Chemical Compound Reducing Agent Utilized (i.e., Electroless Deposition) Patents (Class 427/443.1)
  • Patent number: 8591985
    Abstract: A method is provided which includes dispensing a deposition solution at a plurality of locations extending different distances from a center of a microelectronic topography each at different moments in time during an electroless plating process. An electroless plating apparatus used for the method includes a substrate holder, a moveable dispense arm, and a storage medium comprising program instructions executable by a processor for positioning the moveable dispense arm. Another method and accompanying electroless deposition chamber are configured to introduce a gas into an electroless plating chamber above a plate which is suspended above a microelectronic topography and distribute the gas to regions extending above one or more discrete portions of the microelectronic topography.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: November 26, 2013
    Assignee: Lam Research Corporation
    Inventor: Igor C. Ivanov
  • Publication number: 20130295294
    Abstract: Provided are an electroless copper plating bath and an electroless copper plating method using the electroless copper plating bath, the electroless copper plating bath not containing formaldehyde; being usable under approximately neutral pH conditions; improving plating bath stability; and capable of forming a plating film with a good thickness while controlling deposition outside a pattern. The electroless copper plating bath according to the present invention contains a water-soluble copper salt, and amine borane or a substituted derivative thereof as a reducing agent; does not contain formaldehyde; and has a pH of 4 to 9, wherein polyaminopolyphosphonic acid as a complexing agent, an anionic surface-active agent, an antimony compound, and a nitrogen-containing aromatic compound are contained.
    Type: Application
    Filed: December 28, 2012
    Publication date: November 7, 2013
    Applicant: C. UYEMURA & CO., LTD.
    Inventors: Takahiro ISHIZAKI, Tomoharu NAKAYAMA, Teruyuki HOTTA
  • Patent number: 8551575
    Abstract: Methods and solutions for preventing the formation of metal particulate defect matter upon a substrate after plating processes are provided. In particular, solutions are provided which are free of oxidizing agents and include a non-metal pH adjusting agent in sufficient concentration such that the solution has a pH between approximately 7.5 and approximately 12.0. In some cases, a solution may include a chelating agent. In addition or alternatively, a solution may include at least two different types of complexing agents each offering a single point of attachment for binding metal ions via respectively different functional groups. In any case, at least one of the complexing agents or the chelating agent includes a non-amine or non-imine functional group. An embodiment of a method for processing a substrate includes plating a metal layer upon the substrate and subsequently exposing the substrate to a solution comprising the aforementioned make-up.
    Type: Grant
    Filed: February 21, 2012
    Date of Patent: October 8, 2013
    Assignee: Lam Research
    Inventors: Shijian Li, Artur K. Kolics, Tiruchirapalli N. Arunagiri
  • Patent number: 8551560
    Abstract: Methods for improving selective deposition of a capping layer on a patterned substrate are presented, the method including: receiving the patterned substrate, the patterned substrate including a conductive region and a dielectric region; forming a molecular masking layer (MML) on the dielectric region; preparing an electroless (ELESS) plating bath, where the ELESS plating bath includes: a cobalt (Co) ion source: a complexing agent: a buffer: a tungsten (W) ion source: and a reducing agent; and reacting the patterned substrate with the ELESS plating bath for an ELESS period at an ELESS temperature and an ELESS pH so that the capping layer is selectively formed on the conductive region. In some embodiments, methods further include a pH adjuster for adjusting the ELESS pH to a range of approximately 9.0 pH to 9.2 pH. In some embodiments, the pH adjuster is tetramethylammonium hydroxide (TMAH). In some embodiments, the MML is hydrophilic.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: October 8, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Jinhong Tong, Zhi-Wen Sun, Chi-I Lang, Nitin Kumar, Bob Kong, Zachary Fresco
  • Publication number: 20130230657
    Abstract: Catalysts include nanoparticles of catalytic metal and gallic acid or gallic acid derivatives or salts thereof. The catalysts are used in electroless metal plating. The catalysts are free of tin.
    Type: Application
    Filed: August 17, 2012
    Publication date: September 5, 2013
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventors: Kristen M. Milum, Donald E. Cleary, Maria Anna Rzeznik
  • Publication number: 20130216721
    Abstract: A plating process using an electroless plating bath formed from a single component solution used to effect nickel or nickel alloy plating on magnesium. The plating solution is provided with a nickel hydrate compound as a source of plating ions, a sodium hydrate compound and ammonium hydroxide. The bath solution is heated to a temperature of 50° C. or more, and the substrate is immersed therein for upto ten minutes to allow for formation of the heating layer.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 22, 2013
    Applicant: UNIVERSITY OF WINDSOR
    Inventor: UNIVERSITY OF WINDSOR
  • Publication number: 20130209698
    Abstract: A plating process using an electroless plating bath formed from two separate prepared component solutions. The component solutions mixed within 120 hours prior to plating operations, to provide a highly alkaline plating bath solution. One component solution of the two-part plating bath, is provided with a metal salt or source of plating ions, and which is initially kept in a separate solution from the second other prepared component solution. The second component solution contains formaldehyde, and preferably paraformaldehyde, used to reduce the metal salts into the metal to be deposited on a substrate. Each component solution further includes sodium hydroxide in concentrations selected so that when the two solutions are preferably mixed the final plating bath solution has a pH greater than 11.5.
    Type: Application
    Filed: October 12, 2011
    Publication date: August 15, 2013
    Applicant: UNIVERSITY OF WINDSOR
    Inventors: Mordechay Schlesinger, Robert Andrew Petro
  • Patent number: 8501278
    Abstract: A method and apparatus for treating the surfaces of individual filaments in multifilament yarn. The method includes the steps of immersing the yarn into a liquid treatment solution and coating all exposed surface areas of each individual filament with the treatment solution, disrupting the orientation of the individual filaments and coating all newly exposed surface areas of each individual filament with the treatment solution, and repeating the previous steps until a predetermined treatment level is achieved. A filament orientation disruption assembly may include at least one roller having a roller profile such that for a given transverse section of the roller, a roller surface perimeter has a plurality of points located a plurality of distinct distances from a central axis of the roller, i.e., a non-cylindrical roller. The method is particularly effective in plating highly anisotropic uniaxially oriented polymer fibers, such as PBO.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: August 6, 2013
    Assignee: Syscom Advanced Materials, Inc.
    Inventor: Jar-Wha Lee
  • Publication number: 20130171366
    Abstract: A solution including a precious metal nanoparticle and a polymer polymerized from a monomer comprising at least a monomer having two or more carboxyl groups or carboxylic acid salt groups. The solution is useful for a catalyst for a process of electroless plating of a metal on non-conductive surface.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 4, 2013
    Applicant: ROHM AND HAAS ELECTRONIC MATERIALS LLC
    Inventor: ROHM AND HAAS ELECTRONIC MATERIALS LLC
  • Patent number: 8465803
    Abstract: A self-replicating monolayer system employing polymerization of monomers or nanoparticle ensembles on a defined template provides synthesis of two-dimensional single molecule polymers. Systems of self-replicating monolayers are used as templates for growth of inorganic colloids. A preferred embodiment employs SAM-based replication, wherein an initial monolayer is patterned and used as a template for self-assembly of a second monolayer by molecular recognition. The second monolayer is polymerized in place and the monolayers are separated to form a replicate. Both may then function as templates for monolayer assemblies. A generic self-replicating monomer unit comprises a polymerizable moiety attached by methylene repeats to a recognition element and an ending unit that will not interfere with the chosen recognition chemistry. The recognition element is self-complementary, unless two replicating monomers with compatible cross-linking chemistry are employed.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: June 18, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Joseph M. Jacobson, David W. Mosley
  • Publication number: 20130143031
    Abstract: Methods for coating a substrate with wear resistant particles by electroless nickel (Ni) plating. A method includes immersing the substrate in a bath provided in a cell, the bath having a Ni salt; adding cubic Boron Nitride (cBN) particles having a predetermined size to the bath so as to produce a predetermined concentration of cBN; maintaining the substrate in the bath with the cBN particles for a predetermined time; and removing the substrate, wherein the removed substrate has a coating of cBN and Ni in a first range.
    Type: Application
    Filed: November 24, 2010
    Publication date: June 6, 2013
    Inventors: Francesco Sorbo, Massimo Giannozzi, Eugenio Giorni
  • Patent number: 8445055
    Abstract: The invention relates to a method for the fabrication of composite palladium or palladium alloy membranes. The surface of the porous ceramic substrate is modified with pencil to create a uniform and smooth layer, and the membrane is deposited via electroless plating. The advantages of the pencil modification are a reduction of the substrate surface roughness and a repair of substrate surface defects, which leads to a great improvement in the membrane uniformity and hydrogen permeation performances. This method is facile and economic, and it is especially effective on low-cost macroporous ceramic substrate materials. Furthermore, this method generates almost no pollution and therefore is environmentally benign.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: May 21, 2013
    Assignee: Nanjing University of Technology
    Inventors: Yan Huang, Xiaojuan Hu, Weidong Chen
  • Patent number: 8440263
    Abstract: A method for forming a metallic pattern, which is provided with a printing process to print a pattern portion on a substrate by means of an inkjet method utilizing ink containing a precursor of a nonelectric plating catalyst and a plating process to form a metallic pattern by nonelectric plating on said pattern portion, wherein the surface of said substrate is constituted of ink non-absorptive resin and has been subjected to a plasma treatment, and said ink has a pH value at 25° C. of not less than 9.0.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: May 14, 2013
    Assignee: Konica Minolta IJ Technologies, Inc.
    Inventors: Satoshi Mori, Shinichi Suzuki
  • Patent number: 8435603
    Abstract: Disclosed is a method of forming on the surface of a substrate a first solid layer which is suitable for activating a chemical reaction to form a second layer thereon, the method comprising the steps of: applying to the surface of the substrate a first liquid comprising a curable composition and an activator for the second layer-forming chemical reaction; and curing the curable composition, thereby forming a first solid layer adhered to the surface of the substrate, capable of activating the second layer-forming chemical reaction. A second layer can then be formed on the substrate by bringing into contact with the first solid layer a second fluid comprising components of a second layer-forming chemical reaction, activated by the activator, thereby causing a second layer to be formed on the first solid layer.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: May 7, 2013
    Assignee: Conductive Inkjet Technology Limited
    Inventors: Philip Gareth Bentley, James Edward Fox, Alan Lionel Hudd, Martyn John Robinson
  • Publication number: 20130101832
    Abstract: The noble metal coating of the present invention is formed on a ceramic substrate. The noble metal coating has a thickness of less than 2 ?m and comprises a matrix metal and a ceramic fine particle. The matrix metal includes at least one metal selected from a group consisting of Pt, Pd, Ru, Rh, Os, Ir and Au as a main component. The content of the ceramic fine particle is preferably 3 to 30 parts by weight with respect to 100 parts by weight of the matrix metal. The ratio between the average particle size of the ceramic fine particle and the thickness of the noble metal coating is preferably 1/1.5 to 1/400.
    Type: Application
    Filed: October 12, 2012
    Publication date: April 25, 2013
    Applicant: NGK INSULATORS, LTD.
    Inventor: NGK INSULATORS, LTD.
  • Patent number: 8404035
    Abstract: An electroless copper plating solution that is favorable to improve the adhesion of a plating film and realizes uniform plating at a low temperature is characterized by containing a water-soluble nitrogen-containing polymer in an electroless copper plating solution, and preferably the above-mentioned electroless copper plating solution contains glyoxylic acid and phosphinic acid as reducing agents. The water-soluble nitrogen-containing polymer is preferably a polyacrylamide or a polyethyleneimine and, preferably, its weight average molecular weight (Mw) is at least 100,000 and Mw/Mn is 10.0 or less.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: March 26, 2013
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Atsushi Yabe, Junnosuke Sekiguchi, Toru Imori, Yoshihisa Fujihira
  • Patent number: 8318260
    Abstract: The present invention relates to an electroless deposition of metallic silver on various plates. More particularly, in the present invention, by spraying a silver solution including ionic silver to be reduced into metallic silver and a reducing solution a reducing agent for reducing the silver solution at the same time to a predetermined region above a substrate, metallic silver particles having a diameter less than 30 ? are formed, and a silver layer is formed by a deposition of the nano-sized metallic silver. Since the silver layer includes nano-sized silver particles having a diameter less than 3 nm, a reflector having a high density, that is, surface roughness, can be manufactured. The reflector has a considerably excellent reflectance.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: November 27, 2012
    Assignee: Nano CMS Co., Ltd
    Inventors: Si Doo Kim, Seong Uk Lee, Jae Youn Hwang, Shi Surk Kim
  • Patent number: 8309164
    Abstract: A metallized substrate having, disposed in the order mentioned: a ceramics substrate; a high-melting point metal layer; a base nickel plating layer; a layered nickel-phosphorous plating layer; a diffusion-inhibiting plating layer; and a gold plating layer. The base nickel plating layer being any one of a nickel plating layer, a nickel-boron plating layer, or a nickel-cobalt plating layer. The diffusion-inhibiting plating layer being any one of a columnar nickel-phosphorous plating layer, a palladium-phosphorous plating layer, or a palladium plating layer. According to the above composition, even after heating the semiconductor chips in a mounted state, the metallized substrate can make the connection strength of wire bonding favorable.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: November 13, 2012
    Assignee: Tokuyama Corporation
    Inventors: Tetsuo Imai, Osamu Yatabe, Masakatsu Maeda
  • Publication number: 20120282417
    Abstract: A method for coating a surface of a substrate in (co)polymer with a metal material is provided. The method may comprise the successive steps of (a) subjecting the surface to an oxidizing treatment by a chemical reaction of the Fenton type in the presence of at least one precursor of the metal material and (b) transforming the precursor into the metal material.
    Type: Application
    Filed: December 10, 2010
    Publication date: November 8, 2012
    Applicant: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Alexandre Garcia, Thomas Berthelot
  • Patent number: 8298620
    Abstract: The present invention provides methods of controlling properties of a thin film applied to a substrate whereby the properties of the thin film may be controlled by the surface morphology of the substrate. Methods of increasing a deposition rate of an electroless plating process applied to a substrate, controlling the grain size distribution and/or grain size of a thin film applied to a substrate and maintaining a uniform overpotential of an electroless plating process on a substrate are also provided.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: October 30, 2012
    Assignee: North Carolina Agricultural and Technical State University
    Inventors: Shamsuddin Ilias, Mohammad A. Islam
  • Patent number: 8277904
    Abstract: A method for producing a thermoelectric material is provided. A semiconductor material powder is provided. An electroless plating process is preformed to deposit metal nano-particles on the surface of semiconductor material powder. An electrical current activated sintering process is performed to form a thermoelectric material having one and plurality grain boundaries.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: October 2, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Wei-Sheng Su, Chia-Hung Kuo, Ya-Wen Chou, Jie-Ren Ku, Ming-Shan Jeng, Chii-Shyang Hwang, Zong-Hao Wu
  • Patent number: 8276270
    Abstract: The present invention is directed to a method for manufacturing a printed circuit board in which a plurality of conductive layers forming a wiring pattern are laminated in the state where they are put between insulating layers, and a printed circuit board formed thereby. The printed circuit board manufacturing method for the present invention includes a step of forming a via fill (17) to allow electroless plating liquid to be in contact with the surface of the wiring pattern exposed to a bottom part of a via hole (14) formed at a insulating layer to laminate plating metallic film from the bottom part to a opening part of the via hole (14), to form the via fill (17), and a step of forming a wiring pattern to form electroless plating metallic film (20) serving as the wiring pattern onto a substrate where the via fill (17) is formed.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: October 2, 2012
    Assignee: C. Uyemura & Co., Ltd.
    Inventors: Teruyuki Hotta, Shushi Morimoto, Takahiro Ishizaki, Hisamitsu Yamamoto
  • Publication number: 20120237789
    Abstract: A metal-clad polymer article includes a polymeric material with or without particulate addition. The polymeric material defines a permanent substrate. A metallic material covers at least part of a surface of the polymeric material. The metallic material has a microstructure which, at least in part, is at least one of fine-grained with an average grain size between 2 and 5,000 nm and amorphous. The metallic material has an elastic limit between 0.2% and 15%. At least one intermediate layer can be provided between the polymeric material and the metallic material. A stress on the polymeric material, at a selected operating temperature, reaches at least 60% of its ultimate tensile strength at a strain equivalent to the elastic limit of said metallic material.
    Type: Application
    Filed: October 24, 2011
    Publication date: September 20, 2012
    Applicant: INTEGRAN TECHNOLOGIES INC.
    Inventors: Andrew Wang, Nandakumar Nagarajan, Klaus Tomantschger, Mioara Neacsu
  • Patent number: 8268400
    Abstract: A photosensitive film, which has a transparent support and a silver salt emulsion layer containing a silver salt formed thereon, is exposed and developed to form a metallic silver portion. The base material to be plated is electrified in a solution containing a metal ion, using the metallic silver portion as a cathode. Then, the electrified base material is subjected to an electroless plating treatment to form a plated layer only on the metallic silver portion. The metal ion in the solution is preferably an ion of copper, nickel, cobalt, or tin.
    Type: Grant
    Filed: September 25, 2008
    Date of Patent: September 18, 2012
    Assignee: Fujifilm Corporation
    Inventors: Shinichi Nakahira, Kentaro Okazaki, Yasuaki Miyauchi
  • Patent number: 8236075
    Abstract: An abrasive material is fabricated. The material is made of bamboo charcoal. The charcoal has vascular bundles and abrasive particles are uniformly distributed and fixed on inner surfaces of the vascular bundles. Thus, the abrasive material can be used with self-sharpening for grinding, polishing, lubricating, etc.
    Type: Grant
    Filed: July 18, 2009
    Date of Patent: August 7, 2012
    Assignee: National Central University
    Inventors: Biing-Hwa Yan, Shin-Min Lee, Jung-Chou Hung
  • Patent number: 8225744
    Abstract: An apparatus for depositing a solid film onto a substrate from a reagent solution includes reservoirs of reagent solutions maintained at a sufficiently low temperature to inhibit homogeneous reactions within the reagent solutions. The chilled solutions are dispensed through showerheads, one at a time, onto a substrate. One of the showerheads includes a nebulizer so that the reagent solution is delivered as a fine mist, whereas the other showerhead delivers reagent as a flowing stream. A heater disposed beneath the substrate maintains the substrate at an elevated temperature at which the deposition of a desired solid phase from the reagent solutions may be initiated. Each reagent solution contains at least one metal and either S or Se, or both. At least one of the reagent solutions contains Cu. The apparatus and its associated method of use are particularly suited to forming films of Cu-containing compound semiconductors.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: July 24, 2012
    Assignee: Sisom Thin Films LLC
    Inventor: Isaiah O. Oladeji
  • Patent number: 8202576
    Abstract: A method of forming a metal film, the method including: (a) forming a primer layer on a substrate by applying a first polymer including a unit having a cyano group in a side chain; (b) forming a polymer layer on the surface of the primer layer by applying a second polymer, the second polymer having a functional group that interacts with an electroless plating catalyst or a precursor thereof and a polymerizable group; (c) applying the electroless plating catalyst or the precursor thereof to the polymer layer; and (d) forming a metal film on the polymer layer by performing electroless plating.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: June 19, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Masaaki Inoue, Tetsunori Matsumoto
  • Patent number: 8182594
    Abstract: An electroless nickel plating liquid capable of forming an underbarrier metal for metal bumps or solder bumps by electroless nickel plating with a uniform film thickness on silicon wafers composed of multiple IC chips contains a water-soluble nickel salt, a reducing agent, a complexing agent, and a pH buffer, wherein_lead ion is contained at 0.01-1 ppm, cobalt ion is contained at 0.01-1 ppm, and a sulfur compound is contained at 0.01-1 ppm.
    Type: Grant
    Filed: September 26, 2006
    Date of Patent: May 22, 2012
    Assignee: Nippon Mining & Metals Co., Ltd.
    Inventors: Eiji Hino, Masashi Kumagai
  • Patent number: 8173220
    Abstract: The invention provides a method of producing a metal plated material, the method including: preparing a polymer solution containing a polymer; preparing a composition by mixing the polymer solution with a monomer at an amount of from 30% by mass to 200% by mass with respect to the polymer, and with a compound having a non-dissociative functional group and a reactive group, the non-dissociative functional group being capable of interacting with a plating catalyst or a precursor thereof, and at least one of the polymer or the monomer having a functional group that reacts with the reactive group in the compound; forming a cured layer on a substrate by applying the composition, drying the composition and curing the composition; applying the plating catalyst or the precursor thereof to the cured layer; and conducting plating with respect to the plating catalyst or the precursor thereof to form a plating film on the cured layer.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: May 8, 2012
    Assignee: FUJIFILM Corporation
    Inventors: Takeyoshi Kano, Kazuki Yamazaki, Masataka Sato
  • Patent number: 8168258
    Abstract: In a method of producing a temperature sensor including at least one lead wire of a non-noble metal or of an alloy containing a non-noble metal, at first a lead wire is attached to the temperature sensor. An oxide layer is removed from at least one portion of the lead wire, and the at least one portion of the lead wire is chemically gilded immediately after removing the oxide layer.
    Type: Grant
    Filed: July 4, 2007
    Date of Patent: May 1, 2012
    Inventors: Heinrich Zitzmann, Gyoergy Bernitz
  • Publication number: 20120097548
    Abstract: Stable tin-free palladium catalysts are used to metalize through-holes of printed circuit boards. A stabilizer is included in the catalyst formulation which prevents precipitation and agglomeration of the palladium.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 26, 2012
    Applicant: Rohm and Haas Electronic Materials LLC
    Inventors: Feng LIU, Maria Anna Rzeznik
  • Patent number: 8137752
    Abstract: A method and apparatus for treating the surfaces of individual filaments in multifilament yarn. The method includes the steps of immersing the yarn into a liquid treatment solution and coating all exposed surface areas of each individual filament with the treatment solution, disrupting the orientation of the individual filaments and coating all newly exposed surface areas of each individual filament with the treatment solution, and repeating the previous steps until a predetermined treatment level is achieved. A filament orientation disruption assembly may include at least one roller having a roller profile such that for a given transverse section of the roller, a roller surface perimeter has a plurality of points located a plurality of distinct distances from a central axis of the roller, i.e., a non-cylindrical roller. The method is particularly effective in plating highly anisotropic uniaxially oriented polymer fibers, such as PBO.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: March 20, 2012
    Assignee: Syscom Advanced Materials, Inc.
    Inventor: Jar-Wha Lee
  • Patent number: 8128987
    Abstract: A method for electroless deposition from a deposition solution in a working chamber, where the process can include heating the deposition solution to its boiling point and subsequently reducing the temperature of the deposition solution to a working temperature range that is between approximately 1% and approximately 25% below the boiling point of said solution under a predetermined pressure; and the process also can include heating the deposition solution while filling an enclosed area of the chamber such that the deposition solution reaches its boiling point immediately after the enclosed area is filled.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: March 6, 2012
    Assignee: Lam Research Corp.
    Inventors: Igor C. Ivanov, Jonathan Weiguo Zhang, Artur Kolics
  • Patent number: 8124174
    Abstract: Part or whole of an electroless gold plating film of a plated film laminate including an electroless nickel plating film, an electroless palladium plating film and an electroless gold plating film is formed by an electroless gold plating using an electroless gold plating bath including a water-soluble gold compound, a complexing agent, formaldehyde and/or a formaldehyde-bisulfite adduct, and an amine compound represented by the following general formula R1—NH—C2H4—NH—R2 or R3—(CH2—NH—C2H4—NH—CH2)n—R4. The method of the invention does not need two types of baths, a flash gold plating bath and a thick gold plating bath for thickening. Gold plating films of different thicknesses suited for solder bonding or wire bonding can be formed using only one type of gold plating bath.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: February 28, 2012
    Assignee: C. Uyemura & Co., Ltd.
    Inventors: Seigo Kurosaka, Yukinori Oda, Akira Okada, Ayumi Okubo, Masayuki Kiso
  • Publication number: 20120045570
    Abstract: There are provided a plating solution for forming a tin alloy, and a method of forming a tin alloy film by using the same. The plating solution for forming a tin alloy, the plating solution includes a tin salt and one or more metal salts each comprising indium or zinc, and at least one reducing agent selected from the group consisting of boron hydride compounds, the reducing agent providing electrons to metal ions of the metal salts and tin ions of the tin salt to form a tin alloy film on an object to be plate.
    Type: Application
    Filed: December 23, 2010
    Publication date: February 23, 2012
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Yong Seok Kim, Jin Hyuck Yang, Soo Young Ji
  • Patent number: 8104425
    Abstract: A method for electroless plating of a substrate is provided that comprises exposing an electroless plating reagent comprising a metal to be plated and at least one reducing agent to a solid phase Activation Material to form an activated electroless plating reagent prior to application of the electroless plating reagent to the substrate. The activated electroless plating reagent is applied to a substrate in the process chamber under conditions to cause the metal of the electroless plating reagent to deposit on the substrate. Systems and modules are also described.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: January 31, 2012
    Assignee: FSI International, Inc.
    Inventor: Kurt Karl Christenson
  • Patent number: 8101243
    Abstract: The invention provides thin, hydrogen-permeable, sulfur-resistant membranes formed from palladium or palladium-alloy coatings on porous, ceramic or metal supports. Also disclosed are methods of making these membranes via sequential electroless plating techniques, wherein the method of making the membrane includes decomposing any organic ligands present on the substrate, reducing the palladium crystallites on the substrate to reduced palladium crystallites, depositing a film of palladium metal on the substrate and then depositing a second, gold film on the palladium film. These two metal films are then annealed at a temperature between about 200° C. and about 1200° C. to form a sulfur-resistant, composite PdAu alloy membrane.
    Type: Grant
    Filed: June 25, 2007
    Date of Patent: January 24, 2012
    Assignee: Colorado School of Mines
    Inventors: J. Douglas Way, Mark Lusk, Paul Thoen
  • Publication number: 20120009350
    Abstract: Disclosed are an electroless autocatalytic tin plating solution and an electroless autocatalytic tin plating method using the same. The electroless autocatalytic tin plating solution includes: tin salt formed as a tin ion and a ligand having two or more carboxyl groups are bound; and one or more reductants selected from the group consisting of borohydrides delivering electrons to the tin ion to form a tin layer on a target object to be plated.
    Type: Application
    Filed: December 23, 2010
    Publication date: January 12, 2012
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jin Hyuck Yang, Yong Seok Kim, Chang Hwan Choi
  • Publication number: 20110311729
    Abstract: A method for making a surface-enhanced Raman scattering (SERS) substrate is introduced. The method includes the following steps. A carbon nanotube film structure and a first solution comprising a number of metallic ions are provided. The carbon nanotube film structure includes a number of carbon nanotubes. Standard electrode potentials of the metallic ions are greater than Fermi energies of the carbon nanotubes. At least part of the carbon nanotube film structure is dipped into the first solution.
    Type: Application
    Filed: December 3, 2010
    Publication date: December 22, 2011
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: YING-HUI SUN, KAI LIU, KAI-LI JIANG, SHOU-SHAN FAN
  • Patent number: 8070860
    Abstract: An H2-permeable membrane system (117) comprises an electroless-deposited plating (115) of Pd or Pd alloy on a porous support (110, 110?). The Pd plating comprises face-centered cubic crystals cumulatively having a morphology of hexagonal platelets. The permeability to H2 of the membrane plating (115) on the porous support is significantly enhanced, being at least greater than about 1.3×10?8 mol·m?1·s?·Pa?0.5 at 350° C., and even greater than about 3.4×10?8 mol·m?1·s?1·Pa?0.5. The porous support (110, 110?) may be stainless steel (1100 and include a thin ceramic interlayer (110?) on which the Pd is plated. The method of providing the electroless-deposited plating includes preheating a Pd electroless plating solution to near a plating temperature substantially greater than room temperature, e.g. 60° C., prior to plating.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: December 6, 2011
    Assignee: United Technologies Corporation
    Inventors: Thomas Henry Vanderspurt, Ying She, Zissis Dardas, Craig Walker, James D. MacLeod
  • Publication number: 20110287272
    Abstract: Metal-coated thermoplastic compositions comprising “flat” fibrous reinforcing filler have improved resistance to repeated thermal shock. Disclosed herein are metal coated compositions useful in automotive parts, toys, appliances, power tools, industrial machinery, and the like.
    Type: Application
    Filed: December 22, 2009
    Publication date: November 24, 2011
    Applicant: E.I.DU PONT DE NEMOURS AND COMPANY
    Inventor: Andri E. Elia
  • Patent number: 8057678
    Abstract: A method for the regeneration of an electrolyte bath used for an electroless metallization process. A partial flow of electrolyte is removed from the process vessel and regenerated by dialysis or electrodialysis. Metallization components are replenished. The partial flow is returned to the process vessel.
    Type: Grant
    Filed: January 19, 2005
    Date of Patent: November 15, 2011
    Assignee: Enthone Inc.
    Inventors: Andreas Möbius, Axel König, Hubertus F.A.M. van Dun
  • Patent number: 8052858
    Abstract: A resin material is brought into contact with a first solution containing ozone, and at the same time, ultraviolet rays are irradiated. The activation due to the treatment with ozone water and the activation due to the treatment with ultraviolet rays are synergistically operated to enable the formation of a plated coating having excellent adhesive strength by a short treatment. In addition, even by a long treatment, the adhesive strength can be restrained from lowering. Consequently, a plated coating having excellent adhesion can be formed without roughening the surface of the resin material by a short pretreatment.
    Type: Grant
    Filed: October 9, 2003
    Date of Patent: November 8, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Motoki Hiraoka, Takeshi Bessho, Sigeru Sibata
  • Patent number: 8039045
    Abstract: An object of the present invention is to provide a plating method on a glass base plate. The method allows forming a plating film on a base plate composed of a glass material with excellent adhesivity and homogeneity by means of an electroless plating method even to a thickness of 1 ?m or more. Before forming a plating film by a step of electroless plating S6, a surface treatment process is conducted on a surface of the base plate composed of a glass material. The surface treatment process comprises at least a step of glass activation treatment S2 to increase quantity of silanol groups on the surface of the base plate at least by a factor of two using an aqueous solution of diluted acid, a step of silane coupling agent treatment S3, a step of palladium catalyst treatment S4, and a step of palladium bonding treatment S5.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: October 18, 2011
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Youichi Tei, Akira Iso, Kazuhito Higuchi, Hajime Kurihara, Hiroyuki Uwazumi
  • Patent number: 8034746
    Abstract: Disclosed herein is a method of manufacturing round wire using superconducting tape, including the steps of: slitting superconducting tape into superconducting tape strips; silver-coating the slit superconducting tape strips; laminating the silver-coated superconducting tape strips to form a superconducting tape laminate having a square cross-section; holding the superconducting tape laminate; heat-treating the fixed superconducting tape laminate to cause diffusion junction between silver; and copper-plating the heat-treated superconducting tape laminate to have a circular section.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: October 11, 2011
    Assignee: Korea Electrotechnology Research Institute
    Inventors: Hong Soo Ha, Sang Soo Oh, Dong Woo Ha, Rock Kil Ko, Ho Sup Kim
  • Patent number: 8021721
    Abstract: A method of modifying a bottomhole assembly that includes metal plating at least a portion of a bottomhole assembly, wherein the metal-plating comprises superabrasive nanoparticles is disclosed.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: September 20, 2011
    Assignee: Smith International, Inc.
    Inventor: Anthony Griffo
  • Patent number: 8007862
    Abstract: Provided are a method of preparing a nanowire grid polarizer, and a nanowire grid polarizer prepared using the same. The method includes: mixing a surfactant and a silica precursor to prepare a mesoporous film composition; coating the mesoporous film composition on a substrate; aging the coated product to form a silica template composite; removing the surfactant inside the silica template composite to prepare a mesoporous material having channels; and filling the channels of the mesoporous material with metal. The method is suitable for the formation of a nanowire having a stable structure, mass production, and large-area production.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: August 30, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Su-mi Lee, Dong-mok Whang, Moon-gyu Lee, Yoon-sun Choi, Sun-hwak Woo
  • Patent number: 7964069
    Abstract: A device for galvanic coating of a piston has a pot-shaped interior for accommodating the piston and an electrolyte fluid, a holder device for fixing the piston in place, a cover that is structured like a shutter and leaves only the surfaces of the piston that are to be coated uncovered, a first electrical contact that is connected with an anode and with the plus pole of a direct voltage source, and a second electrical contact that connects the piston with the minus pole of a direct voltage source. The piston can be simply and quickly attached to the holder device, since the holder device is in plate shape, and has an oblong centering device, the length of which corresponds to the radial inside diameter of the piston to be coated so that the piston can be pushed onto the centering device by way of its underside.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: June 21, 2011
    Assignee: MAHLE International GmbH
    Inventors: Rudolf Bergmann, Kurt Nikolei
  • Publication number: 20110135824
    Abstract: An electroless deposition method includes providing a deposition solution, and saturating the deposition solution with an oxygen concentration in a range from about two thousand parts per million to about twenty thousand parts per million, and replenishing deionized water in the deposition solution.
    Type: Application
    Filed: February 16, 2011
    Publication date: June 9, 2011
    Inventors: Ron Rulkens, Robert D. Tas, Shashank Ravindra Kulkarni, Artur Kolics, Nancy E. Gilbert
  • Publication number: 20110123813
    Abstract: Disclosed is a composite material wherein adhesion between a silicon surface and a plating material is enhanced. A method and an apparatus for producing the composite material are also disclosed.
    Type: Application
    Filed: March 2, 2009
    Publication date: May 26, 2011
    Applicant: JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Shinji Yae, Tatsuya Hirano, Hitoshi Matsuda