Nitrogen Containing Coating (e.g., Metal Nitride, Etc.) Patents (Class 427/255.394)
  • Patent number: 6338880
    Abstract: A process for depositing titanium nitride films containing less than 5% carbon impurities and less than 10% oxygen impurities by weight via chemical vapor deposition is disclosed. Sheet resistance of the deposited films is generally be within a range of about 1 to 10 ohms per square. The deposition process takes place in a deposition chamber that has been evacuated to less than atmospheric pressure and utilizes the organometallic compound tertiary-butyltris-dimethylamido-titanium and a nitrogen source as precursors. The deposition temperature, which is dependent on the nitrogen source, is within a range of 350° C. to 700° C. The low end of the temperature range utilizes nitrogen-containing gases such as diatomic nitrogen, ammonia, hydrazine, amides and amines which have been converted to a plasma. The higher end of the temperature range relies on thermal decomposition of the nitrogen source for the production of reaction-sustaining radicals.
    Type: Grant
    Filed: September 4, 1998
    Date of Patent: January 15, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Salman Akram
  • Patent number: 6337035
    Abstract: A phosphor is prepared by depositing a compound semiconductor of Groups III-V in the form of fine particles or a thin film on a surface of a carrier particle by hetero-epitaxial growth. Thus, the phosphor increased in quality is obtained with satisfactory reproducibility.
    Type: Grant
    Filed: February 19, 1999
    Date of Patent: January 8, 2002
    Assignee: Futaba Denshi Kogyo K.K.
    Inventors: Shigeo Itoh, Hitoshi Toki
  • Publication number: 20020000199
    Abstract: A technique for forming a tungsten nitride film having a high growth speed without causing any dusting.
    Type: Application
    Filed: July 26, 2001
    Publication date: January 3, 2002
    Inventor: Masamichi Harada
  • Patent number: 6331332
    Abstract: In accordance with the present invention, there is provided a process for depositing diamond-like carbon (DLC) films by cathodic arc evaporation (CAE), wherein the high energy of CAE metal ions causes the cracking reaction of the hydrocarbon gases fed into the vacuum reaction chamber and then results in the deposition of DLC films having high hardness and lubrication. Due to the metallic constituents doped in the DLC films, the films also have good toughness. Moreover, prior to the feeding of hydrocarbon gases for the DLC deposition, the same metal arc source may deposits one or more interlayers of metal, metal nitride, or metal carbide on the substrate so as to further enhance the adhesion of the DLC films to be deposited.
    Type: Grant
    Filed: November 5, 1999
    Date of Patent: December 18, 2001
    Inventor: Da-Yung Wang
  • Patent number: 6329540
    Abstract: A volatile organogallium compound of formula(I), an azidodialkylgallium complexed with a hydrazine derivative, can form a GaN film having no nitrogen defects by a metal organic chemical vapor deposition(MOCVD): R1R2(N3)Ga.(R3HNNR4H)  (I) wherein, R1 and R2 are each independently C1-5 alkyl; and R3 and R4 are each independently hydrogen or C1-5 alkyl.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: December 11, 2001
    Assignee: Korea Research Institute of Chemical Technology
    Inventors: Yun-soo Kim, Chang-Gyoun Kim, Seung-Ho Yu
  • Publication number: 20010048973
    Abstract: The present invention provides a chemical vapor deposition using, as feed gases, a silicon compound and hydrazine or a derivative thereof, or a compound containing both silicon and nitrogen, and a process and a system useful for chemical vapor deposition growth, in which a chlorinated silane compound and ammonia, feed gases, are preliminarily reacted with each other, and the resulting reaction gas mixture from which the ammonium halide produced by the preliminary reaction has been eliminated is fed to form a thin film on a substrate.
    Type: Application
    Filed: June 25, 1999
    Publication date: December 6, 2001
    Inventors: YUUSUKE SATO, TAKASHI KATAOKA, NAOKI TAMAOKI, TOSHIMITSU OHMINE
  • Patent number: 6323119
    Abstract: The present invention provides a method of depositing an amorphous fluorocarbon film using a high bias power applied to the substrate on which the material is deposited. The invention contemplates flowing a carbon precursor at rate and at a power level so that equal same molar ratios of a carbon source is available to bind the fragmented fluorine in the film thereby improving film quality while also enabling improved gap fill performance. The invention further provides for improved adhesion of the amorphous fluorocarbon film to metal surfaces by first depositing a metal or TiN adhesion layer on the metal surfaces and then stuffing the surface of the deposited adhesion layer with nitrogen. Adhesion is further improved by coating the chamber walls with silicon nitride or silicon oxynitride.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: November 27, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Ming Xi, Turgut Sahin, Yaxin Wang
  • Patent number: 6319567
    Abstract: A method for producing a tantalum nitride layer on a substrate, comprising; directly injecting a liquid mixture of (R1R2N)3Ta(═NR3) and (R4R5N)3Ta[&eegr;2—R6N═C (R7)(R8)] into a dispersing zone followed by delivering the dispersed mixture into a reactor containing the substrate at elevated temperature and reacting the mixture with a source of nitrogen selected from the group consisting of ammonia, alkyl amines, N2H2, alkyl hydrazine, N2 and mixtures thereof, to produce the tantalum nitride layer on the substrate, where R1, R2, R3, R4, R5, R6, R7 and R8 are individually C1-6 alkyl, aryl or hydrogen.
    Type: Grant
    Filed: March 30, 1999
    Date of Patent: November 20, 2001
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Yoshihide Senzaki, Arthur Kenneth Hochberg, John Anthony Thomas Norman
  • Patent number: 6312761
    Abstract: A tungsten nitride film, having a high growth speed without causing any dusting, is formed. The film forming apparatus 2, according to the present invention, includes an adhesion preventive container 8 which is placed in a reactor 11; and an object on which a film is to be formed 20 is located in the adhesion preventive container 8. In a first gas inlet equipment, a first feedstock gas is jetted from a shower nozzle 12. In a second gas inlet equipment, a second feedstock gas is jetted around the object on which a film is to be formed 20 between the shower nozzle 12 and the material 20. The first feedstock gas and the second feedstock gas attain the surface of the object on which a film is to be formed without being mixed together, which enables the efficient performance of the reaction. Since the adhesion preventive container is heated to 150 to 250° C., neither WF6.4NH3 nor WxN is formed and thus, no dusting is caused.
    Type: Grant
    Filed: January 21, 2000
    Date of Patent: November 6, 2001
    Assignee: Ulvac, Inc.
    Inventor: Masamichi Harada
  • Patent number: 6274196
    Abstract: A spherical object transport apparatus of the invention brings a spiral stream into contact with a first atmosphere containing a spherical object, selectively sucks the first atmosphere outward so as to engulf in the spiral stream for diffusing the first atmosphere outward, guides the spherical object so that the spherical object passes through the center of the transport apparatus, supplies a second atmosphere to the spherical object, and sends the spherical object together with the second atmosphere to the following step.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: August 14, 2001
    Assignees: Mitsui High-Tec INC, Nippon Pneumatics/Fluidics System Co., Ltd.
    Inventors: Katsumi Amano, Tashiro Arai
  • Patent number: 6270859
    Abstract: A method of depositing titanium nitride by chemical vapor deposition in a chamber having several design features directed to the conductive nature of titanium nitride, particularly when a plasma treatment step is performed after the thermal deposition of the film. Preferably, during the post-deposition plasma treatment, RF power is applied only to the showerhead counter-electrode and none to the pedestal supporting the wafer, thereby preventing charging of the wafer.
    Type: Grant
    Filed: March 27, 1998
    Date of Patent: August 7, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Jun Zhao, Ashok Sinha, Avi Tepman, Mei Chang, Lee Luo, Alex Schreiber, Talex Sajoto, Stefan Wolff, Charles Dornfest, Michal Danek
  • Publication number: 20010004478
    Abstract: A method of depositing titanium nitride by chemical vapor deposition in a chamber having several design features directed to the conductive nature of titanium nitride, particularly when a plasma treatment step is performed after the thermal deposition of the film. Preferably, during the post-deposition plasma treatment, RF power is applied only to the showerhead counter-electrode and none to the pedestal supporting the wafer, thereby preventing charging of the wafer.
    Type: Application
    Filed: March 27, 1998
    Publication date: June 21, 2001
    Inventors: JUN ZHAO, ASHOK SINHA, AVI TEPMAN, MEI CHANG, LEE LUO, ALEX SCHREIBER, TALEX SAJOTO, STEFAN WOLFF, CHARLES DORNFEST, MICHAL DANEK
  • Publication number: 20010003015
    Abstract: Method for passivating a layer of titanium that has been deposited on a substrate in a reaction chamber to coat the titanium thereby reducing the likelihood of contamination by byproducts of the deposition process or ambient oxygen or similar reactants. The method includes adding a flow of hydrogen and a flow of nitrogen to the chamber. The flows of hydrogen and nitrogen are approximately 800 sccm and continue for approximately 10-30 seconds respectively. The method may further comprise the step of forming a nitrogen plasma in the chamber for approximately 10 seconds wherein such case the flows of hydrogen and nitrogen continue for approximately 8 seconds respectively. The plasma is formed by applying RF power to an electrode located within said chamber or by a remote plasma source and channeled to said reactor chamber. Alternately, the passivation layer may be formed just by using a nitrogen plama alone for approximately 10-30 seconds at the same RF power level.
    Type: Application
    Filed: October 29, 1998
    Publication date: June 7, 2001
    Inventors: MEI CHANG, RAMANUJAPURAM SRINIVAS, LI WU
  • Patent number: 6242045
    Abstract: Metal nitrides are prepared by reacting a metal halide with an amine at an elevated temperature. The process is useful for depositing titanium nitride and vanadium nitride films onto glass, to make solar control automotive and architectural glazings.
    Type: Grant
    Filed: June 24, 1993
    Date of Patent: June 5, 2001
    Assignee: Visteon Global Technologies, Inc.
    Inventors: James William Proscia, Keith Brian Williams, Gene P. Reck
  • Patent number: 6239040
    Abstract: A method of coating an amorphous silicon layer. An amorphous silicon layer is directly deposited on the polysilicon nodes by a self-aligned method. A chemical mechanical polishing process is performed to control the thickness of the amorphous silicon layer. No additional photoresist is used during the whole processes. Therefore, the duration for deposition can be reduced and the quality of the amorphous silicon film is improved.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: May 29, 2001
    Assignee: United Microelectronics Corp.
    Inventor: Shih-Ching Chen
  • Patent number: 6238734
    Abstract: The present invention is a composition for deposition of a mixed metal or metal compound layer, comprising a solventless mixture of at least two metal-ligand complex precursors, wherein the mixture is liquid at ambient conditions and the ligands are the same and are selected from the group consisting of alkyls, alkoxides, halides, hydrides, amides, imides, azides cyclopentadienyls, carbonyls, and their fluorine, oxygen and nitrogen substituted analogs.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: May 29, 2001
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Yoshihide Senzaki, David Allen Roberts, John Anthony Thomas Norman
  • Patent number: 6238739
    Abstract: A method for forming a Ti1-xAlxN coating on a part without plasma enhancement, wherein a chemical vapor deposition chamber is heated to 250-500° C.; the part to be coated is heated to 550-650° C. and placed in said chamber; and a mixture of titanium and aluminium chlorides, NH3 and H2 is injected into the chamber. The molar amount of NH3 is greater than the molar amount of chlorides, and the molar amount of hydrogen is over five times greater than the molar amount of chlorides.
    Type: Grant
    Filed: February 2, 1999
    Date of Patent: May 29, 2001
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Roland Madar, Alain Rouault, Elisabeth Blanquet, Claude Bernard, Anne-Marie Dutron
  • Patent number: 6238737
    Abstract: A method of treating structures (and the structure formed thereby), so as to prevent or retard the oxidation of a metal film, and/or prevent its delamination a substrate, includes providing a structure including a refractory metal film formed on a substrate, placing the structure into a vessel having a base pressure below approximately 10−7 torr, exposing the structure to a silane gas at a sufficiently high predetermined temperature and predetermined pressure to cause formation of a metal silicide layer on the refractory metal film, and exposing the structure to a second gas at a sufficiently high temperature and pressure to nitride the metal silicide layer into a nitrided layer.
    Type: Grant
    Filed: June 22, 1999
    Date of Patent: May 29, 2001
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Erin C. Jones, Fenton R. McFeely, Paul M. Solomon, John J. Yurkas
  • Patent number: 6210745
    Abstract: A residual gas analyzer can be used as a deposition rate monitor. A deposition rate monitor is based on the detection of growth precursors and reaction byproducts of the thin film growth in deposition equipment such as chemical vapor deposition (CVD) systems. The growth precursors and byproducts are identified and quantified by using a residual gas analyzer (RGA). The ion current from gas species associated with the growth rate is then empirically correlated with the thickness of the film. The specific chemical species detected by the RGA is unique to the material that is deposited and to the technique in which the material is deposited.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: April 3, 2001
    Assignee: National Semiconductor Corporation
    Inventors: Kevin Gaughan, Ching-Wei Chen, Minxu Li
  • Patent number: 6204204
    Abstract: A method and apparatus are disclosed for depositing a tantalum-containing diffusion barrier, such as a TaN barrier layer, by dissolving a tantalum-bearing organometallic precursor, such as PEMAT or PDEAT, in an inert, low viscosity, high molecular weight, low volatility solvent, such as octane, heptane, decane or toluene. The precursor-solvent solution is vaporized and flowed over a substrate to deposit the barrier. The precursor solution has a viscosity substantially similar to that of the solvent by maintaining the ratio of precursor to solvent at a generally low value, such as approximately 10% precursor. The boiling point of the solvent is substantially similar to the boiling point of the precursor, such as within 50% of the precursor boiling point at one atmosphere, to enhance repeatability of barrier film quality.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: March 20, 2001
    Assignee: CVC Products, Inc.
    Inventors: Ajit P. Paranjpe, Mehrdad M. Moslehi, Randhir S. Bubber, Lino A. Velo
  • Patent number: 6200649
    Abstract: A method of forming titanium boronitride coatings using ion beam assisted deposition. The method involves exposing the substrate to a vacuum, depositing titanium onto the substrate, substantially simultaneously exposing the substrate to a source comprising boron and nitrogen, and substantially simultaneously bombarding the substrate with an energetic beam of ions under conditions effective to form a quantity of titanium-boron bonds and a quantity of titanium-nitrogen bonds effective to produce a titanium boronitride coating having a hardness of at least about 5000 kg/mm2.
    Type: Grant
    Filed: July 21, 1999
    Date of Patent: March 13, 2001
    Assignee: Southwest Research Institute
    Inventor: Geoffrey Dearnaley
  • Patent number: 6196936
    Abstract: A golf club component is coated with a corrosion-resistant, wear-resistant, impact-resistant material, such as zirconium nitride, titanium nitride, di-titanium nitride, titanium aluminum nitride, titanium carbonitride, titanium zirconium nitride, or titanium aluminum carbonitride. Deposition is preferably accomplished by a cathodic arc process using linear deposition sources with simultaneous heating and rotation of the golf club component substrate relative to the deposition sources.
    Type: Grant
    Filed: July 25, 1997
    Date of Patent: March 6, 2001
    Assignee: Molecular Metallurgy, Inc.
    Inventor: Nathan K. Meckel
  • Patent number: 6190732
    Abstract: A method and system for fabricating a device on a substrate with a process gas, such as with chemical vapor deposition. A reaction chamber and support chuck cooperate to form a low conductance configuration for axisymetric process gas flow over the substrate and to form a high conductance configuration for enhanced evacuation of residual process gas from the reaction chamber upon completion of the process. A dual conductance chuck has an indented region that aligns with the exhaust port of the reaction chamber to restrict process gas flow in the low conductance configuration, and that moves distal a showerhead and the exhaust port to provide reduced restriction of process gas flow for reaction chamber evacuation. The chuck includes thermal control for enhancing film deposition on the substrate and for reducing residual film deposition on the chuck. An evacuation opening in the housing provides independent evacuation of residual gas from the housing.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: February 20, 2001
    Assignee: CVC Products, Inc.
    Inventors: Thomas R. Omstead, Panya Wongsenakhum, William J. Messner, Edward J. Nagy, William Starks, Mehrdad M. Moslehi
  • Patent number: 6177149
    Abstract: A Ti film is formed by CVD in holes formed in an insulating film formed on a Si substrate or on a Si film formed on a Si substrate by a method comprising the steps of: loading a Si substrate into a film forming chamber; evacuating the chamber at a predetermined vacuum; supplying TiCl4 gas, H2 gas, Ar gas and SiH4 gas into the film forming chamber; and producing a plasma in the film forming chamber to deposit a Ti film in the holes formed in the insulating film. The Si substrate is heated at 550° C. or above during the deposition of the Ti film, and the flow rates of the processing gases are regulated so that Si-to-insulator selectivity is not less than one. This method enables formation of a Ti film on a Si base at positions of holes in an insulating layer, with a good morphology of the interface between the Si base and the Ti film and with a good step coverage.
    Type: Grant
    Filed: December 21, 1998
    Date of Patent: January 23, 2001
    Assignee: Tokyo Electron Limited
    Inventors: Kunihiro Tada, Hayashi Otsuki
  • Patent number: 6177145
    Abstract: The invention includes a semiconductor processing method of making electrical contact to a node. An insulating layer is formed over a substrate, and an opening is formed through the insulating layer to the substrate. A layer of electrically conductive material is formed within the opening. The electrically conductive material is capable of absorbing oxygen when exposed to an oxygen containing ambient. The conductive material is exposed to a plasma to densify at least an outermost exposed portion of the conductive material and reduce a capability of the layer to absorb oxygen when exposed to the oxygen containing ambient. The layer of electrically conductive material is not exposed to the oxygen containing ambient before being exposed to the plasma.
    Type: Grant
    Filed: June 8, 1998
    Date of Patent: January 23, 2001
    Assignee: Micron Technology, Inc.
    Inventors: Garo J. Derderian, Gurtej S. Sandhu
  • Patent number: 6171650
    Abstract: A phosphor particle has thereon a moisture resistant treatment of a metallic nitride. By moisture resistant is meant a condition allowing the phosphor particle to function in a humid atmosphere for a significantly longer period of time than an untreated particle. The method of making such phosphors comprises the steps of introducing an inert gas into a reaction vessel; charging phosphor particles into the reaction vessel; heating the reaction vessel to a reaction temperature; introducing a nitride coating precursor into the reaction vessel in a manner to avoid restrictive reactions; introducing a co-reactant into the reaction vessel; and maintaining the inert gas flow, co-reactant flow and precursor supply for a time sufficient to moisture-proof the phosphor particles.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: January 9, 2001
    Assignee: Osram Sylvania Inc.
    Inventors: Richard G. W. Gingerich, Chen-Wen Fan
  • Patent number: 6168833
    Abstract: A process for coating an object with ceramic material vaporized from an ingot of the ceramic material. The process comprises the steps of (a) evaporating the material by melting the surface of the ingot with an intense heat source; and (b) depositing the evaporated material upon the object as a coating. The ingot comprises an unsintered mixture of at least two powder fractions of at least 50% to 90% by volume of a coarse-grained powder and 10% to 50% by volume of a fine-grained powder. The average particle diameter, d50, of the fine-grained powder is at most one third the average particle diameter of the coarse-grained powder.
    Type: Grant
    Filed: February 16, 1999
    Date of Patent: January 2, 2001
    Assignee: DLR Deutsche Forschungsanstalt f{umlaut over (u)}r Luft-und Raumfahrt e.V.
    Inventors: Uwe Leushake, Walter Luxem, Claus-J{umlaut over (u)}rgen Kröder, Wolf-D. Zimmermann