Inorganic Base Patents (Class 427/309)
  • Patent number: 8221879
    Abstract: The present invention relates to functionalized silicon and/or germanium surfaces, methods for the preparation of such tailor-made functionalized silicon and/or germanium surfaces, the use of such tailor-made functionalized silicon and/or germanium surfaces for the preparation of surface-bonded organic materials and the use in industrial devices. The silicon and/or germanium surfaces comprise silicon nitride, silicon carbide, germanium nitride, germanium carbide and silicon germanium surfaces.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: July 17, 2012
    Assignee: Wageningen University
    Inventors: Johannes Teunis Zuilhof, Catharina Gerarda Petronella Henrica Schröen, Ahmed Arafat Mohamed Khamis
  • Publication number: 20120171502
    Abstract: A process for treating the surface of magnesium alloy comprises providing a substrate made of magnesium alloy. The substrate is then treated with a chemical conversion treatment solution containing cerium nitrate and potassium permanganate as main film forming agents, to form a cerium conversion film on the substrate. A ceramic coating comprising refractory metal compound is next formed on the cerium conversion film by physical vapor deposition.
    Type: Application
    Filed: July 22, 2011
    Publication date: July 5, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, DUN MAO
  • Patent number: 8206778
    Abstract: A method of manufacturing a magnetic recording medium includes the steps of forming an intermediate layer that is electrically conductive over a non-magnetic substrate; forming an aluminum-containing layer on the intermediate layer; forming a plurality of micro pits in the aluminum-containing layer; generating an alumina-containing layer by anode oxidation of the aluminum-containing layer and simultaneously forming a plurality of nano holes in the alumina-containing layer originating from the plurality of micro pits respectively to expose the intermediate layer; cleaning and drying the plurality of nano holes using a fluid selected from the group consisting of a sub- and super-critical carbon dioxide fluid; and depositing a magnetic metal selectively through the plurality of nano holes on the intermediate layer to form a plurality of magnetic recording elements that collectively form a magnetic recording layer.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: June 26, 2012
    Assignee: Fuji Electric Device Technology Co., Ltd.
    Inventor: Kouichi Tsuda
  • Patent number: 8168267
    Abstract: A method for manufacturing a preform for optical fibers by a vapor deposition process wherein an intermediate step is carried out between one deposition phase and the next deposition phase(s), wherein the intermediate step includes supplying an etching gas to the supply side of the hollow substrate tube.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: May 1, 2012
    Assignee: Draka Comteq B.V.
    Inventors: Johannes Antoon Hartsuiker, Igor Milicevic, Mattheus Jacobus Nicolaas Van Stralen, Rob Hubertus Matheus Deckers, Marco Korsten
  • Publication number: 20120058276
    Abstract: There is disclosed a processing solution for metal replacement for metal aluminum or an aluminum alloy. The processing solution is used for surface processing of an underlying aluminum material. The processing solution for metal replacement removes an oxide film on the underlying aluminum material and suppresses corrosive attack to it to allow a plating film having high smoothness and good plating appearance to be deposited on the underlying aluminum material. The processing solution for metal replacement at least includes a metal salt capable of being replaced with aluminum, and an alkaline compound. A quaternary ammonium hydroxide is contained in the processing solution for metal replacement as the alkaline compound.
    Type: Application
    Filed: November 15, 2011
    Publication date: March 8, 2012
    Applicant: C. UYEMURA & CO., LTD.
    Inventors: Hiroki Uchida, Kazuki Yoshikawa, Toshiaki Shibata
  • Publication number: 20120052302
    Abstract: A method of strengthening an edge of a glass article while maintaining the optical clarity of the major surfaces or protecting layers or structures deposited on the surfaces of the article. A protective coating or film of a polymer or polymer resin is applied to at least one surface of the glass article. The surface may either be melt-derived or polished, and/or chemically or thermally strengthened. The edge is etched with an etchant to reduce the size and number of flaws on the edge, thereby strengthening the edge. A glass article having an edge strengthened by the method is also provided.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 1, 2012
    Inventors: Joseph M. Matusick, Michael T. Preston, Robert A. Schaut, Daniel A. Sternquist, Heather Debra Boek, Mark Owen Weller
  • Publication number: 20110300374
    Abstract: The invention relates to a method for preparing a coating resistant to contact corrosion on the surface of titanium alloy, which comprises the following steps: 1. carrying out degreasing and derusting to a titanium alloy part; 2. carrying out etching treatment on the titanium alloy part; 3. carrying out surface activation treatment on the titanium alloy part; 4. preheating the titanium alloy part in an atmosphere protection furnace; 5. immersing the preheated titanium alloy part in plating solution; and 6. carrying out diffusion treatment on the immersion-plated titanium alloy part in a vacuum furnace whereby atoms at the interface diffuse to form a diffusion layer on a substrate and thus form a plating diffusion composite layer on the surface of the titanium alloy part. The part treated by the method completely solves the problem of contact corrosion of titanium alloy contacting with aluminum alloy and steel material.
    Type: Application
    Filed: March 31, 2010
    Publication date: December 8, 2011
    Applicant: JIANGSU LINLONG NEW MATERIALS CO., LTD.
    Inventors: Lixin Feng, Minyan Zhang, Pingze Zhang
  • Patent number: 8071171
    Abstract: Methods and systems for controlling a three(3)-dimensional distribution of structural reinforcement elements in a polymer-matrix composite. One embodiment of the invention provides a method that includes adding and curing a shape memory polymer in a plurality of flexible preforms attached with each other after preforming each of the flexible preforms to form a spatially controlled preform and variable stiffness material composite laminate. Here, in this embodiment, at least one of the preforms includes a flexible support formed from a patterned supporting material on a first surface of a stiff-structural sheet and the stiff-structural sheet that has been patterned on the support.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: December 6, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: Robert E. Doty, Geoffrey P. McKnight, Guillermo A. Herrera, David L. Hammon
  • Patent number: 8057843
    Abstract: A metal implant, in particular a dental implant, with a hydrophilic surface for at least partial insertion into a bone, and a method for the production of said implant are described. A particularly advantageous hydrophilic surface for improved osteointegration properties is made available if it is briefly treated, at least in some areas, in a weakly alkaline solution. These excellent osteointegration properties can be achieved in a method in which, optionally after a preceding mechanical surface modification by material removal and/or chemical surface modification, at least the areas exposed of this surface exposed to bone and/or soft tissue are chemically modified in an alkaline solution.
    Type: Grant
    Filed: August 17, 2007
    Date of Patent: November 15, 2011
    Assignee: Thommen Medical AG
    Inventors: Falko Schlottig, Daniel Snétivy
  • Patent number: 8052825
    Abstract: A method for producing a composite material having a carbon nanotube array, includes the steps of: (a) providing the carbon nanotube array, the carbon nanotube array has a first end surface and a second end surface opposite to the first end surface; (b) providing a first board and a second board, fixing the first end surface of the carbon nanotube array on the first board, fixing the second end surface of the carbon nanotube array on the second board; (c) packaging the first board and the second board to form an apparatus having an entrance; (d) providing a liquid polymer precursor, applying the liquid polymer precursor from the entrance to the apparatus until the liquid polymer precursor submerge carbon nanotube array; and (e) solidifying the liquid polymer precursor.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: November 8, 2011
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Qun-Feng Cheng, Jia-Ping Wang, Kai-Li Jiang, Jia-Jia Wen, Shou-Shan Fan
  • Publication number: 20110268885
    Abstract: A solution for removing an aluminum oxide film from an aluminum or aluminum alloy surface, which includes a salt or oxide of a metal capable of substituting aluminum, a solubilizing agent for ions of the metal, and an alkali, and which has a pH of 10 to 13.5. The removing solution makes it possible to form a film of the metal derived from the metal salt or oxide contained in the removing solution by dissolving away the oxide film from the aluminum or aluminum alloy surface at a low temperature and a high speed while restraining, as securely as possible, erosion of the aluminum or aluminum alloy surface. Besides, the removing solution ensures that even in the case where the thickness of the aluminum or aluminum alloy basis material is very small, the aluminum or aluminum alloy surface can be activated while assuredly leaving the aluminum or aluminum alloy basis material.
    Type: Application
    Filed: July 18, 2011
    Publication date: November 3, 2011
    Inventors: Hiroki Uchida, Kazuki Yoshikawa, Toshiaki Shibata
  • Patent number: 8039045
    Abstract: An object of the present invention is to provide a plating method on a glass base plate. The method allows forming a plating film on a base plate composed of a glass material with excellent adhesivity and homogeneity by means of an electroless plating method even to a thickness of 1 ?m or more. Before forming a plating film by a step of electroless plating S6, a surface treatment process is conducted on a surface of the base plate composed of a glass material. The surface treatment process comprises at least a step of glass activation treatment S2 to increase quantity of silanol groups on the surface of the base plate at least by a factor of two using an aqueous solution of diluted acid, a step of silane coupling agent treatment S3, a step of palladium catalyst treatment S4, and a step of palladium bonding treatment S5.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: October 18, 2011
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Youichi Tei, Akira Iso, Kazuhito Higuchi, Hajime Kurihara, Hiroyuki Uwazumi
  • Publication number: 20110250377
    Abstract: A plastic-metal hybrid part includes an anodized metal substrate having plastic structures formed on the metal substrate. In a particular embodiment, the metal hybrid part is an electronic device enclosure and plastic structures are mounting features formed on the enclosure. Methods for manufacturing the plastic-metal hybrid part are also disclosed. In a particular embodiment, the metal substrate undergoes a pretreatment, is anodized after the pretreatment, and the plastic structures are molded directly on the anodized exterior surface of the metal substrate. In another embodiment, the anodized metal substrate is primed with a coupling agent before the plastic features are formed thereon.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 13, 2011
    Inventor: Jichen (Jeff) Qin
  • Patent number: 8021491
    Abstract: A method for selectively removing an aluminum-poor overlay coating from a substrate of a component, which as a result of its low aluminum content is highly resistant to a selective stripping solution. The method entails diffusing aluminum into the overlay coating to form an aluminum-infused overlay coating having an increased aluminum level in at least an outer surface thereof. The diffusion step is carried out so that the increased aluminum level is sufficient to render the aluminum-infused overlay coating removable by selective stripping. The outer surface of the aluminum-infused overlay coating is then contacted with an aqueous composition to remove the aluminum-infused overlay coating from the substrate. The aqueous composition includes at least one acid having the formula HxAF6, and/or precursors thereof, wherein A is Si, Ge, Ti, Zr, Al, and/or Ga, and x is from 1 to 6.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: September 20, 2011
    Inventors: Lawrence Bernard Kool, Michael Howard Rucker, David Edwin Budinger
  • Publication number: 20110200842
    Abstract: The invention relates to a substrate having a bondable metal coating comprising, in this order, on an Al or Cu surface: (a) a Ni—P layer, (b) a Pd layer and, optionally, (c) an Au layer, wherein the thickness of the Ni—P layer (a) is 0.2 to 10 m, the thickness of the Pd layer (b) is 0.05 to 1.0 m and the thickness of the optional Au layer (c) is 0.01 to 0.5 m, and wherein the Ni—P layer (a) has a P content of 10.5 to 14 wt.-%. The deposit internal stress of the resulting Ni—P/Pd stack is not higher than 34.48 M?Pa (5,000 psi). Further, a process for the preparation of such a substrate is described.
    Type: Application
    Filed: October 1, 2009
    Publication date: August 18, 2011
    Applicant: ATOTECH DEUTSCHLAND GMBH
    Inventors: Albrecht Uhlig, Josef Gaida, Christof Suchentrunk, Michael Boyle, Brian Washo
  • Patent number: 7968144
    Abstract: A system for forming a surface coating on an outer surface of a foam for use with cooling system of turbine engines. The system may include removing filler from the outer surface of the foam to expose a porous structure of the foam, whereby portions of the porous structure extend outwardly from a newly formed outer surface of the filler. A surface layer may be applied to the outer surface of the filler and exposed portions of the porous structure, whereby the surface layer is attached to the porous structure at least in part due to mechanical interaction with the portions of the porous structure extending outwardly from the newly formed outer surface of the filler. The filler material may then be removed from the porous structure.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: June 28, 2011
    Assignee: Siemens Energy, Inc.
    Inventors: Allister W. James, Douglas J. Arrell
  • Patent number: 7964044
    Abstract: A process for forming a magnetite coating on a ferrous metal surface and for chemical reagents used to implement the coating process. The process comprises the step of making the ferrous metal surface more reactive by contacting the surface with an activating reagent and then contacting the activated surface with an oxidizing reagent to form the coating at a relatively low temperature range. The surface is activated by contact with an acid solution to form a surface rich in reactive iron. The activated surface is then oxidized by contact with an aqueous reagent of alkali metal hydroxide, alkali metal nitrate, alkali metal nitrite, and mixtures thereof.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: June 21, 2011
    Assignee: Birchwood Laboratories, Inc.
    Inventors: William V. Block, Bryce D. Devine
  • Publication number: 20110056836
    Abstract: A metal surface treated to have a distinct cosmetic appearance such as an integral layer that is glossy may be used in electronic devices. The surface treatment may include polishing a metal surface, texturing the polished metal surface, polishing the textured surface, followed by anodizing the surface, and then polishing the anodized surface. The metal surface may also be dyed to impart a rich color to the surface.
    Type: Application
    Filed: September 4, 2009
    Publication date: March 10, 2011
    Applicant: Apple Inc.
    Inventors: Masashige TATEBE, Howard Bujtor, Jody Akana, Jonathan P. Ive
  • Publication number: 20110052931
    Abstract: The present disclosure is directed to cutting tools. The disclosed cutting tools may have a wear resistant coating on a substrate. The substrate may have hard particles cemented in a binder phase. The binder may have a near-surface concentration gradient of at least one platinum group element and/or rhenium. Processes for producing cutting tools are also disclosed.
    Type: Application
    Filed: August 25, 2009
    Publication date: March 3, 2011
    Applicant: TDY Industries, Inc.
    Inventors: Craig W. Morton, Dewitt Dortch, John Bost, David J. Wills
  • Publication number: 20100279015
    Abstract: A method of forming a concrete wall having a substantially uniform exterior surface texture. The method includes the initial step of pouring concrete into a wall form. The concrete is poured from a first mixture and is allowed to cure. After the concrete is cured, the wall form is removed from the resultant concrete base structure. A roughened texture is then created on the base structure. A finishing mixture is then applied to the roughened texture. The finishing mixture may be created by separating the aggregate from a portion of the remaining first mixture. The finishing mixture creates a smooth texture on the exterior surfaces of the initially formed base structure.
    Type: Application
    Filed: July 15, 2010
    Publication date: November 4, 2010
    Inventors: Ronald D. Shaw, Lee A. Shaw
  • Publication number: 20100266770
    Abstract: The disclosed invention relates to a method and a composition for treating a porous carbon-carbon composite with an oxidation inhibiting composition. The oxidation inhibiting composition comprises at least one phosphate glass. In one embodiment, the method optionally further comprises pretreating the composite with a pretreating composition prior to application of the oxidation inhibiting composition. Carbon-carbon composites treated by the foregoing method are disclosed.
    Type: Application
    Filed: July 1, 2010
    Publication date: October 21, 2010
    Applicant: GOODRICH CORPORATION
    Inventors: Anthony M. Mazany, Robert Bianco, John Grisik, S.K. Lau, Hector Cirilo
  • Publication number: 20100260613
    Abstract: A process for reducing secondary reaction zone formation articles includes the steps of non-selective removing an external surface of an as-cast article free of coating to form an as-cast article having a surface substantially free of residual surface stress; and applying a coating material upon the surface substantially free of residual surface stress to form a coated as-cast article having a coating layer disposed upon the surface substantially free of residual surface stress.
    Type: Application
    Filed: December 22, 2006
    Publication date: October 14, 2010
    Inventors: Alan D. Cetel, Shiela R. Woodard, Dwayne A. Braithwaite, Joseph J. Parkos,, JR.
  • Publication number: 20100247774
    Abstract: Partially aromatic polyamide compositions containing an aliphatic polyamide and an alkaline earth metal carbonate have excellent adhesion to metal coatings which are produced by electroless and/or electrolytic plating. Also described is a process for the electroless and/or electrolytic coating of these compositions. The resulting articles are useful as parts in automotive and industrial applications.
    Type: Application
    Filed: November 24, 2008
    Publication date: September 30, 2010
    Applicant: E. I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Andri E. Elia, Claudio Pierdomenico
  • Patent number: 7790045
    Abstract: The present invention relates to the self-assembly of a spherical-morphology block copolymer into V-shaped grooves of a substrate. Although spherical morphology block copolymers typically form a body-centered cubic system (bcc) sphere array in bulk, the V-shaped grooves promote the formation of a face-centered cubic system (fcc) sphere array that is well ordered. In one embodiment, the (111) planes of the fcc sphere array are parallel to the angled side walls of the V-shaped groove. The (100) plane of the fcc sphere array is parallel to the top surface of the substrate, and may show a square symmetry among adjacent spheres. This square symmetry is unlike the hexagonal symmetry seen in monolayers of spherical domains and is a useful geometry for lithography applications, especially those used in semiconductor applications.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: September 7, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: Peng-Wei Chuang, Caroline A. Ross
  • Patent number: 7781019
    Abstract: A method of forming a concrete wall having a substantially uniform exterior surface texture. The method includes the initial step of pouring concrete into a wall form. The concrete is poured from a first mixture and is allowed to cure. After the concrete is cured, the wall form is removed from the resultant concrete base structure. A roughened texture is then created on the base structure. A finishing mixture is then applied to the roughened texture. The finishing mixture may be created by separating the aggregate from a portion of the remaining first mixture. The finishing mixture creates a smooth texture on the exterior surfaces of the initially formed base structure.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: August 24, 2010
    Assignee: Lithocrete, Inc.
    Inventors: Ronald D. Shaw, Lee A. Shaw
  • Publication number: 20100178527
    Abstract: A method for hot dip galvanizing of advanced high strength or ultra high strength steel strip material, such as dual phase steel, transformation induced plasticity steel, transformation induced plasticity assisted dual phase steel and twinning induced plasticity steel strip material. The strip material is pickled and thereafter heated to a temperature below the continuous annealing temperature before the strip material is hot dip galvanized.
    Type: Application
    Filed: April 29, 2008
    Publication date: July 15, 2010
    Applicant: CORUS STAAL B.V.
    Inventors: Hendrik Bart Van Veldhuizen, Petrus Gerardus Commadeur
  • Publication number: 20100051815
    Abstract: A heat-radiating pattern and a heat-radiating pattern includes metal layers such as Au (gold) and Ag (silver). Metal layers with certain dimensions can absorb light in the visible/near IR (infrared) range and emit light in IR range as heat. The metal layers can be formed into a desired pattern and surroundings of the metal layers can be heated up locally and thereby form a portion of the heat-radiating pattern. Locally heated portions on a substrate by the heat-radiating pattern can transform a heat reactive polymer layer and perform as a local heater.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 4, 2010
    Inventor: Kwangyeol Lee
  • Publication number: 20100027192
    Abstract: Disclosed are coated metal oxide nanoparticles comprising a metal oxide nanoparticle having a surface; and ligands attached to the metal oxide nanoparticle surface. Also disclosed are phosphonic acid compounds comprising the structure Gn-R-Xn, wherein G is a terminal group; wherein R is a bridging group; wherein X is a phosphonic acid group; and wherein each n is, independently, 1, 2, or 3. Also disclosed are methods for preparing and using coated metal oxide nanoparticles. Also disclosed are nanocomposite compositions comprising a polymer; and a coated metal oxide nanoparticle dispersed within the polymer. Also disclosed are articles, films, and capacitors comprising a coated metal oxide nanoparticle or a nanocomposite composition. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Application
    Filed: May 12, 2006
    Publication date: February 4, 2010
    Inventors: Joseph Perry, Simon Jones, Joshua N. Haddock, Peter Hotchkiss
  • Publication number: 20100028652
    Abstract: The present invention relates to a metal structure with anti-erosion wear-proof and manufactured method thereof. The metal structure with anti-erosion wear-proof includes a metal substrate; a protective layer formed on the metal substrate, the protective layer has a plurality of openings; and an oxide layer formed on the protective layer. The manufactured method of metal structure with anti-erosion wear-proof includes the steps of providing a metal substrate; forming a protective layer on the metal substrate, the protective layer has a plurality of openings; and forming an oxide layer on the protective layer. The present invention transforms the surface of the protective layer into the oxide layer to increase the anti-erosion and wear-proof character of the metal substrate.
    Type: Application
    Filed: July 29, 2008
    Publication date: February 4, 2010
    Applicant: CHUNG SHAN INSTITUTE OF SCIENCE AND TECHNOLOGY, ARMAMENTS BUREAU, M.N.D.
    Inventors: CHIA-HUA CHANG, JEN-CHIN WU, CHIN-LUNG CHANG, PI-CHUN HO
  • Patent number: 7645494
    Abstract: The invention relates to a method that involves (a) removing graphite from at least one surface of a metal graphite composite material; (b) chemically cleaning or plasma etching the surface of the metal graphite composite material; (c) applying a metal-containing material to the surface of the chemically cleaned or plasma etched metal graphite composite material, and thereby forming an intermediate layer; (d) applying a metal coating on the intermediate layer, and thereby forming a composite material. The invention also relates to a composite material comprising (a) a metal graphite composite substrate having at least one surface that is substantially free of graphite; (b) a metal-containing intermediate layer located on a surface of the substrate; and (c) a metal coating on the intermediate layer.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: January 12, 2010
    Assignee: H.C. Starck Inc.
    Inventors: Richard Wu, James Cornie, Stephen Cornie, Hank Breit, Larry Ballard, Richard R. Malen, Prabhat Kumar, John Shields, Robert Desberg
  • Publication number: 20100003456
    Abstract: A description is given of a coated body and a method for producing and coating a body. The body has a substrate of a hard metal or cermet, comprising hard material particles (1) and binder material (2) and an adhering diamond layer (4) provided on top. At least some of the hard material particles (1) on the surface of the substrate and under the diamond layer (4) have transcrystalline depressions in the form of holes. The substrate may consist of hard metal, preferably consisting of WC and Co. A CVD diamond layer may be applied to the functional surfaces. In the case of at least one of the diamond-coated functional surfaces, the cobalt content of the surface, specified in % by weight, in relation to the WC, measured by means of energy-dispersive X-ray fluorescence, is only reduced by a maximum of 50% in comparison with the untreated substrate.
    Type: Application
    Filed: June 1, 2007
    Publication date: January 7, 2010
    Applicant: CEMECON AG
    Inventor: Joachim Gussone
  • Publication number: 20100003421
    Abstract: The present invention relates to a method of fabricating a nanostructure, comprising the following steps: prestructuring a substrate (1) adapted to receive the nanostructure to form a nanorelief (2) on the substrate, the nanorelief having flanks (4) extending from a bottom (1a) of the substrate and a top face (3) extending from said flanks, and then depositing on the substrate pre-structured in this way a single layer or multilayer coating intended to form the nanostructure; and further comprising: adding to the prestructured substrate or to the coating a separation layer adapted to enable separation of the coating and the substrate by external action of mechanical, thermomechanical or vibratory type; and exerting this external action on the substrate and/or the coating to recover selectively a top portion of the coating by separating it from the top face of the nanorelief so that this top portion constitutes some or all of the nanostructure.
    Type: Application
    Filed: June 26, 2007
    Publication date: January 7, 2010
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE
    Inventors: Ursula Ebels, Bernard Dieny, Dominique Lestelle, Eric Gautier
  • Publication number: 20090302005
    Abstract: Process for roughening a surface of a base metal substrate includes contacting the surface with an aqueous solution comprising oxalic acid, sulfuric acid, and hydrogen peroxide at a temperature and for a period of time effective to roughen the surface to an average roughness greater than 60 Ra, removing a modest amount of base material, and generating no narrow and deep crevices at all. The surface is roughened prior to application of an electroless coating onto the substrate.
    Type: Application
    Filed: June 4, 2008
    Publication date: December 10, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Lawrence Bernard Kool, Michael David Feldstein, Eugenio Giorni, Dennis Michael Gray, Thomas Stephen Lancsek, Francesco Sorbo, Steven Alfred Tysoe
  • Publication number: 20090280253
    Abstract: An acidic, aqueous composition contains a trivalent chromium compound, an organo-functional silane, and a compound of a group IV-B element. The composition protects metal surfaces, preferably aluminum and aluminum alloys, against corrosion and improves their paint adhesion. The trivalent chromium compound may comprise chromium fluoride and optionally others, such as chromium nitrate. The organo-functional silane is preferably an aminopropyltriethoxy silane, and the compound of a group IV-B element is preferably fluorozirconic acid. The composition can either be dried-in-place or rinsed before a further coating layer is applied. The composition may also include at least one polymer having a plurality of both carboxylic functional groups, alone or with hydroxyl groups.
    Type: Application
    Filed: May 7, 2008
    Publication date: November 12, 2009
    Applicant: BULK CHEMICALS, INC.
    Inventor: Richard J. Church
  • Publication number: 20090226648
    Abstract: The present invention relates to a household glass product, comprising a glass surface and a switchable hydrophobic or hydrophilic coating which is applied to at least a region of the glass surface, wherein at least the region of the surface of the household glass product to which the coating is applied is roughened and has a root mean square roughness value Ra in the range of 0.1 to 50 nm, so that the surface has a super-hydrophobic or super-hydrophilic property, and to a method for producing such a household glass product.
    Type: Application
    Filed: October 15, 2007
    Publication date: September 10, 2009
    Inventors: Michael Wild, Robert Hartel, Andreas Buske, Josef Molz
  • Patent number: 7581645
    Abstract: A method for manufacturing carbon nanotubes with a desired length includes the steps of: providing an array of carbon nanotubes; placing a mask having at least an opening defined therein on the array of carbon nanotubes, with at least one portion of the array of carbon nanotubes being at least partially exposed through a corresponding opening of the mask; forming a protective film on at least one exposed portion of the array of carbon nanotubes; removing the mask from the array of the carbon nanotubes, with the carbon nanotubes being compartmentalized into at least a first portion covered by the protective film and at least one uncovered second portion; breaking/separating the first portion from the second portion of the array of the carbon nanotubes using a chemical method, thereby obtaining at least a carbon nanotube segment with a protective film covered thereon; and removing the protective film from the carbon nanotube segment.
    Type: Grant
    Filed: August 1, 2006
    Date of Patent: September 1, 2009
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Chi-Chuang Ho, Bor-Yuan Hsiao, Ching-Chou Chang
  • Publication number: 20090208643
    Abstract: A concrete cleaning and preparation composition is described, which includes urea hydrochloride, surfactant, water, and one or more glycol ethers. Also described is a method of preparing a concrete surface, including pre-wetting a concrete surface, using a cleaning and preparation composition, including urea hydrochloride, a surfactant, water, and one or more glycol ethers, and rinsing the concrete surface. Furthermore, a kit for cleaning, preparing, and coating concrete including a cleaning and preparation composition including urea hydrochloride, and a coating is also described.
    Type: Application
    Filed: May 4, 2009
    Publication date: August 20, 2009
    Applicant: Valspar Sourcing, Inc.
    Inventor: Jason J. Netherton
  • Publication number: 20090181262
    Abstract: A metal product having a metal substrate (2) and a coating thereon in the form of at least one functional and/or at least one decorative layer (8) has a layer (9) of a clear lacquer with a thickness of 10 nm to 10 ?m on top of said at least one functional and/or at least one decorative layer.
    Type: Application
    Filed: February 17, 2006
    Publication date: July 16, 2009
    Inventors: Ulrika Isaksson, Magnus Cedergren
  • Publication number: 20090155618
    Abstract: The present invention relates to a rust-preventive metallic component part in which a steel wire to which wire-drawing processing is performed is adapted into a substrate and which comprises a rust-preventive coating film being free from chromium on a surface of the substrate, and to a manufacturing method for the same; and its object is to provide a rust-preventive metallic component part whose rust-preventive coating film exhibits such good adhesiveness to substrate that it is not come off by elastic deformations in service, by sliding contacts at the time of transportation, and the like, and to provide a manufacturing method for the same.
    Type: Application
    Filed: April 25, 2006
    Publication date: June 18, 2009
    Inventor: Kazutoshi Sakakibara
  • Publication number: 20090148711
    Abstract: Sol for the sol-gel coating of a surface, said sol comprising, in percent by weight: a)—3% to 30%, preferably 5% to 20%, more preferably 7% to 15%, especially 8% to 14%, more especially 10% to 13%, for example 10.8% or 12%, of at least one organometallic compound of zirconium, aluminium or titanium; b)—5% to 50%, preferably 5% to 40%, more preferably 10% to 40%, especially 15% or 20% to 30%, for example 22% or 23%, of at least one organosilane compound; c)—1% to 15%, preferably 2% to 10%, more preferably 3% to 8%, for example 5%, of at least one compound selected from acids, bases, glycols and ethoxyethanol; d)—the remainder to 100% of demineralized or distilled water; the total amount of a) and b) being greater than 30%, preferably greater than 31.2%; 31.5%; 32%; or 33%, more preferably greater than 35%, especially greater than 40%, more especially greater than 50%.
    Type: Application
    Filed: May 30, 2006
    Publication date: June 11, 2009
    Inventors: Luc Le Blanc, Elisa Campazzi, Patrick Savigne
  • Publication number: 20090069193
    Abstract: The present invention provides a method of forming one or more biological-binding areas on a substrate for biological-testing. The method includes activating at least a portion of a glass-ceramic substrate comprising glass and one or more metal containing compounds. The one or more metal containing compounds have a range of diameters that are less than about 300 nanometers in diameter and are spaced an average distance of at least one-half the midpoint of the diameter range apart. The one or more metals include compounds selected from metal oxides, metal nanoparticles, metal alloys, and atomic metals. The glass-ceramic substrate is heated to a temperature near the glass transformation temperature to form one or more metal nanoparticles in one or more ceramic biological-binding areas. The glass-ceramic substrate is etched to expose one or more metal.
    Type: Application
    Filed: August 28, 2008
    Publication date: March 12, 2009
    Applicant: LIFE BIOSCIENCES, INC.
    Inventors: Jeb H. Flemming, Colin T. Buckley, Carrie F. Schmidt
  • Publication number: 20090050182
    Abstract: A corrosion resistant substrate is provided having a Cr(VI) free corrosion resistant two layer coating. The substrate is substantially comprised of aluminum, an aluminum alloy, magnesium or a magnesium alloy. A first wet chemical deposited inorganic passivation layer is directly positioned on the substrate and a second organic modified polysiloxane layer is directly positioned on the passivation layer.
    Type: Application
    Filed: February 22, 2007
    Publication date: February 26, 2009
    Applicant: Gerhard Heiche GmbH
    Inventors: Gunter Heiche, Peter Koenig
  • Patent number: 7438790
    Abstract: The present invention provides an electrode for electrolysis including: a conductive substrate; and a conductive diamond formed on a surface of the conductive substrate, the conductive substrate having at least one surface shape selected from the group consisting of: (a) a surface shape of a combination of an Ra of 100-1,000-?m and an RSm of 50-10,000 ?m; (b) a surface shape of a combination of an Ra of 2.5-100 ?m and an RSm of 1.5-800 ?m, and (c) a surface shape of a combination of an Ra of 0.01-2 ?m and an RSm of 0.005-250 ?m, and a process for producing the electrode.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: October 21, 2008
    Assignee: Permelec Electrode Ltd.
    Inventors: Masashi Hosonuma, Masaharu Uno, Tomoyasu Shibata, Yoshinori Nishiki, Tsuneto Furuta
  • Patent number: 7438193
    Abstract: Provided are a nanoporous membrane and a method of fabricating the same. The nanoporous membrane includes a support, and a separation layer including a plurality of nano-sized pores at a density of 1010/cm2 or greater and a matrix. The nanoporous membrane has a high flux and a high selectivity.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: October 21, 2008
    Assignees: Postech Foundation, Postech Academy-Industry Foundation
    Inventors: Seung Yun Yang, Jin Kon Kim, Min Soo Park, Incheol Ryu, Sung Key Jang, Hwang Yong Kim, Thomas P. Russell
  • Publication number: 20080254221
    Abstract: Various coatings and methods of coating fasteners are disclosed. In one embodiment, a method of coating includes applying a chromate coating to a fastener. In other embodiments, the method may include deoxidizing an aluminum fastener, etching the fastener, deoxidizing the fastener a second time, applying a chromate coating to the fastener, and dying the fastener.
    Type: Application
    Filed: June 23, 2008
    Publication date: October 16, 2008
    Inventor: Robert J. Dees
  • Patent number: 7407689
    Abstract: The present invention provides a non-cyanide aqueous acidic immersion plating solution having a pH of from about 3.5 to about 6.5 and comprising zinc ions, nickel ions and/or cobalt iron ions, and fluoride ions. In one embodiment the immersion plating solutions of the invention also contain at least one inhibitor containing one or more nitrogen atoms, sulfur atoms, or both nitrogen and sulfur atoms. The present invention also relates to methods for depositing zinc alloy protective coatings on aluminum and aluminum alloy substrates comprising immersing the aluminum or aluminum alloy substrate in the non-cyanide acidic immersion plating solutions of the invention. Optionally, the zinc alloy coated aluminum or aluminum alloy substrate is plated using an electroless or electrolytic metal plating solution.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: August 5, 2008
    Assignee: Atotech Deutschland GmbH
    Inventors: Nayan H. Joshi, Maulik D. Mehta
  • Publication number: 20080118763
    Abstract: A method, and an article produced thereby, of providing a corroson-resistant, scratch-resistant, and stick-resistant, surface on a ferrous-metal-containing article, including forming microcavities in a ferrous-metal-containing article surface by ferritic nitrocarburization and seasoning the surface, including a non-stick agent deposited thereon. In preferred embodiments, the surface of the article including the exposed microcavities is oxidized before seasoning. The article includes cookware. Certain preferred embodiments include forming microcavities by ferritic nitrocarburization wherein the article is heated in an atmosphere including ammonia, nitrogen, and carbon-containing gas to a nitriding temperature of between about 800° F. and about 1300° F. for a time of about 0.5 hours to about 10 hours.
    Type: Application
    Filed: November 20, 2006
    Publication date: May 22, 2008
    Inventors: Robert A. Balow, Donald E. Whyte
  • Publication number: 20080081162
    Abstract: A process for the production of a decorative glass element, in which a surface structure is introduced, preferably in an irregular pattern, into one or more regions of the surface of a glass body by mechanical and/or chemical treatment, wherein a coating (4, 4?) is applied region-wise to the surface of the glass body (6).
    Type: Application
    Filed: October 1, 2007
    Publication date: April 3, 2008
    Inventor: Franz Wurzl
  • Patent number: 7273536
    Abstract: A conductive diamond electrode including an electrode substrate comprising a material selected from the group consisting of a valve metal and an alloy based on the valve metal, at least a surface of the metal or alloy having been subjected to plasticization processing, or heat treatment in vacuum or inert atmosphere; and a conductive diamond film formed on the plasticization processed surface of the electrode substrate. When the electrode substrate is subjected to plasticization processing and heat treatment, peeling resistance of the conductive diamond film is improved, thereby an electrode life is prolonged.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: September 25, 2007
    Assignee: Permelec Electrode Ltd.
    Inventors: Tomoyasu Shibata, Masashi Hosonuma, Tsuneto Furuta
  • Patent number: 7217464
    Abstract: The object is to provide a method of manufacturing electrodeposited copper foil with a carrier foil for high-temperature heat-resistance in which the peeling of the carrier foil is easy even by press working at temperatures of not less than 200°C.
    Type: Grant
    Filed: May 12, 2003
    Date of Patent: May 15, 2007
    Assignee: Mitsui Mining & Smelting Co., Ltd.
    Inventors: Akitoshi Takanashi, Kenichiro Iwakiri, Akiko Sugimoto, Junshi Yoshioka, Shinichi Obata, Makoto Dobashi