Metal Coating Patents (Class 427/436)
  • Patent number: 11121076
    Abstract: A die includes a semiconductor layer, an electrical contact on a first side of the semiconductor layer, a backside electrical contact layer on second side of the semiconductor layer. The die further includes a zinc layer over at least one of the electrical contact or the backside electrical contact layer of the die, and a conversion coating over the zinc layer. The conversion coating includes at least one of zirconium and vanadium. As part of an embedded die package including the die, at least a portion of the conversion coating may adjacent to an electrically insulating substrate of the embedded die package.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: September 14, 2021
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Nazila Dadvand, Christopher Daniel Manack
  • Patent number: 10388616
    Abstract: A semiconductor device includes a predetermined number of leads, a semiconductor element electrically connected to the leads and supported by one of the leads, and a sealing resin that covers the semiconductor element and a part of each lead. Each lead includes some portions exposed from the sealing resin. A surface plating layer is formed on at least one of the exposed portions of the respective leads.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: August 20, 2019
    Assignee: ROHM CO., LTD.
    Inventor: Koshun Saito
  • Patent number: 10010850
    Abstract: The present invention mainly provides a non-contact reactor consisting of a reaction vessel having a particularly-designed size, a plurality of injection modules, an agitator, a heat exchange module, and an electrical gate valve module. Operators can inject at least one precursor solution into the reaction nanometer-scale semiconductor crystallites vessel and make the injected precursor solution reach a specific position in the reaction vessel by using the electrical gate valve to control the injection pressure of the injection modules. Moreover, the operators can further control the rotation speed of the agitator through a controller, so as to evenly and quickly mix the injected precursor solution and a specific solution pre-filled into the reaction vessel to a mixture solution; therefore, the acceleration of production rate and the enhance of production yield of the semiconductor nanocrystals are carried out.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: July 3, 2018
    Assignee: National Tsing Hua University
    Inventors: Hsueh-Shih Chen, Shih-Jung Ho, Chang-Wei Yeh
  • Patent number: 9598787
    Abstract: The methods inhibit or reduce dimpling and voids during copper electroplating of through-holes with flash copper layers in substrates such as printed circuit boards. An acid solution containing reaction products of aromatic heterocyclic nitrogen compounds and epoxy-containing compounds is applied to the through-holes of the substrate followed by filling the through-holes with copper using a copper electroplating bath which includes additives such as brighteners and levelers.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 21, 2017
    Assignee: Rohm and Haas Electronic Materials LLC
    Inventors: Nagarajan Jayaraju, Elie H. Najjar, Leon R. Barstad
  • Patent number: 9570695
    Abstract: A cobalt-carbon (Co—C) eutectic metal alloy ohmic contact for a radio-frequency (RF) carbon nanotube (CNT) field effect transistor (FET) device and a method of manufacturing same are disclosed. Embodiments of a method include providing a graphite crucible, placing Co and a C source within the graphite crucible, heating the graphite crucible containing the Co and C source such that the Co and C source combine with graphite from the graphite crucible to thereby form a Co—C eutectic metal alloy, and creating an ohmic contact by depositing the Co—C eutectic metal alloy directly on top surfaces of CNTs of a RF CNT FET device such that the Co—C eutectic metal alloy is in direct contact with the CNTs. The Co—C eutectic metal alloy ohmic contact formed in this manner is consistently stabile and uniform and functions as a high work function layer that also serves as an adhesion layer to the CNTs.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: February 14, 2017
    Assignee: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Monica P. Lilly, Matthew J. Walker, Wayne S. Miller, John X. Przybysz, Andre E. Berghmans
  • Patent number: 9332642
    Abstract: One aspect of the present invention relates to a circuit board including an insulating base substrate; and a circuit layer that is formed of a conductor and that is provided on the surface of the insulating base substrate, wherein the insulating base substrate has a smooth surface having a surface roughness Ra of 0.5 ?m or less, and the conductor is at least partially embedded in a wiring groove formed in the surface of the insulating base substrate.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: May 3, 2016
    Assignee: PANASONIC CORPORATION
    Inventors: Shingo Yoshioka, Hiroaki Fujiwara, Hiromitsu Takashita, Tsuyoshi Takeda
  • Publication number: 20150140226
    Abstract: An improved process for diffusing a substrate into a base material is described. Generally, a process is provided for introducing a base material into a salt bath having a substrate with a catalyst. A select amount of catalyst and desired salt bath temperature are provided sufficient to lower the activation energy of the base material such that the substrate is able to easily diffuse into the surface of the base material. Nevertheless, certain substances within the base material may inhibit the diffusion of the substrate into the surface of the base material. Accordingly, a select amount of catalyst and desired salt bath temperature are further provided sufficient to promote leaching of such select substances that inhibit the diffusion of such substrate into such base material. The leached substances are substantially replaced by the diffused substrate.
    Type: Application
    Filed: May 6, 2013
    Publication date: May 21, 2015
    Inventors: Philos Jongho Ko, Bongsub Samuel Ko
  • Publication number: 20150048526
    Abstract: Coatings for enhancing performance of materials surfaces, methods of producing the coating and coated substrates, and coated condensers are disclosed herein. More particularly, exemplary embodiments provide chemical coating materials useful for coating condenser components.
    Type: Application
    Filed: May 2, 2014
    Publication date: February 19, 2015
    Applicant: The Board of Regents of the Nevada System of Higher Education on behalf of the University of Ne
    Inventors: Kwang J. Kim, Bong June Zhang, Hyungkee Yoon
  • Patent number: 8911879
    Abstract: The present invention provides a Zn—Al—Mg—Cr alloy-coated steel material with excellent corrosion resistance. A molten Zn—Al—Mg—Si—Cr alloy-coated steel material which is a steel material having a Zn—Al—Mg—Cr alloy coating layer and which has an interfacial alloy layer formed of coating layer components and Fe at the coating layer-steel material interface, wherein the interfacial alloy layer has a multilayer structure consisting of an Al—Fe-based alloy layer and an Al—Fe—Si-based alloy layer and furthermore, the Al—Fe—Si-based alloy layer contains Cr.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: December 16, 2014
    Assignee: Nippon Steel & Sumitomo Metal Corporation
    Inventors: Nobuyuki Shimoda, Yasuhide Morimoto
  • Patent number: 8840968
    Abstract: A method of controlling “rough coating” and “pinhole-uncoated” surface defects on a steel strip coated with a aluminum-zinc-silicon alloy. The alloy has 50-60% wt Al, 37-46% wt Zn and 1.2-2.3% wt Si. The method includes heat treating the steel strip in a heat treatment furnace and thereafter hot-dip coating the strip in a molten bath and thereby forming a coating of the alloy on the steel strip. The method is characterized by controlling the concentration of (i) strontium or (ii) calcium or (iii) strontium and calcium in the molten bath to be at least 2 ppm.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: September 23, 2014
    Assignee: Bluescope Steel Limited
    Inventors: Wayne Renshaw, Qiyang Liu
  • Patent number: 8828314
    Abstract: The invention relates to a special hot-dip plating alloy for a coating on the surface of a titanium alloy part, wherein the hot-dip plating alloy contains the following components by mass percentage: 8-24% of Si, 1.2-3.1% of Zn, 0.02-0.5% of RE, 0.5-3.2% of Mg, 0.05-1% of Fe, 0.05-0.5% of Cu, 1.0-2.0% of Mn, 0.5-2.0% of Cr, 0.02-0.5% of Zr, 1-2% of nano-oxide particle reinforcing agent and the balance of Al and inevitable impurities, and the nano-oxide particle reinforcing agent is selected from one or two of TiO2 and CeO2. The adoption of the hot-dip plating alloy produced by the invention can form the coating which has corrosion resistance and good wear resistance, and is well metallurgically bonded with a matrix on the surface of the titanium alloy.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: September 9, 2014
    Assignee: Jiangsu Linlong New Materials Co., Ltd.
    Inventors: Lixin Feng, Minyan Zhang, Pingze Zhang
  • Patent number: 8822872
    Abstract: Disclosed are an electrode wire for electro-discharge machining and a method for manufacturing the same. The electrode wire includes a core wire including a first metal including copper, a first alloy layer formed at a boundary region between the core wire and a second metal plated on an outer surface of the core wire due to mutual diffusion between the core wire and the second metal, and a second alloy layer formed due to diffusion of the first metal to the second metal. A core wire material is erupted onto a surface of the electrode wire for electro-discharge machining, which includes the core wire, the first alloy layer, and the second alloy layer, along cracks appearing on the second alloy layer, so that a plurality of grains are formed on the surface of the electrode wire.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: September 2, 2014
    Inventors: Ki-Chul Seong, Hyun-Soo Seong, Hyun-Kook Seong
  • Patent number: 8795408
    Abstract: A method and a device control the introduction of several metals into a cavity configured to melt the metals in the form of ingots. In particular, the method is configured to control the introduction of several metals into a cavity for melting the metals so as to dip-coat a steel strip with the metals in liquid metal form. Whereby a first metal is introduced in the form of at least a first ingot having a high content of the first metal and a second metal is introduced in the form of at least a second ingot formed as an alloy of the first metal and the second metal. The second metal content of the second ingot is chosen from a range of significant contents for ensuring an intended overall flow rate for combined melting of the ingots, the range of significant contents being chosen in a limited interval of sequentially increasing values so as to minimize differences between melting points of the ingots.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: August 5, 2014
    Assignee: Siemens VAI Metals Technologies SAS
    Inventors: Arnaud D'Halluin, Benjamin Grenier
  • Patent number: 8785000
    Abstract: Steel strip provided with a hot dip galvanized zinc alloy coating layer, in which the coating of the steel strip is carried out in a bath of molten zinc alloy, the zinc alloy in the coating consisting of: 0.3-2.3 weight % magnesium; 0.6-2.3 weight % aluminum; optional <0.2 weight % of one or more additional elements; unavoidable impurities; the remainder being zinc in which the zinc alloy coating layer has a thickness of 3-12 ?m.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: July 22, 2014
    Assignee: Tata Steel Ijmuiden B.V.
    Inventors: Theodorus Franciscus Jozef Maalman, Robert Bleeker, Margot Julia Vlot
  • Patent number: 8741390
    Abstract: A method and composition for enhancing corrosion resistance, wear resistance, and contact resistance of a device comprising a copper or copper alloy substrate and at least one metal-based layer on a surface of the substrate. The composition comprises a phosphorus oxide compound selected from the group consisting of a phosphonic acid, a phosphonate salt, a phosphonate ester, a phosphoric acid, a phosphate salt, a phosphate ester, and mixtures thereof; an organic compound comprising a nitrogen-containing functional group; and a solvent having a surface tension less than about 50 dynes/cm as measured at 25° C.
    Type: Grant
    Filed: April 18, 2008
    Date of Patent: June 3, 2014
    Assignee: Enthone Inc.
    Inventors: Joseph A. Abys, Shenliang Sun, Chonglun Fan, Edward J. Kudrak, Jr., Cai Wang
  • Publication number: 20140141272
    Abstract: A method for diffusing titanium and nitride into a sports equipment component. The method generally includes the steps of providing a sports equipment component providing a salt bath which includes sodium dioxide and a salt selected from the group consisting of sodium cyanate and potassium cyanate; dispersing metallic titanium formed by electrolysis of a titanium compound in the bath; heating the salt bath to a temperature ranging from about 430° C. to about 670° C.; and soaking the sports equipment component in the salt bath for a time of from about 10 minutes to about 24 hours. In accordance with another aspect of the present invention, the sports equipment component may further be treated with conventional surface treatments or coatings.
    Type: Application
    Filed: November 19, 2012
    Publication date: May 22, 2014
    Inventors: Philos Jongho Ko, Bongsub Samuel Ko
  • Patent number: 8703242
    Abstract: The invention relates to a method for hot-dip coating hot-rolled steel strip, during which the steel strip passes through a pickling station, a rinsing station, a drying station, a heating furnace and then through a molten bath. The final thickness and the thickness tolerance of the hot-dip coated steel strip are achieved by a controlled thickness reduction in a roll stand in the process line. The achievement of the finished thickness is controlled by at least one thickness measuring unit at the outlet of the roll stand, and deviations upward or downward therefrom are fed back in the form of an actuating signal for actuating the roll stand in order to appropriately increase or decrease the thickness reduction. The invention also relates to an installation for producing a steel strip of the aforementioned type.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: April 22, 2014
    Assignee: SMS Siemag Aktiengesellschaft
    Inventors: Hans-Georg Kloeckner, Andreas Gramer
  • Patent number: 8691396
    Abstract: A galvannealed steel sheet obtained by subjecting a base steel sheet to hot-dip galvanization and then alloying the galvanization layer, the base steel sheet being obtained by hot rolling a specified steel. A method for producing the galvannealed steel sheet.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: April 8, 2014
    Assignee: Kobe Steel, Ltd.
    Inventors: Fumio Yuse, Mikako Takeda, Shigenobu Namba, Yoshihiro Miyake
  • Patent number: 8679591
    Abstract: An embodiment is a method for forming a semiconductor assembly including cleaning a connector including copper formed on a substrate, applying cold tin to the connector, applying hot tin to the connector, and spin rinsing and drying the connector.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: March 25, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien Ling Hwang, Yi-Li Hsiao, Chung-Shi Liu
  • Publication number: 20140037856
    Abstract: Disclosed is a method for producing a zinc-aluminum-based alloy-coated steel sheet with superior workability and corrosion resistance by coating a base zinc-aluminum-based alloy-coated steel sheet in a coating bath comprising 35 to 55% by weight of zinc, 0.5 to 3% by weight of silicon, 0.005 to 1.0% by weight of chromium, 0.01 to 3.0% by weight of magnesium, 0.001 to 0.1% by weight of titanium, and the balance of aluminum and inevitable impurities. With the method, it is possible to produce a zinc-aluminum-based alloy-coated steel sheet which exhibits superior workability through control of an intermetallic compound layer (Zn—Al—Si—Cr) and formation of AlCr2 due to Cr component present in the coating layer, reduces detachment of the coating layer and cracks of coating occurring during molding, exhibits superior corrosion resistance even after processing and has considerably superior corrosion resistance due to Mg2Si alloy phase and inhibition of oxide film formation.
    Type: Application
    Filed: July 25, 2013
    Publication date: February 6, 2014
    Applicant: UNION STEEL CO., LTD.
    Inventors: Byung-Sun MOON, Byung-Moon LIM, Young-Keun SONG, Su-Hwan JUNG, Cheol-Ho KWON
  • Patent number: 8568899
    Abstract: Provided is a metal covered polyimide composite comprising a tie-coat layer and a metal seed layer formed on a surface of a polyimide film by electroless plating or a drying method, and a copper layer or a copper alloy layer formed thereon by electroplating, wherein the copper plated layer or copper alloy plated layer comprises three layers to one layer of the copper layer or copper alloy layer, and there is a concentrated portion of impurities at the boundary of the copper layer or copper alloy layer when the copper layer or copper alloy layer is three layers to two layers, and there is no concentrated portion of impurities when the copper layer or copper alloy layer is a single layer. Additionally provided are a method of producing the composite and a method of producing an electronic circuit board.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: October 29, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Michiya Kohiki, Naonori Michishita, Nobuhito Makino
  • Publication number: 20130255277
    Abstract: A nose cone for a turbofan gas turbine engine includes a central tip, an outer perimeter and a substantially conical outer wall extending therebetween which encloses a cavity therewithin. The outer wall includes an inner substrate layer facing the cavity and an outer layer which overlies and at least partially encloses the inner substrate layer. The outer layer is composed entirely of a nanocrystalline metal forming an outer surface of the nose cone.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Inventors: Enzo Macchia, Andreas Eleftheriou, Thomas Peter McDonough, George Guglielmin, Joe Lanzino, Barry Barnett
  • Patent number: 8529998
    Abstract: A gas wiping nozzle includes a primary nozzle portion and at least one secondary nozzle portion provided either or both above and below the primary nozzle portion. The secondary nozzle portion jets a gas in a direction tilted from the direction in which the primary nozzle portion jets the gas and at a lower flow rate. The gas wiping nozzle has a tip whose lower surface forms an angle of 60° or more with the steel strip. The gas jetting port of the secondary nozzle portion is displaced in the direction opposite to the steel strip at least 5 mm apart from the gas jetting port of the primary nozzle portion, and the secondary nozzle portion jets the gas so that the flow rate of the secondary gas jet comes to 10 m/s or more at the confluence with the primary gas jet from the primary nozzle portion.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: September 10, 2013
    Assignee: JFE Steel Corporation
    Inventors: Genrato Takeda, Hideyuki Takahashi
  • Patent number: 8470453
    Abstract: A new substrate makes it possible to modify surface properties relating to biocompatibility. Said substrate has an electron donating surface, characterized in having metal particles on said surface, said metal particles comprising palladium and at least one metal chosen from gold, ruthenium, rhodium, osmium, iridium, and platinum, wherein the amount of said metal particles is from about 0.001 to about 8 ?g/cm2. The substrate is suggested for different uses, such as for modifying the hydrophobicity, protein adsorption; tissue ingrowth, complement activation, inflammatory response, thrombogenicity, friction coefficient, and surface hardness.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: June 25, 2013
    Assignee: Bactiguard AB
    Inventors: Mattias Ohrlander, Billy Sodervall
  • Patent number: 8465806
    Abstract: A method for hot dip galvanizing of advanced high strength or ultra high strength steel strip material, such as dual phase steel, transformation induced plasticity steel, transformation induced plasticity assisted dual phase steel and twinning induced plasticity steel strip material. The strip material is pickled and thereafter heated to a temperature below the continuous annealing temperature before the strip material is hot dip galvanized.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: June 18, 2013
    Assignee: Tata Steel Ijmuiden B.V.
    Inventors: Hendrik Bart Van Veldhuizen, Petrus Gerardus Commadeur
  • Publication number: 20130140184
    Abstract: An anodized member includes a metal, and an anodic oxide coating that is formed on the surface of the metal. The surface of the anodic oxide coating includes a high-concentration layer that has a sealing metal content of 1.5 mmol/g or more. The high-concentration layer has a thickness of 0.15 ?m or more.
    Type: Application
    Filed: November 7, 2012
    Publication date: June 6, 2013
    Applicant: AISIN KEIKINZOKU CO., LTD.
    Inventor: AISIN KEIKINZOKU CO., LTD.
  • Patent number: 8361560
    Abstract: A platinum plating solution for immersion plating a continuous film of platinum on a metal structure. The immersion platinum plating solution is free of a reducing agent. The plating process does not require electricity (e.g., electrical current) and does not require electrodes (e.g., anode and/or cathode). The solution includes a platinum source and a complexing agent including Oxalic Acid. The solution enables immersion plating of platinum onto a metal surface, a metal substrate, or a structure of which at least a portion is a metal. The resulting platinum plating comprises a continuous thin film layer of platinum having a thickness not exceeding 300 ?. The solution can be used for plating articles including but not limited to jewelry, medical devices, electronic structures, microelectronics structures, MEMS structures, nano-sized or smaller structures, structures used for chemical and/or catalytic reactions (e.g., catalytic converters), and irregularly shaped metal surfaces.
    Type: Grant
    Filed: August 16, 2012
    Date of Patent: January 29, 2013
    Assignee: Unity Semiconductor Corporation
    Inventors: Robin Cheung, Wen Zhong Kong
  • Patent number: 8349393
    Abstract: Compositions and methods for silver plating onto metal surfaces such as PWBs in electronics manufacture to produce a silver plating which is greater than 80 atomic % silver, tarnish resistant, and has good solderability.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: January 8, 2013
    Assignee: Enthone Inc.
    Inventors: Yung-Herng Yau, Thomas B. Richardson, Joseph A. Abys, Karl F. Wengenroth, Anthony Fiore, Chen Xu, Chonglun Fan, John Fudala
  • Publication number: 20120318513
    Abstract: A method of removing a corrodible downhole article having a surface coating includes eroding the surface coating by physical abrasion, chemical etching, or a combination of physical abrasion and chemical etching, the surface coating comprising a metallic layer of a metal resistant to corrosion by a corrosive material.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 20, 2012
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Oleg A. Mazyar, Matthew T. McCoy
  • Publication number: 20120315503
    Abstract: A platinum plating solution for immersion plating a continuous film of platinum on a metal structure. The immersion platinum plating solution is free of a reducing agent. The plating process does not require electricity (e.g., electrical current) and does not require electrodes (e.g., anode and/or cathode). The solution includes a platinum source and a complexing agent including Oxalic Acid. The solution enables immersion plating of platinum onto a metal surface, a metal substrate, or a structure of which at least a portion is a metal. The resulting platinum plating comprises a continuous thin film layer of platinum having a thickness not exceeding 300 ?. The solution can be used for plating articles including but not limited to jewelry, medical devices, electronic structures, microelectronics structures, MEMS structures, nano-sized or smaller structures, structures used for chemical and/or catalytic reactions (e.g., catalytic converters), and irregularly shaped metal surfaces.
    Type: Application
    Filed: August 16, 2012
    Publication date: December 13, 2012
    Applicant: Unity Semiconductor Corporation
    Inventors: Robin Cheung, Wen Zhong Kong
  • Patent number: 8323741
    Abstract: A composition for enhancing the corrosion resistance of an article comprising a silver coating deposited on a solderable copper substrate. The composition comprises: a) a multi-functional molecule comprising at least one organic functional group that interacts with and protects copper surfaces and at least one organic functional group that interacts with and protects silver surfaces; b) an alcohol; and c) a surfactant.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: December 4, 2012
    Inventors: Joseph A. Abys, Shenliang Sun, Theodore Antonellis
  • Patent number: 8304029
    Abstract: The invention relates to a device for hot-dip coating a metal strand (1), especially a steel strip, in which the metal strand (1) is vertically guided through a container (3) accommodating the molten coating metal (2) and through a guide channel (4) disposed upstream thereof. The inventive device comprises at least two inductors (5) disposed at both sides of the metal strand (1) in the area of the guide channel (4) that are used to generate an electromagnetic field for retaining the coating metal (2) in the container (3), and at least one sensor (6, 6?) for detecting the position (s) of the metal strand (1) in the area of the guide channel (4).
    Type: Grant
    Filed: November 15, 2003
    Date of Patent: November 6, 2012
    Assignee: SMS Siemag Aktiengesellschaft
    Inventors: Rolf Brisberger, Bernhard Tenckhoff, Holger Behrens, Bodo Falkenhahn, Walter Trakowski, Michael Zielenbach, Robert Jürgens
  • Patent number: 8293334
    Abstract: The invention relates to a method for a preliminary metallizing treatment of galvanized or zinc alloy-coated steel surfaces or joined metallic parts that at least partly have zinc surfaces, in a surface treatment encompassing several process steps. In the disclosed method, metallic coats of especially a maximum of 100 mg/m2 of molybdenum, tungsten, cobalt, nickel, lead, tin, and/or preferably iron are produced on the treated zinc surfaces. Another embodiment of the invention relates to an uncoated or subsequently coated metallic part which has been subjected to the disclosed preliminary metallizing treatment as well as the use of such a part for making bodies during the production of automobiles, building ships, in the construction industry, and for manufacturing white products.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: October 23, 2012
    Assignee: Henkel AG & Co. KGaA
    Inventors: Karsten Hackbarth, Wolfgang Lorenz, Eva Wilke, Marcel Roth, Reiner Wark, Michael Wolpers, Guadalupe Sanchis Otero, Christian Rosenkranz, Peter Kuhm, Kevin Meagher
  • Patent number: 8293376
    Abstract: A steel strip having a metal coating on at least one surface of the strip. The coating includes an aluminum-zinc-silicon alloy containing magnesium and has small spangles. The magnesium concentration is between 1 and 5% by weight.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: October 23, 2012
    Assignee: Bluescope Steel Limited
    Inventors: Qiyang Liu, David Willis
  • Patent number: 8288178
    Abstract: A lead frame is provided that includes a base metal, a plated layer provided on a part of the surface of the base metal, and a thermal history monitor portion that discolors under heat load applied thereto, provided at another part of the base metal surface. A method of manufacturing a semiconductor device includes an assembly process including mounting a semiconductor chip on the lead frame, performing a wire bonding process thereby connecting the semiconductor chip and the lead frame, and encapsulating with a resin the wire-bonded semiconductor chip and the lead frame, and then performing an appearance check after the assembly process to inspect whether the thermal history monitor portion has discolored under heat load applied through the assembly process, thereby deciding whether an abnormality has emerged through the thermal history.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: October 16, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshinari Fukumoto
  • Publication number: 20120258266
    Abstract: Provided are methods and components related to preventing hydrocarbon residue buildup in engine components. Prevention is achieved using a coating of a mixed metal oxide. The mixed metal oxide comprises a mixture of at least two of Gd, Al, Ti, Ce, Pr, La, Y, Nd, and Mn. The coating can also contain amounts of precious metals, eg. Pt, Pd, Rh and/or Au.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 11, 2012
    Applicant: BASF Corporation
    Inventors: Wieland Koban, Dirk A. Großschmidt, Michael P. Galligan, Christopher R. Castellano, Alexander Gorel, Kenneth E. Voss
  • Patent number: 8216645
    Abstract: A method for enhancing the corrosion resistance of an article comprising a silver coating deposited on a solderable copper substrate is provided. The method comprises exposing the copper substrate having the immersion-plated silver coating thereon to an anti-corrosion composition comprising: a) a multi-functional molecule comprising at least one organic functional group that interacts with and protects copper surfaces and at least one organic functional group that interacts with and protects silver surfaces; b) an alcohol; and c) a surfactant.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: July 10, 2012
    Assignee: Enthone Inc.
    Inventors: Joseph A. Abys, Shenliang Sun, Theodore Antonellis
  • Publication number: 20120156386
    Abstract: The present invention relates to an acidic aqueous particulate composition containing, in addition to iron(III) ions, fluoride ions and at least one water-insoluble, dispersed organic binder, a water-insoluble, dispersed oxide pigment with elevated resistance to agglomeration for the autophoretic deposition of organic-inorganic hybrid layers onto metal surfaces, the composition additionally containing at least one anionic wetting agent which comprises functional groups selected from sulfonates, phosphonates and/or carboxylates. The invention furthermore comprises the use of such a composition for the autodeposition of a film-forming organic-inorganic hybrid coating onto metal surfaces which are at least in part selected from surfaces, the main constituents of which are iron, zinc and/or aluminum.
    Type: Application
    Filed: November 9, 2011
    Publication date: June 21, 2012
    Applicant: Henkel AG & Co KGaA
    Inventors: Ulrike Schmidt-Freytag, Ute Herrmann
  • Publication number: 20120121927
    Abstract: A flat steel product provided with a coating system, which in the coated state possesses an optimized combination of corrosion resistance and welding capacity, includes a base layer formed from a steel and a corrosion protection system applied onto the base layer. The corrosion protection system comprises a metallic coating less than 3.5 ?m thick, formed from a first metallic layer applied onto the base layer and a second metallic layer applied onto the first metallic layer, wherein the second metallic layer has formed a metallic alloy with the first metallic layer. The corrosion protection system also comprises a plasma polymer layer applied onto the metallic coating.
    Type: Application
    Filed: December 27, 2011
    Publication date: May 17, 2012
    Applicant: ThyssenKrupp Steel AG
    Inventors: Krasimir Nikolov, Nicole Weiher, Bernd Schuhmacher
  • Patent number: 8168258
    Abstract: In a method of producing a temperature sensor including at least one lead wire of a non-noble metal or of an alloy containing a non-noble metal, at first a lead wire is attached to the temperature sensor. An oxide layer is removed from at least one portion of the lead wire, and the at least one portion of the lead wire is chemically gilded immediately after removing the oxide layer.
    Type: Grant
    Filed: July 4, 2007
    Date of Patent: May 1, 2012
    Inventors: Heinrich Zitzmann, Gyoergy Bernitz
  • Patent number: 8163641
    Abstract: A charge transfer mechanism is used to locally deposit or remove material for a small structure. A local electrochemical cell is created without having to immerse the entire work piece in a bath. The charge transfer mechanism can be used together with a charged particle beam or laser system to modify small structures, such as integrated circuits or micro-electromechanical system. The charge transfer process can be performed in air or, in some embodiments, in a vacuum chamber.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: April 24, 2012
    Assignee: FEI Company
    Inventors: George Y. Gu, Neil J. Bassom, Thomas J. Gannon, Kun Liu
  • Patent number: 8163348
    Abstract: The invention relates to a method for hot-dip coating hot-rolled steel strip, during which the steel strip passes through a pickling station, a rinsing station, a drying station, a heating furnace and then through a molten bath. The final thickness and the thickness tolerance of the hot-dip coated steel strip are achieved by a controlled thickness reduction in a roll stand in the process line. The achievement of the finished thickness is controlled by at least one thickness measuring unit at the outlet of the roll stand, and deviations upward or downward therefrom are fed back in the form of an actuating signal for actuating the roll stand in order to appropriately increase or decrease the thickness reduction. The invention also relates to an installation for producing a steel strip of the aforementioned type.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: April 24, 2012
    Assignee: SMS Siemag Aktiengesellschaft
    Inventors: Hans-Georg Kloeckner, Andreas Gramer
  • Patent number: 8084099
    Abstract: A process of coating fibers with a metal by a liquid method is disclosed. In this process, a fiber is drawn through a bath of molten liquid metal so as to coated with the latter, the liquid metal bath being maintained in a crucible of the “levitation” type, which at least partly eliminates contact between the liquid metal and the crucible. The bath is fed with metal, during the process, by a metal powder. Accordingly, the molten metal bath is fed in a simple and effective manner.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: December 27, 2011
    Assignee: Snecma
    Inventors: Jean-Michel Patrick Maurice Franchet, Gilles Charles Casimir Klein, Christian Garnier, Patrick Petitpas, Pierre Eric Frayssines, Mikael Dumont
  • Patent number: 8070860
    Abstract: An H2-permeable membrane system (117) comprises an electroless-deposited plating (115) of Pd or Pd alloy on a porous support (110, 110?). The Pd plating comprises face-centered cubic crystals cumulatively having a morphology of hexagonal platelets. The permeability to H2 of the membrane plating (115) on the porous support is significantly enhanced, being at least greater than about 1.3×10?8 mol·m?1·s?·Pa?0.5 at 350° C., and even greater than about 3.4×10?8 mol·m?1·s?1·Pa?0.5. The porous support (110, 110?) may be stainless steel (1100 and include a thin ceramic interlayer (110?) on which the Pd is plated. The method of providing the electroless-deposited plating includes preheating a Pd electroless plating solution to near a plating temperature substantially greater than room temperature, e.g. 60° C., prior to plating.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: December 6, 2011
    Assignee: United Technologies Corporation
    Inventors: Thomas Henry Vanderspurt, Ying She, Zissis Dardas, Craig Walker, James D. MacLeod
  • Patent number: 8062711
    Abstract: A device for stabilizing an elongated steel sheet when continuously transporting the steel sheet in a transport direction along a predetermined transport path. The device includes at least a first pair, a second pair and a third pair of electromagnets with at least one electromagnet on each side of the steel sheet. The electromagnets are adapted to stabilize the steel sheet with respect to the predetermined transport path. The first and second electromagnets are elongated in a direction essentially perpendicular to the transport direction. The first and second electromagnets are substantially arranged on each side of a longitudinal center line for the steel sheet. The center line is essentially parallel to the transport direction. The third electromagnet is arranged adjacent to the center line.
    Type: Grant
    Filed: March 23, 2006
    Date of Patent: November 22, 2011
    Assignee: ABB Research Ltd.
    Inventors: Peter Löfgren, Jan-Erik Eriksson, Mats Molander, Carl-Fredrik Lindberg, Conny Svahn
  • Publication number: 20110279991
    Abstract: A process used during manufacture of printed circuit boards comprises protecting metal pads and/or through-holes to provide a tarnish-resistant and solderable coating. In the method, the pads and/or through-holes are bright-etched, metal plated, preferably by an immersion process, and treated with a tarnish inhibitor. The tarnish inhibitor may be incorporated into the immersion plating bath. The metal plating is usually with silver or bismuth and the pads and/or through-holes comprise copper.
    Type: Application
    Filed: July 20, 2011
    Publication date: November 17, 2011
    Applicant: ENTHONE INC.
    Inventors: Andrew McIntosh Soutar, Peter Thomas McGrath
  • Publication number: 20110274913
    Abstract: One embodiment of the present invention provides a method for forming a nanoparticle film, which comprises the steps of: preparing a nanoparticle solution, which comprises a solvent and supersaturated nanoparticles with surface ligand molecules; and dip coating a substrate to the nanoparticle solutions to form a first monolayer of the nanoparticles on the substrate, the first monolayer and repeatedly formed monolayers on top of the first monolayer constructing the nanoparticle film. Another embodiment of the present invention provides a nanoparticle film, comprising a first monolayer consisted of a two-dimensional nanoparticles array that are near-field coupled with each other to have tunable plasmonic properties by changing the number of stacked monolayers.
    Type: Application
    Filed: May 4, 2010
    Publication date: November 10, 2011
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventors: Meng-Hsien LIN, HUNG-YING CHEN, SHANG-JR GWO
  • Patent number: 8048192
    Abstract: Provided are methods and systems for generating nanoparticles from an inorganic precursor compound using a hydrothermal process within at least one CSTR or PFR maintained at an elevated temperature and an elevated pressure and a treatment vessel in which this reaction solution can be applied to one or more catalyst substrates. In operation, the reaction solution may be maintained within the CSTR at a substantially constant concentration and within a reaction temperature range for a reaction period sufficient to obtain nanoparticles having a desired average particle size of, for example, less than 10 nm formation and/or deposition. Variations of the basic method and system can provide, for example, the generation of complex particle size distribution profiles, the selective deposition of a multi-modal particle size distribution on a single substrate.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: November 1, 2011
    Assignee: General Electric Company
    Inventors: Thomas Pompilio Diaz, Samson Hettiarachchi, Peter Louis Andresen, Young Jin Kim
  • Patent number: 8039119
    Abstract: Orientation degree and smoothness of a substrate surface better than those of conventional ones are provided in a textured substrate for epitaxial thin film growth. The present invention is a textured substrate for epitaxial film formation, including a crystal orientation improving layer made of a metal thin film of 1 to 5000 nm in thickness on the surface of the textured substrate for epitaxial film formation having a textured metal layer at least on one surface, wherein differences between orientation degrees (?? and ??) in the textured metal layer surface and orientation degrees (?? and ??) in the crystal orientation improving layer surface are both 0.1 to 3.0°. Further, when another metal different from the metal constituting this textured substrate crystal orientation improving layer is added equivalent to a thin film which is 30 nm or less, and subsequently is subjected to heat treatment, the smoothness of that surface can be improved.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: October 18, 2011
    Assignees: Chubu Electric Power Co., Inc., Tanaka Kikinzoku Kogyo K.K.
    Inventors: Naoji Kashima, Shigeo Nagaya, Kunihiro Shima, Shuichi Kubota
  • Publication number: 20110229734
    Abstract: A platinum plating solution for immersion plating a continuous film of platinum on a metal structure. The immersion platinum plating solution is free of a reducing agent. The plating process does not require electricity (e.g., electrical current) and does not require electrodes (e.g., anode and/or cathode). The solution includes a platinum source and a complexing agent including Oxalic Acid. The solution enables immersion plating of platinum onto a metal surface, a metal substrate, or a structure of which at least a portion is a metal. The resulting platinum plating comprises a continuous thin film layer of platinum having a thickness not exceeding 300 ?. The solution can be used for plating articles including but not limited to jewelry, medical devices, electronic structures, microelectronics structures, MEMS structures, nano-sized or smaller structures, structures used for chemical and/or catalytic reactions (e.g., catalytic converters), and irregularly shaped metal surfaces.
    Type: Application
    Filed: March 22, 2010
    Publication date: September 22, 2011
    Applicant: UNITY SEMICONDUCTOR CORPORATION
    Inventors: Robin Cheung, Wen Zhong Kong