowery, Laurent Hoffmann, Boris Kobrin, Romuald Nowak, Jeffrey D Chinn, Richard C Yi
-
Patent number: 8246749Abstract: Disclosed is a substrate processing apparatus, including a reaction tube to process a substrate therein, wherein the reaction tube includes an outer tube, an inner tube disposed inside the outer tube, and a support section to support the inner tube, the inner tube and the support section are made of quartz or silicon carbide, and a shock-absorbing member is provided between the support section and the inner tube.Type: GrantFiled: July 20, 2006Date of Patent: August 21, 2012Assignee: Hitachi Kokusai Electric, Inc.Inventors: Jie Wang, Ryuji Yamamoto, Sadao Nakashima
-
Patent number: 8247038Abstract: This application relates to a process for the application of thin layers of substantially pure spin transition molecular materials while maintaining the hysteresis properties of the material. The process makes it possible to obtain a dense uniform surface with very low roughness.Type: GrantFiled: February 19, 2007Date of Patent: August 21, 2012Assignees: Centre National de la Recherche Scientifique (C.N.R.S), Universitat de ValenciaInventors: Azzedine Bousseksou, Gabor Molnar, Saioa Cobo, Lionel Salmon, José Antonio Real Cabezos, Christophe Vieu
-
Publication number: 20120201974Abstract: A method for high temperature resistant bonding of oxygen permeable oxide ceramics of substituted alkaline earth cobaltates by doping assisted diffusive reaction sintering includes providing at least one joining surface of the oxygen permeable ceramics with a Cu-containing additives. At least a join area of the oxygen permeable ceramics is subsequently heated, under loading through forces, to a temperature up to 250 K below a customary sintering temperature of the oxygen-permeable ceramics. The join area is held under the loading at the temperature for 0.5 to 10 hours.Type: ApplicationFiled: October 14, 2010Publication date: August 9, 2012Applicant: Fraunhofer Gesellschaft zur Foerderung der angewandten Forschung e.V.Inventors: Ralf Kriegel, Robert Kircheisen, Katrin Ritter
-
Patent number: 8216643Abstract: A method for preparing a polysilicon rod using a metallic core means, including: installing a core means in an inner space of a deposition reactor used for preparing a silicon rod, the core means being constituted by forming at least one separation layer on the surface of a metallic core element and being connected to an electrode means, heating the core means by supplying electricity through the electrode means, and supplying a reaction gas into the inner space for silicon deposition, thereby forming a deposition output in an outward direction on the surface of the core means. The deposition output and the core means can be separated easily from the silicon rod output obtained by the process of silicon deposition, and the contamination of the deposition output caused by impurities of the metallic core element can be minimized, thereby a high-purity silicon can be prepared more economically and conveniently.Type: GrantFiled: May 21, 2007Date of Patent: July 10, 2012Assignee: Korea Research Institute of Chemical TechnologyInventors: Hee Young Kim, Kyung Koo Yoon, Yong Ki Park, Won Choon Choi, Sang Jin Moon
-
Patent number: 8211358Abstract: A cemented carbide including WC, a binder phase based on Co, Ni or Fe, and gamma phase, in which said gamma phase has an average grain size <1 ?m. A method of making the cemented carbide is provided in which the powders forming gamma phase are added as mixed cubic carbides of one or more of Ti, Ta, Nb, Zr, Hf and V, and a ratio, fWC, between an amount of WC (in mol fraction of WC) and an equilibrium gamma phase WC content at a sintering temperature (in mol fraction WC) is given by fWC=xWC/xeWC, wherein fWC is 0.6 to 1.0.Type: GrantFiled: February 12, 2007Date of Patent: July 3, 2012Assignee: Sandvik Intellectual Property ABInventors: Bo Jansson, Susanne Norgren
-
Publication number: 20120148744Abstract: A system for processing substrates is described. In one embodiment, the system comprises a process chamber, at least one electrical resistance heater, and at least one Coanda effect gas injector.Type: ApplicationFiled: July 28, 2011Publication date: June 14, 2012Inventors: Ronald L. Colvin, Dennis Goodwin, SR., Jeff Mittendorf, Charles J. Moretti, John W. Rose, Earl Blake Samuels
-
Patent number: 8178476Abstract: The present invention relates to glass-ceramic proppants which can be used to prop open subterranean formation fractions, as well as other uses. Proppant formulations are further disclosed which use one or more proppants of the present invention. Methods to prop open subterranean formation fractions are further disclosed. In addition, other uses for the proppants of the present invention are further disclosed, as well as methods of making the glass-ceramic proppants.Type: GrantFiled: December 14, 2010Date of Patent: May 15, 2012Assignee: Oxane Materials, Inc.Inventors: Yuming Xie, Dilip Chatterjee, Christopher E. Coker, Christopher Y. Fang
-
Patent number: 8163403Abstract: This invention disclosure describes methods for the fabrication of metal oxide films on surfaces by topotactic anion exchange, and laminate structures enabled by the method. A precursor metal-nonmetal film is deposited on the surface, and is subsequently oxidized via topotactic anion exchange to yield a topotactic metal-oxide product film. The structures include a metal-oxide layer(s) and/or a metal-nonmetal layer(s).Type: GrantFiled: April 13, 2010Date of Patent: April 24, 2012Inventor: Mark A. Zurbuchen
-
Patent number: 8148012Abstract: In a method for manufacturing a negative electrode for a battery, an active material layer including a metallic element M and an element A that is at least any one of oxygen, nitrogen, and carbon is formed on a current collector. This active material layer is irradiated with an X-ray and at least one of intensity of a K? ray of the element A and intensity of a K? ray of the metallic element M in fluorescent X-rays generated from the active material layer is measured.Type: GrantFiled: February 1, 2008Date of Patent: April 3, 2012Assignee: Panasonic CorporationInventors: Hideharu Takezawa, Takayuki Shirane, Shinya Fujimura, Sadayuki Okazaki, Kazuyoshi Honda