Base Includes Inorganic Metal Containing Compound Patents (Class 427/255.21)
  • Patent number: 11715572
    Abstract: Process for manufacturing a composite nuclear component comprising i) a support containing a substrate comprising a metallic material and a ceramic material (1), the substrate (1) being coated or not coated with an interposed layer (3) positioned between the substrate (1) and at least one protective layer (2) and ii) the protective layer (2) composed of a protective material comprising chromium; the process comprising a step a) of vaporizing a mother solution followed by a step b) of depositing the protective layer (2) onto the support via a DLI-MOCVD deposition process.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: August 1, 2023
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Frédéric Schuster, Fernando Lomello, Francis Maury, Alexandre Michau, Raphaël Boichot, Michel Pons
  • Publication number: 20140272291
    Abstract: A method for fabricating a hydrophilic aluminum surface includes: an activation step of preparing doped aluminum having an activated surface through doping treatment on a part or whole of an aluminum surface with applying reactive gas thereto; and a structure forming step of preparing a hydrophilic aluminum surface through oxidizing treatment on the doped aluminum to have nano-patterns comprising nano-protrusion structures on the aluminum surface. Hydrophobic aluminum can be fabricated into artificially hydrophilic or super-hydrophilic aluminum, and the hydrophilic aluminum surface body that does not have an aging effect and has long-lasting hydrophilicity can be provided.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Myoung Woon MOON, Seong Jin KIM, Heon Ju LEE, Eu Sun YU, Tae Jun KO, Kyu Hwan OH, Kwang Ryeol LEE
  • Patent number: 8808793
    Abstract: A method comprising introducing a workpiece support into a chamber of an apparatus. The workpiece support is for supporting thereon a plurality of workpieces. The apparatus comprising: the chamber having an interior space configured to be maintained at a pressure below atmospheric pressure; a vapor source for supplying the interior space of the chamber with a linearly extending stream of lubricant vapor; the workpiece support for supporting thereon a plurality of workpieces with surfaces facing the vapor source; and a conveyor for continuously moving the workpiece support transversely past the linearly extending stream of lubricant vapor from the vapor source. The method also comprising continuously moving the workpiece support with the plurality of workpieces supported thereon transversely past the linearly extending stream of lubricant vapor from the vapor source and depositing a uniform thickness film of the lubricant on at least one surface of each of the plurality of workpieces.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: August 19, 2014
    Assignee: Seagate Technology LLC
    Inventor: Paul Stephen McLeod
  • Publication number: 20130337236
    Abstract: A method for growing elongated nanostructures (7) only on the bottom (3) of a recessed structure (4), the method comprising: a. providing a substrate (5) comprising said recessed structure (4), said recessed structure (4) comprising: said bottom (3), and at least one sidewall (6), b. modifying the chemical nature of the surface of said at least one sidewall (6) so that said at least one sidewall (6) has a lower affinity than said bottom (3) for a catalyst film (2), c. providing said catalyst film (2) onto said bottom (3), d. thermally and/or plasma treating said film (2) so as to form said catalyst nanoparticles (1), and e. growing elongated nanostructures (7) in said recessed structure (4) using the catalyst nanoparticles (1).
    Type: Application
    Filed: June 14, 2013
    Publication date: December 19, 2013
    Inventors: Daire J. Cott, Silvia Armini
  • Patent number: 8592005
    Abstract: A method for forming a film by atomic layer deposition wherein vertical growth of a film is controlled, includes: (i) adsorbing a metal-containing precursor for film formation on a concave or convex surface pattern of a substrate; (ii) oxidizing the adsorbed precursor to form a metal oxide sub-layer; (iii) adsorbing a metal-free inhibitor on the metal oxide sub-layer more on a top/bottom portion than on side walls of the concave or convex surface pattern; and (iv) repeating steps (i) to (iii) to form a film constituted by multiple metal oxide sub-layers while controlling vertical growth of the film by step (iii). The adsorption of the inhibitor is antagonistic to next adsorption of the precursor on the metal oxide sub-layer.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: November 26, 2013
    Assignee: ASM Japan K.K.
    Inventor: Shintaro Ueda
  • Publication number: 20130152708
    Abstract: Disclosed is a nanostructured device for the in-situ capture of fluid samples at selectable times. The device includes a porous anodic alumina substrate having a plurality of elongated pores and an erodible capping material covering the pores. The device is transported into and through a geological reservoir while suspended in an injected carrier fluid. The device can optionally include a polymeric coating to improve minimize flocculation and sedimentation and prevent adhesion to surfaces in the reservoir. Upon erosion of the capping material, the fluids can diffuse into and fill each exposed pore. After a period of time, the hot water of the medium causes swelling and closure of the pore, effectively locking the fluid sample inside the pore. The device may be retrieved and analyzed to determine the composition and properties of the captured fluids.
    Type: Application
    Filed: September 11, 2012
    Publication date: June 20, 2013
    Applicant: Saudi Arabian Oil Company
    Inventor: Howard Khan Schmidt
  • Patent number: 8221837
    Abstract: This invention relates to organometallic compounds represented by the formula LML? wherein M is a metal or metalloid, L is a substituted or unsubstituted cyclopentadienyl group or cyclopentadienyl-like group, a substituted or unsubstituted pentadienyl group or pentadienyl-like group, or a substituted or unsubstituted pyrrolyl group or pyrrolyl-like group, and L? is a substituted or unsubstituted pyrrolyl group or pyrrolyl-like group, a process for producing the organometallic compounds, and a method for producing a film or coating from the organometallic compounds. The organometallic compounds are useful in semiconductor applications as chemical vapor or atomic layer deposition precursors for film depositions.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: July 17, 2012
    Assignee: Praxair Technology, Inc.
    Inventor: Scott Houston Meiere
  • Patent number: 8187698
    Abstract: The present invention relates to a cutting tool insert comprising a cemented carbide body and a coating particularly useful in fine to medium-rough turning of stainless-steels. The cemented carbide body consists of a cemented carbide with a composition of 5.0-9.0 wt-% Co, 5.0-11.0 wt-% cubic carbide forming metals from group IVb, Vb and VIb of the periodic table, preferably Ti, Nb and Ta, and balance WC with a 10-30 ?m essentially cubic carbide phase free and binder phase enriched surface zone. The coating comprises an MTCVD Ti(C7N) as the first layer adjacent the body having a thickness of from 2.5 to 7.0 ?m, on top of which an ?-Al2O3 layer is present, with a thickness of between 2.0 and 5.0 ?m, and a total thickness of the coating between 5.5 and 9.5 ?m. The alumina layer has a (006) texture.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: May 29, 2012
    Assignee: Seco Tools AB
    Inventors: Erik Sundstrom, Stefan Ostlund, Jenni Zackrisson
  • Patent number: 7993704
    Abstract: Protective coating systems for gas turbine engine applications and methods for fabricating such protective coating systems are provided. An exemplary method of fabricating a protective coating system on a substrate comprises forming a bond coating on the substrate, forming a silicate layer on the bond coating, forming a thermal barrier coating overlying the silicate layer, and heating the thermal barrier coating.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: August 9, 2011
    Assignee: Honeywell International Inc.
    Inventors: Derek Raybould, Paul J. Mravcak, Christian Delacruz
  • Patent number: 7968147
    Abstract: The present invention relates to ceramic cutting tools, such as, an aluminum oxide with zirconium oxide ceramic cutting tool with diffusion bonding enhanced layer and CVD coatings, particularly useful for machining modern metal materials. The method comprises a chemical reaction with a mixture including nitrogen and aluminum chloride introduced to form a diffusion bonding enhanced layer between the ceramic substrate and the CVD coatings. Thus formed diffusion bonding enhanced layer is highly adherent to the aluminum oxide with zirconium oxide ceramic substrate and significantly enhances the CVD coating properties, thus improving the machining performance in terms of the tool life of zirconium-based aluminum oxide with zirconium oxide ceramic cutting tools.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: June 28, 2011
    Assignee: TDY Industries, Inc.
    Inventors: X. Daniel Fang, David J. Wills, Gilles Festeau
  • Publication number: 20110135948
    Abstract: In one embodiment, a composition (10) to be mixed with a molten metal to make a metal matrix composite, the composition characterized by: a ceramic reinforcing filler (12), the ceramic reinforcing filler not being wettable by molten aluminum and/or not being chemically stable in molten aluminum, the ceramic reinforcing filler being coated with a ceramic material, the ceramic material being wettable by and chemically stable in molten aluminum. In a related embodiment, a composition (20) to make a porous preform to be infiltrated by molten metal to make a metal matrix composite, the composition characterized by: a ceramic reinforcing filler (23), the ceramic reinforcing filler not being wettable by molten aluminum, the ceramic reinforcing filler being coated with a ceramic material (22) and optionally with a metal (21) such as nickel, the ceramic material being wettable by molten aluminum.
    Type: Application
    Filed: April 8, 2004
    Publication date: June 9, 2011
    Inventors: Aleksander J. Pyzik, Ted A. Morgan, Terry I. Hu, Daniel R. Lister, Robert A. Newman, Richard Allen Lungard, Qin Deng
  • Publication number: 20110117276
    Abstract: This invention relates to erosion resistant coatings comprising at least 2 sublayer systems in which each sublayer system is separated from another by an interlayer, wherein (i) each sublayer system is the same or different and comprises at least 4 layers, (ii) said layers comprise alternating layers of a nitride-containing compound of stoichiometric composition and a nitride-containing compound of nonstoichiometric composition, (iii) each sublayer system has a thickness of greater than about 0.4 microns, and (iv) each interlayer is the same or different and comprises a metal-containing compound. This invention also relates to a method for producing the coatings and to articles, e.g., gas turbine compressor rotor blade and stator vanes, coated with the coatings.
    Type: Application
    Filed: January 25, 2011
    Publication date: May 19, 2011
    Inventors: Albert Feuerstein, Thomas Albert
  • Publication number: 20110092026
    Abstract: The formation of electronic assemblies including a heat spreader coupled to a die through a thermal interface material formed from an indium preform, is described. One embodiment relates to a method including providing a preform comprising indium, the preform including an indium oxide layer thereon. The method also includes exposing the preform to fluorine so that part of the indium oxide layer is transformed into an indium oxy-fluoride. The method may also include, after the exposing the preform to fluorine so that part of the indium oxide layer is transformed into an indium oxy-fluoride, positioning the preform between a die and a heat sink, and applying pressure to and heating the preform positioned between the die and the heat sink so that reflow occurs and a bond is formed between the die and the heat sink.
    Type: Application
    Filed: October 18, 2010
    Publication date: April 21, 2011
    Inventor: Bogdan M. SIMION
  • Publication number: 20110081487
    Abstract: Methods and devices for high-throughput printing of a precursor material for forming a film of a group IB-IIIA-chalcogenide compound are disclosed. In one embodiment, the method comprises forming a precursor layer on a substrate, the precursor is subsequently processed in a VIA environment.
    Type: Application
    Filed: September 2, 2010
    Publication date: April 7, 2011
    Inventors: Brent Bollman, Nathaniel Stanley, Matthew Diego Rail
  • Publication number: 20110006213
    Abstract: A radiation image detection apparatus comprising a scintillator, which is configured to include columnar crystals and converts radiation into light when the radiation is irradiated thereon, and an optical detector, which converts the light, emitted from the scintillator into an electrical signal, the scintillator and the optical detector being arranged on a support such that the radiation is incident on the optical detector and the scintillator in this order, wherein a columnar crystal area is present at a radiation-incident side of the scintillator, and a non-columnar crystal area is present at a side of the scintillator opposite to the radiation-incident side; and a method for manufacturing the radiation image detection apparatus are provided.
    Type: Application
    Filed: July 2, 2010
    Publication date: January 13, 2011
    Applicant: FUJIFILM CORPORATION
    Inventors: Keiichiro SATO, Makoto KITADA, Kei MIURA
  • Publication number: 20100304026
    Abstract: A method and an apparatus for manufacturing a nanowire are provided. The method for manufacturing a nanowire includes i) providing a source gas into a chamber, ii) controlling the temperature of a substrate received in the chamber separately from the temperature of the source gas, iii) forming a temperature gradient on the substrate, and iv) forming a nanowire having at least one growth condition selected from a group of growth speed and growth direction controlled according to the temperature gradient on the substrate.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 2, 2010
    Applicant: POSTECH ACADEMY-INDUSTRY FOUNDATION
    Inventors: Moon-Ho Jo, Yun-Sung Woo, Geun-Hee Lee
  • Publication number: 20100264130
    Abstract: To provide a top plate for a cooking appliance which can be given various colors and has good heat resistance. A top plate for a cooking appliance disposed over the cooking appliance includes: a glass substrate; an interference layer disposed on one side of the glass substrate and made of silicon nitride or aluminium nitride; a light shielding layer disposed on the interference layer and made of titanium or niobium; and a protective layer disposed on the light shielding layer and made of at least one material selected from the group consisting of silicon nitride, zirconium nitride, titanium nitride, tantalum nitride, tungsten nitride, and niobium nitride, wherein the interference layer and the protective layer are thin films each formed by physical vapor deposition in a gas atmosphere having a N2 gas content of 90% to 100% by volume.
    Type: Application
    Filed: October 22, 2008
    Publication date: October 21, 2010
    Applicant: NIPPON ELECTRIC GLASS CO., LTD.
    Inventor: Koji Ikegami
  • Patent number: 7799163
    Abstract: This invention relates to a process for preparing a substrate-supported aligned carbon nanotube film including: synthesizing a layer of aligned carbon nanotubes on the substrate capable of supporting nanotube growth, applying a layer of a second substrate to a top surface of aligned carbon nanotube layer, removing said substrate capable of supporting nanotube growth to provide an aligned carbon nanotube film supported on said second substrate.
    Type: Grant
    Filed: May 25, 2000
    Date of Patent: September 21, 2010
    Assignee: University of Dayton
    Inventors: Albert Mau, Li-ming Dai, Shaoming Huang
  • Publication number: 20100232892
    Abstract: The present invention relates to a cutting tool insert comprising a cemented carbide body and a coating particularly useful in medium-rough to rough turning of stainless-steels and superalloys. The cemented carbide body consists of a cemented carbide with a composition of 7.0-12.0 wt-% Co, 5.0-11.0 wt-% cubic carbide forming metals from group IVb, Vb and VIb of the periodic table, preferably Ti, Nb and Ta, and balance WC with a 10-30 mum essentially cubic carbide phase free and binder phase enriched surface zone. The coating comprises an MTCVD Ti(C7N) as the first layer adjacent the body having a thickness of from 2.5 to 7.0 ?m, on top of which an ?-Al2O3 layer is present, with a thickness of between 2.0 and 5.0 ?m, and a total thickness of the coating of between 5.5 and 9.5 ?m. The alumina layer has a (006) texture.
    Type: Application
    Filed: January 30, 2008
    Publication date: September 16, 2010
    Inventors: Erik Sundstrom, Stefan Ostlund, Jenni Zackrisson, Carlos Bueno Martinez
  • Patent number: 7745512
    Abstract: Polyester compositions are disclosed that include polyester polymers or copolymers having incorporated therein carbon-coated iron particles that improve the reheat properties of the compositions. Processes for making such compositions are also disclosed. The carbon-coated iron particles may be incorporated in the polyester by melt compounding, or may be added at any stage of the polymerization, such as during the melt-phase of the polymerization. A range of particle sizes may be used, as well as a range of particle size distributions. The polyester compositions are suitable for use in packaging made from processes in which a reheat step is desirable.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: June 29, 2010
    Assignee: Eastman Chemical Company
    Inventors: Zhiyong Xia, Stephen Weinhold, Alan Wayne White
  • Patent number: 7737080
    Abstract: The invention relates to a structure, comprising a substrate supporting a layer with a photocatalytic and anti-soiling property on at least part of the surface thereof, said layer being based on titanium dioxide (TiO2) which is at least partially crystallized in the anatase form thereof. Said structure is characterised in comprising a sublayer (SC) directly under at least one TiO2 layer, said sublayer having a crystallographic structure which provides assistance to crystallization by heteroepitaxial growth in the anatase form of the TiO2-based upper layer, the photocatalytic property being obtained without any heating step.
    Type: Grant
    Filed: October 22, 2004
    Date of Patent: June 15, 2010
    Assignee: Saint-Gobain Glass France
    Inventors: Laurent Labrousse, Nicolas Nadaud
  • Patent number: 7732011
    Abstract: The embodiments of present invention provide method for imparting tone-controlled colors into colorless crystals such as gemstones or decorative objects by coating a atomically mixed thin film comprising of a color causing reagent and a toner material onto the surface of colorless gemstones or transparent crystals and subjecting them to a heat treatment to produce colors of desired shades in the crystals. The method employed is radiation-free, eco-friendly and avoid the use of any hazardous material. The method highlights that controlling the amount of toner material could easily control the shade of color induced by the colorant material. The coating of atomically mixed single film onto the surface of crystals results in reduction of diffusion time significantly at a reasonable temperature, to impart colors to crystals such as gemstones and colorless decorative objects.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: June 8, 2010
    Inventors: Ram Pratap Gupta, Samir Gupta
  • Patent number: 7713583
    Abstract: An isotope-doped carbon nanotube (40) includes at least two kinds of carbon nanotube segments, each kind of carbon nanotube segment having a unique carbon isotope. The at least two kinds of carbon nanotube segments are arranged along a longitudinal direction of the carbon nanotube alternately or non-alternately. The carbon isotope is selected from the group consisting of a carbon-12 isotope, a carbon-13 isotope and a carbon-14 isotope. Three preferred methods employ different single isotope sources to form isotope-doped carbon nanotubes. In a chemical vapor deposition method, different isotope source gases are alternately or non-alternately introduced. In an arc discharge method, a power source is alternately or non-alternately switched between different isotope anodes. In a laser ablation method, a laser is alternately or non-alternately focused on different isotope targets.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: May 11, 2010
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Shou-Shan Fan, Liang Liu
  • Patent number: 7709053
    Abstract: A method of manufacturing polymer-coated particles is useful for chemical mechanical polishing magnetic, optical, semiconductor or silicon substrates. First it provides a dispersion of particle cores in a non-aqueous solvent. Then introducing a polymeric precursor into the dispersion to react the polymeric precursor forms a polymer. The polymer coats at least a portion of the surface of the particle cores with the polymer and forms the polymer-coated particles having a solid outer polymeric shell. Substituting the non-aqueous solvent with water forms an aqueous mixture containing the polymer-coated particles. And it forms an aqueous chemical mechanical polishing formulation with the polymer-coated particles without drying the polymer-coated particles.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: May 4, 2010
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Hongyu Wang, John Quanci, Richard E. Partch, Nathaniel A. Barney
  • Publication number: 20100009267
    Abstract: The present invention generally relates to metal oxide fibers and nanofibers, the processes for making same, and uses thereof. Such metal oxide nanofibers possess the ability to absorb and decompose chemical warfare agents and other toxic chemicals. These nanofibers can be incorporated into protective clothing and devices for breathing or in another example may be used in lithium-ion batteries. In one embodiment, the present invention relates to titania, alumina, and/or magnesia fibers and nanofibers, and to processes for making same. In another instance, alpha-phase aluminum oxide is utilized as one material in nanofibers.
    Type: Application
    Filed: September 28, 2007
    Publication date: January 14, 2010
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: George C. Chase, Matthew P. Espe, Edward A. Evans, Rex D. Ramsier, Darrell H. Reneker, Richard W. Tuttle, Jennifer Rapp
  • Publication number: 20090324825
    Abstract: Embodiments related to chemical vapor deposition of aluminum nitride onto surfaces are provided. In particular, methods are provided for coating AlN onto solid surfaces by heating and vaporizing an aluminum nitride precursor and exposing solid surfaces to the heated and vaporized aluminum nitride precursor. In an embodiment, the aluminum nitride precursor is AlCl3(NH3)x, wherein x=1-6. In an embodiment, the surface is a metallic substrate, such as a silicon, aluminum nitride, steel, aluminum, molybdenum and manganese. In an embodiment, the surface is steel that is nitrided to form an iron nitride layer on which AlN is deposited.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 31, 2009
    Inventors: Carl R. EVENSON, Erick J. SCHUTTE, Joel S. THOMPSON
  • Patent number: 7618682
    Abstract: A method for providing an anti-stiction coating on a metal surface includes reacting a vapor of perfluorooctylhydroxamic acid with the metal surface in a reaction chamber.
    Type: Grant
    Filed: September 25, 2006
    Date of Patent: November 17, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Paul Felice Reboa, Kirby Sand
  • Publication number: 20090148709
    Abstract: This invention relates to a method of making glass. In certain example embodiments, a major surface(s) of the glass is treated with aluminum chloride (e.g., AlCl3). This treating, or application of an aluminum chloride based layer on the glass substrate, may be performed using combustion deposition. The combustion deposition may be performed at or just prior to the annealing lehr in certain example embodiments, or at any other suitable location. The aluminum chloride barrier layer, applied at a desirable glass temperature, helps to reduce sodium leaching or diffusion from the glass during conditions such as high heat and/or humidity, thereby improving the durability and/or stability of the resulting product.
    Type: Application
    Filed: December 10, 2007
    Publication date: June 11, 2009
    Applicants: Grand Duche de Luxembourg
    Inventors: Bernd Disteldorf, Pramod K. Sharma, Nathan P. Mellott
  • Patent number: 7544410
    Abstract: A hard metal or cermet body has a 2 to 100 ?m thick first layer having a binder metal proportion of 2 to 25 mass % and up to 25 volume % of a nitride or carbonitride of one or more metals of Group IVa of the periodic system or up to 10 volume % of a carbide or carbonitride of V, Nb, Ta or Cr, balance WC, whereby the amount of nitride, carbonitride or carbide of the afore-mentioned metals amounts to at least 0.01 volume %. Under the first layer is a 2 to 40 ?m thick second layer with an enhanced nitrogen proportion relative to the first layer, is disposed. Thereunder is a transition zone with a thickness of 2 to 100 ?m in which the composition gradually changes to a homogeneous composition in the inner core of the hard metal or cermet body.
    Type: Grant
    Filed: May 14, 2004
    Date of Patent: June 9, 2009
    Assignee: Kennametal Widia Produktions GmbH & Co. KG
    Inventors: Walter Lengauer, Vera Ucakar, Klaus Dreyer, Dieter Kassel, Hans Werner Daub
  • Patent number: 7442412
    Abstract: The disclosure relates to hydrophobic coatings for oxidized surfaces and methods of producing the same. Such coatings may be produced by applying a compound of the general formula AXn or A(R1)mXn to an oxidized surface followed by a nucleophilic compound of the general formula DR2. The processes may result in a hydrophobic unreactive organic coating that sterically inhibits access to the underlying oxidized surface or reactive groups. In selected embodiments, the hydrophobic coating may form a monolayer.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: October 28, 2008
    Assignee: Texas Instruments Incorporated
    Inventor: Seth A. Miller
  • Patent number: 7431998
    Abstract: The invention relates to a tool, especially a cutting tool, comprising a substrate member onto which at least one layer is deposited by means of CVD, and a method for the chemical vapor deposition of a two-phase layer on a sintered part. According to the invention, the single deposited layer or at least one of the layers is provided with a TiCN phase, TiOCN phase, TiOC phase, or TiC phase and an additional phase consisting of ZrO2 and/or HfO2. CH3CN, C5H5N, or C6H6 is used in the gas atmosphere for producing such a layer in addition to TiCl4, HfCl4, and/or ZrCl4 and CO2, the remainder being composed of H2 and/or Ar.
    Type: Grant
    Filed: April 23, 2004
    Date of Patent: October 7, 2008
    Assignee: Kennametal Widia Produktions GmbH & Co. KG
    Inventors: Volkmar Sottke, Hartmut Westphal, Hendrikus Van Den Berg
  • Publication number: 20080179741
    Abstract: By forming an aluminum nitride layer by a self-limiting process sequence, the interface characteristics of a copper-based metallization layer may be significantly enhanced while nevertheless maintaining the overall permittivity of the layer stack at a lower level.
    Type: Application
    Filed: November 30, 2007
    Publication date: July 31, 2008
    Inventors: Christof Streck, Volker Kahlert
  • Publication number: 20080074771
    Abstract: A method for providing an anti-stiction coating on a metal surface includes reacting a vapor of perfluorooctylhydroxamic acid with the metal surface in a reaction chamber.
    Type: Application
    Filed: September 25, 2006
    Publication date: March 27, 2008
    Inventors: Paul Felice Reboa, Kirby Sand
  • Patent number: 7229484
    Abstract: The present invention relates to the manufacture and use of novel pre-coated abrasive particles and particle slurries for the chemical mechanical polishing (CMP) of semiconductor wafers, thin films, inter-layer dielectric, metals, and other components during integrated circuit, flat panel display, or MEMS manufacturing. For example, polishing slurry abrasive particles can be pre-coated with additives, such as, inhibitors and/or surfactants during manufacture of the abrasive particles or slurry. The additive's opportunity to react directly with the abrasive particles early in the particle manufacturing process provides a slurry having a more stable, selectable, and predictable ratio of abrasive particles pre-coated with a more stable, selectable, and predictable amount and type of additives.
    Type: Grant
    Filed: November 27, 2002
    Date of Patent: June 12, 2007
    Assignee: Intel Corporation
    Inventors: Reza M. Golzarian, Mansour Moinpour, Andrea C. Oehler
  • Patent number: 7112453
    Abstract: This invention provides methods of retentate chromatography for resolving analytes in a sample. The methods involve adsorbing the analytes to a substrate under a plurality of different selectivity conditions, and detecting the analytes retained on the substrate by desorption spectrometry. The methods are useful in biology and medicine, including clinical diagnostics and drug discovery.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: September 26, 2006
    Assignee: Ciphergen Biosystems, Inc.
    Inventors: T. William Hutchens, Tai-Tung Yip
  • Patent number: 6929831
    Abstract: A silicon nitride film, for example, is deposited by introducing into a plasma region of a chamber a silicon containing gas, molecular nitrogen and sufficient hydrogen to dissociate the nitrogen to allow the silicon and nitrogen to react to form a silicon nitride film on a surface adjacent the plasma region. The thus deposited film may then be subjected to an activation anneal.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: August 16, 2005
    Assignee: Trikon Holdings Limited
    Inventors: Jashu Patel, Knut Beekman
  • Patent number: 6881447
    Abstract: Preparation methods and stabilization processes for low k polymers that consist of sp2C—X and HC-sp3C?—X bonds. A preparation method is achieved by controlling the substrate temperature and feed rate of the polymer precursors. One stabilization process includes a post annealing of as-deposited polymer films under the presence of hydrogen under high temperatures. The reductive annealing of these films is conducted at temperatures from ?20° C. to ?50° C. to +20° C. to +50° C. of their Reversible Crystal Transformation (“CRT”) temperatures, then quenching the resulting films to ?20° C. to ?50° C. below their “CRT” temperatures. The reductive annealing is conducted before the as-deposited film was removed from a deposition system and still under the vacuum. “Re-stabilization” processes of polymer surfaces that are exposed to reactive plasma etching are also disclosed; thus, further coating by barrier metal, cap layer or etch-stop layer can be safely applied.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: April 19, 2005
    Assignee: Dielectric Systems, Inc.
    Inventors: Chung J. Lee, Atul Kumar
  • Patent number: 6808745
    Abstract: A method for coating a micro-electromechanical systems device with a silane coupling agent by a) mixing the silane coupling agent with a low volatile matrix material in a coating source material container; b) placing the micro-electromechanical systems device in a vacuum deposition chamber which in connection with the coating source material container; c) pumping the vacuum deposition chamber to a predetermined pressure; and maintaining the pressure of the vacuum deposition chamber for a period of time in order to chemically vapor deposit the silane coupling agent on the surface of the micro-electromechanical systems device.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: October 26, 2004
    Assignee: Eastman Kodak Company
    Inventor: Zhihao Yang
  • Patent number: 6805909
    Abstract: An oxidation-protected brake disk is made of a fiber-reinforced ceramic material. A method of producing such a brake disk comprises applying at least one paint layer to a brake disk. In order to reduce damage to the brake disk under extreme thermal stress, the brake disk is provided with a layer of a highly temperature-stable paint that is viscous at the operating temperature of the brake disk.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: October 19, 2004
    Assignee: Dr. Ing. h.c.F. Porsche AG
    Inventor: Roland Martin
  • Patent number: 6797340
    Abstract: A method for forming a tungsten layer on a substrate surface is provided. In one aspect, the method includes positioning the substrate surface in a processing chamber and exposing the substrate surface to a boride. A nucleation layer is then deposited on the substrate surface in the same processing chamber by alternately pulsing a tungsten-containing compound and a reducing gas selected from a group consisting of silane (SiH4), disilane (Si2H6), dichlorosilane (SiCl2H2), derivatives thereof, and combinations thereof. A tungsten bulk fill may then be deposited on the nucleation layer using cyclical deposition, chemical vapor deposition, or physical vapor deposition techniques.
    Type: Grant
    Filed: October 10, 2002
    Date of Patent: September 28, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Hongbin Fang, Hyung-Suk A. Yoon, Ken Kaung Lai, Chi Chung Young, James Horng, Ming XI, Michael X. Yang, Hua Chung
  • Patent number: 6756322
    Abstract: A method with which all semiconductor lasers can be used as products is provided by regulating reflectance variations of all the semiconductor laser end faces arranged in an electron beam deposition apparatus after completion of deposition to a predetermined range when semiconductor laser end faces are coated. An end face (3) that is placed at a position at which the film thickness is made relatively thicker than those of other coat batches due to the large flux of a deposition beam is inclined by an angle &bgr; to adjust the incident angle of the deposition beam. The relationship, actual film thickness (9b)=film thickness (9b) in direction of deposition beams central axis (8a)×cos &bgr;, is utilized to reduce the film thickness of the end face (3) to the predetermined range.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: June 29, 2004
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Masayuki Ohta
  • Patent number: 6750110
    Abstract: A method of depositing a platinum based metal film by CVD deposition includes bubbling a non-reactive gas over an organic platinum based metal precursor until the non-reactive gas is saturated with the precursor. The platinum based metal film is deposited onto a substrate in a CVD deposition chamber in the presence of both oxygen and nitrous oxide at a predetermined temperature and under a predetermined pressure. The resulting film is consistently smooth and has good step coverage.
    Type: Grant
    Filed: July 23, 1998
    Date of Patent: June 15, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Garo J. Derderian
  • Publication number: 20040038069
    Abstract: CVD aluminide coatings including a small concentration of a reactive, gettering element for surface active impurities dispersed therein are formed for improved oxidation resistance. The aluminide coatings are formed by CVD codeposition of Al and the gettering element on the substrate using coating gases for the gettering element generated either outside or inside the coating retort depending on the chlorination temperature needed for the particular gettering element.
    Type: Application
    Filed: August 20, 2003
    Publication date: February 26, 2004
    Applicant: Howmet Research Corporation
    Inventors: Bruce M. Warnes, David C. Punola, Jeffery S. Smith, Daniel L. Near
  • Patent number: 6679951
    Abstract: The invention relates generally to the prevention of copper oxidation during copper anneal processes. In one aspect of the invention, copper oxidation is prevented by carrying out the anneal in the presence of one or more organic reducing agents.
    Type: Grant
    Filed: November 13, 2001
    Date of Patent: January 20, 2004
    Assignee: ASM Intenational N.V.
    Inventors: Pekka J. Soininen, Kai-Erik Elers, Ernst H. A. Granneman
  • Publication number: 20030197155
    Abstract: The objective of this invention is to provide a mercury-containing copper oxide superconductor film with a large area and a reduced amount of hetero-phase precipitate as an impurity, as well as an apparatus and a process for safely producing the film in a large scale; for this purpose, an apparatus for forming a film of this invention comprises a pressure vessel 1 (pressurized atmosphere furnace) equipped with a port 11 for introducing an external gas atmosphere to the furnace wall 3 and a mercury feeder 10 for controlling a pressure of the gas atmosphere independently of the pressure vessel 1 by generating a mercury-containing gas, the mercury feeder 10 introduces a mercury-containing gas into the pressure vessel 1 via the port 11, and, there is a metal seal gate valve 16 between the pressure vessel 1 and the mercury feeder 10.
    Type: Application
    Filed: July 9, 2002
    Publication date: October 23, 2003
    Applicant: NEC Corporation
    Inventor: Wataru Hattori
  • Patent number: 6627323
    Abstract: A protective coating system and method for protecting a thermal barrier coating from CMAS infiltration. The coating system comprises inner and outer alumina layers and a platinum-group metal layer therebetween. The outer alumina layer is intended as a sacrificial layer that reacts with molten CMAS, forming a compound with a melting temperature significantly higher than CMAS. As a result, the reaction product of the outer alumina layer and CMAS resolidifies before it can infiltrate the TBC. The platinum-group metal layer is believed to serve as a barrier to infiltration of CMAS into the TBC, while the inner alumina layer appears to enhance the ability of the platinum-group metal layer to prevent CMAS infiltration.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: September 30, 2003
    Assignee: General Electric Company
    Inventors: Bangalore Aswatha Nagaraj, Jeffrey Lawrence Williams, John Frederick Ackerman
  • Patent number: 6521294
    Abstract: A metallic substrate has a substrate surface having a substrate surface of nickel, a substrate aluminum content, and other alloying elements. A maskant is applied overlying the substrate surface to produce a masked substrate surface having an exposed region and a protected region. The maskant includes a plurality of maskant particles, each particle having a maskant particle composition comprising a maskant metal selected from the group of nickel, cobalt, titanium, chromium, iron, and combinations thereof, and a maskant aluminum content. The substrate is aluminided by contacting a source of aluminum to the masked substrate surface, whereby aluminum deposits on the exposed region and does not deposit on the protected region.
    Type: Grant
    Filed: August 11, 1999
    Date of Patent: February 18, 2003
    Assignee: General Electric Co.
    Inventors: Joseph D. Rigney, Jeffrey A. Pfaendtner, Michael J. Weimer, Ramgopal Darolia
  • Patent number: 6485791
    Abstract: Improved adhesion of thermal barrier coatings to nonmetallic substrates using a dense layer of ceramic on an underlying nonmetallic substrate that includes at least one oxidizable component. The improved adhesion occurs because the application of the dense ceramic layer forms a diffusion barrier for oxygen. This diffusion barrier prevents the oxidizable component of the substrate from decomposing. The present invention applies ceramic by a process that deposits a relatively thick and dense ceramic layer on the underlying substrate. The formation of the dense layer of ceramic avoids the problem of void formation associated with ceramic formation by most prior art thermal decomposition processes. The formation of voids has been associated with premature spalling of thermal barrier layers and other protective layers applied to substrates.
    Type: Grant
    Filed: April 6, 2000
    Date of Patent: November 26, 2002
    Inventor: Bangalore A. Nagaraj
  • Patent number: 6469189
    Abstract: A novel compound shown by M[N(OC2H5)5(OC2H4OCH3)]2, wherein M represents Sr or Ba, N represents Nb or Ta, which is a liquid at room temperature, is hard to be thermally dissociated, and has a vapor pressure of about 0.2 Torr at 190° C. The compound is produced by reacting 2 moles of N(OC2H5)5 and from 1 to 1.1 moles of M(OC2H4OCH3)2 and then recovering the product by distillation. By using the compounds as raw materials for a CVD method, an SrBi2Ta2O9 thin film or a (Sr0.75Ba0.25)Nb2O6 thin film for semiconductor devices can be produced.
    Type: Grant
    Filed: February 17, 2000
    Date of Patent: October 22, 2002
    Assignee: Kabushikikaisha Kojundokagaku Kenkyusho
    Inventors: Hidekimi Kadokura, Yumie Okuhara
  • Patent number: 6423373
    Abstract: The present invention relates to a surface-treated aluminum nitride and fabrication method thereof. The flexural strength of a surface-treated aluminum nitride at a high temperature is improved by restraining an oxidation behavior. The restraint of oxidation behavior is due to a silica layer formed on the surface-treated aluminum nitride by reaction of a source of silicon with an atmosphere gas.
    Type: Grant
    Filed: January 4, 2000
    Date of Patent: July 23, 2002
    Inventors: Hyoun Ee Kim, Young Hag Koh