Chemical Compound Reducing Agent Utilized (i.e., Electroless Deposition) Patents (Class 427/443.1)
  • Patent number: 7476412
    Abstract: The invention relates to a process for the metallization of an insulator and/or a dielectric, wherein the insulator is firstly activated, it is subsequently coated with another insulator and the latter is patterned, then the first is seeded and lastly metallized.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: January 13, 2009
    Assignee: Infineon Technologies AG
    Inventors: Klaus Lowack, Günter Schmid, Recai Sezi
  • Patent number: 7476616
    Abstract: A method for electroless plating of a substrate is provided that comprises exposing an electroless plating reagent comprising a metal to be plated and at least one reducing agent to a solid phase Activation Material to form an activated electroless plating reagent prior to application of the electroless plating reagent to the substrate. The activated electroless plating reagent is applied to a substrate in the process chamber under conditions to cause the metal of the electroless plating reagent to deposit on the substrate. Systems and modules are also described.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: January 13, 2009
    Assignee: FSI International, Inc.
    Inventor: Kurt Karl Christenson
  • Publication number: 20090011136
    Abstract: This invention is directed to a process for electrolessly metallizing an article, as well as to a plating bath and the subsequent plated substrate. The process comprises contacting the surface of an article with an electroless metallizing bath which may be essentially free of toxic and/or heavy metals.
    Type: Application
    Filed: September 18, 2008
    Publication date: January 8, 2009
    Inventors: Thomas Steven Lancsek, Michael David Feldstein
  • Publication number: 20080311400
    Abstract: An apparatus and method for forming catalyst particles to grow nanotubes is disclosed. In addition, an apparatus and method for forming nanotubes using the catalytic particles is also disclosed. The particles formed may have different diameters depending upon how they are formed. Once formed, the particles are deposited on a substrate. Once deposited, the mobility of the particles is restricted and nanotubes and/or nanotube portions are grown on the particles. Nanotube portions having different diameters may be formed and the portions may be connected to form nanotubes with different diameters along the length of the nanotube.
    Type: Application
    Filed: August 25, 2008
    Publication date: December 18, 2008
    Inventors: Valery M. Dubin, Juan E. Dominguez, Chin-Chang Cheng
  • Publication number: 20080277140
    Abstract: Part or whole of an electroless gold plating film of a plated film laminate including an electroless nickel plating film, an electroless palladium plating film and an electroless gold plating film is formed by an electroless gold plating using an electroless gold plating bath including a water-soluble gold compound, a completing agent, formaldehyde and/or a formaldehyde-bisulfite adduct, and an amine compound represented by the following general formula R1—NH—C2H4—NH—R2 or R3—(CH2—NH—C2H4—NH—CH2)n—R4. The method of the invention does not need two types of baths, a flash gold plating bath and a thick gold plating bath for thickening. Gold plating films of different thicknesses suited for solder bonding or wire bonding can be formed using only one type of gold plating bath. Especially, an electroless gold plating film having a thickness of not smaller than 0.
    Type: Application
    Filed: April 14, 2008
    Publication date: November 13, 2008
    Applicant: C. Uyemura & Co., Ltd.
    Inventors: Seigo KUROSAKA, Yukinori Oda, Akira Okada, Ayumi Okubo, Masayuki Kiso
  • Patent number: 7449099
    Abstract: To make a metal feature, a non-plateable layer is applied to a workpiece surface and then patterned to form a first plating region and a first non-plating region. Then, metal is deposited on the workpiece to form a raised field region in said first plating region and a recessed region in said first non-plating region. Then, an accelerator film is applied globally on the workpiece. A portion of the accelerator film is selectively removed from the field region, and another portion of the accelerator film remains in the recessed acceleration region. Then, metal is deposited onto the workpiece, and the metal deposits at an accelerated rate in the acceleration region, resulting in a greater thickness of metal in the acceleration region compared to metal in the non-activated field region. Then, metal is completely removed from the field region, thereby forming the metal feature.
    Type: Grant
    Filed: September 21, 2004
    Date of Patent: November 11, 2008
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, John Stephen Drewery
  • Publication number: 20080274338
    Abstract: A method for manufacturing a wiring substrate includes the steps of: (a) forming a sacrificial layer in a first pattern on a substrate; (b) forming a catalyst layer in a second pattern on the substrate; (c) immersing the substrate in an electroless plating liquid, thereby depositing a metal layer on the catalyst layer in the second pattern; and (d) heating to remove the sacrificial layer and to form a metal layer in a third pattern, wherein the third pattern is a region where the first pattern and the second pattern overlap each other.
    Type: Application
    Filed: March 27, 2008
    Publication date: November 6, 2008
    Applicant: SEIKO EPSON CORPORATION
    Inventors: Toshihiko KANEDA, Satoshi KIMURA, Hidemichi FURIHATA, Jun AMAKO, Daisuke SAWAKI, Takeshi KIJIMA
  • Publication number: 20080233303
    Abstract: A method of producing a metal seal ring is provided. The method includes selecting a seal ring substrate material and applying a coating to the seal ring substrate material using an electroless plating process.
    Type: Application
    Filed: May 23, 2008
    Publication date: September 25, 2008
    Inventors: Xiangyang Jiang, Kevin Nemec
  • Patent number: 7425256
    Abstract: An apparatus and method for plating a workpiece. The apparatus comprises, generally, an anode, a cathode, and a selective anode shield/material flow assembly. In use, both the anode and the cathode are immersed in a solution, and the cathode is used to support the workpiece. During an electroplating process, the anode and the cathode generate an electric field emanating from the anode towards the cathode, to generate a corresponding current to deposit an electroplating material on the workpiece. The selective shield/material flow assembly is located between the anode and the cathode, and forms a multitude of adjustable openings. These opening have sizes that are adjustable during the electroplating process for selectively and controllably adjusting the amount of electric flux passing through the selective shield/material flow assembly and the distribution of the electroplating material on the workpiece. The selective shield/material flow assembly can also be used with an electroless plating system.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: September 16, 2008
    Assignee: International Business Machines Corporation
    Inventors: Ralph A. Barrese, Gary Gajdorus, Allen H. Hopkins, John J. Konrad, Robert C. Schaffer, Timothy L. Wells
  • Publication number: 20080214884
    Abstract: Novel methods of electroless plating are described. Catalyst coatings can be applied within microchannel apparatus. Various reactions, including combustion and steam reforming, can be conducted over electroless catalyst coatings.
    Type: Application
    Filed: October 13, 2006
    Publication date: September 4, 2008
    Applicant: VELOCYS INC.
    Inventors: Francis P. Daly, Richard Long, Junko Ida, Rachid Taha, Terry Mazanec, Barry L. Yang
  • Publication number: 20080206474
    Abstract: Disclosed is a method of plating a substrate with a metal using an autocatalytic electroless plating bath wherein the bath is operated above its cloud point temperature such that at least two phases are present in the bath. An autocatalytic electroless plating bath for coating silver metal is also described. A method for autocatalytic plating of silver metal directly onto a silicon surface without the need for an intervening layer of metal is also disclosed. The deposits of silver obtained are uniform, non-porous and have electrical properties. The technique can be applied for different processes and bath formulations i.e. different metals, complexing agents and reducing agents.
    Type: Application
    Filed: December 13, 2005
    Publication date: August 28, 2008
    Applicant: POLYMER KOMPOSITER I GOTEBORG AB
    Inventor: Anders Remgard
  • Patent number: 7416763
    Abstract: A process in which a base metal film is formed on the surface of a plastic film using a dry plating process, and a liquid containing an organic monomer is then brought in contact with the base metal film, thereby selectively forming a conductive organic polymer coating within any pinhole defects, and effectively filling the defects. A metal film is then formed on top of the base metal film using an electroplating process, thus forming a metal wet plating layer.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: August 26, 2008
    Assignee: Cookson Electronics Co.
    Inventors: Yuichi Kanda, Takashi Abe, Atsushi Tanaka, Keisuke Nishu
  • Publication number: 20080194401
    Abstract: Novel nickel and/or cobalt plated sponge based catalysts are disclosed. The catalyst have an activity and/or selectivity comparable to conventional nickel and/or cobalt sponge catalysts, e.g., Raney® nickel or Raney® cobalt catalysts, but require a reduced content of nickel and/or cobalt. Catalysts in accordance with the invention comprise nickel and/or cobalt coated on at least a portion of the surface of a sponge support. Preferably, the sponge support comprises at least one metal other than or different from the metal(s) contained in the coating. The method of preparing the plated catalysts, and the method of using the catalysts in the preparation of organic compounds are also disclosed.
    Type: Application
    Filed: April 21, 2008
    Publication date: August 14, 2008
    Inventor: Stephen Raymond Schmidt
  • Patent number: 7410650
    Abstract: A method of fabricating nano-silver fibers is provided. An organic solution of a dispersant is prepared. Then, a silver salt and a reductant are added into the organic solution. The organic solution is stirred to let the silver salt and the reductant react to form silver nanoparticles dispersed in the organic solution uniformly. Next, a spinnable polymer resin is dissolved in the organic solution to form a spinning solution. A wet spinning method is performed to let the spinning solution form nano-silver fibers.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: August 12, 2008
    Assignee: Taiwan Textile Research Institute
    Inventor: Jia-Peng Lin
  • Publication number: 20080187675
    Abstract: Disclosed herein arc novel liposome compositions generally including a foreign inclusion (e.g., diamond) component, and a liposome (e.g., i paucilamellar liposome) component. Also disclosed are methods of using these composition for plating and plate obtained thereby. Novel liposome compositions including components such as diamonds, are also disclosed, which can be used in a variety of applications, such as in abrasive, cosmetic or medical applications.
    Type: Application
    Filed: September 10, 2007
    Publication date: August 7, 2008
    Applicant: Frank C. Scarpa
    Inventors: Frank C. Scarpa, Dennis Johnson
  • Patent number: 7399501
    Abstract: A process for manufacturing a gas sensor including a detecting element having an electrode containing a precious metal formed on a surface of a solid electrolyte, comprising: a first step of applying a nuclei of a precious metal having a catalyzing action on a gas to be measured; and a second step of growing the nuclei, wherein the first step uses a physical vapor deposition method.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: July 15, 2008
    Assignee: NGK Spark Plug Co., Ltd.
    Inventors: Takashi Saguchi, Hiroshi Matsuzaki
  • Publication number: 20080152823
    Abstract: A self-limiting electroless plating process is provided to plate thin films with improved uniformity. The process comprises dispensing an electroless plating solution onto a substrate to form a quiescent solution layer from which a conformal plated layer plates onto a surface of the substrate by a redox reaction. The redox reaction occurs at the surface of the substrate between a reducing agent ion and a plating ion and produces an oxidized ion. Because the solution is quiescent, a boundary layer forms within the solution layer adjacent to the surface. The boundary layer is characterized by a concentration gradient of the oxidized ion. Diffusion of the reducing agent ion through the boundary layer controls the redox reaction. The quiescent solution layer can be maintained until the reducing agent ion in the solution layer is substantially depleted.
    Type: Application
    Filed: December 20, 2006
    Publication date: June 26, 2008
    Inventors: John Boyd, Yezdi Dordi, Tiruchirapalli Arunagiri, William Thie, Fritz C. Redeker, Praveen Nalla
  • Patent number: 7384458
    Abstract: The non-cyanide electroless gold plating solution according to the invention is a non-cyanide electroless gold plating solution free from a cyanide compound, wherein bis-(3-sulfopropyl)disulfide is added, as a complexing agent for gold stabilization, to the electroless gold plating solution.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: June 10, 2008
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Masaki Sanada
  • Patent number: 7354733
    Abstract: We disclose methods of sorting or separating mixtures of living cells (e.g., eukaryotic, prokaryotic, mammalian, pathogenic, bacterial, viral, etc.). We perform our methods by activating cell-selective photophoric labels, which photosensitize and chemically reduce a photosensitive metal compound to form metal grains, particles or crystals. The metal adheres to the cells and forms the basis for sorting or separating different cell types. Photophoric labels may include chemiluminescent agents such as peroxidase enzymes activated with peroxidase substrates capable of luminescence. Photosensitive metal compounds may be present in a light-sensitive matrix or emulsion containing photosensitizable metal compounds, which form metal grains, particles or crystals upon exposure to a developer solution. Developer solutions are formulated to substantially allow living cells to remain viable after exposure to the developing solution.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: April 8, 2008
    Assignee: Cellect Technologies Corp.
    Inventors: Shmuel Bukshpan, Gleb Zilberstein
  • Patent number: 7351448
    Abstract: An apparatus and process for coating surfaces of metal or metallic components including providing at least one metal having a patterned outer surface exhibiting an optical reflection greater than about 40%, providing at least one anti-reflective coating material, the anti-reflective coating material(s) including effective amount of electrically conductive light scattering and/or wavelength absorbent properties, and depositing the anti-reflective coating material(s) onto the patterned outer surface(s) of each metal, wherein the anti-reflective coating material(s) conforms to the desired patterned outer surface(s) of each metal. In another embodiment, a coated metal component includes at least one metal having a patterned outer surface(s); and, a coating of at least one antireflective material deposited on the metal patterned outer surface by deposition, wherein the antireflective coating material(s) including effective amount of electrically conductive light scattering and/or wavelength absorbent properties.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: April 1, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: David J. Irvin, Andrew Guenthner, Nicholas Prokopuk
  • Publication number: 20080075958
    Abstract: The present invention relates to novel 1,3-diimine copper complexes and the use of 1,3-diimine copper complexes for the deposition of copper on substrates or in or on porous solids in an Atomic Layer Deposition process.
    Type: Application
    Filed: August 7, 2006
    Publication date: March 27, 2008
    Inventor: Kyung-Ho Park
  • Patent number: 7338686
    Abstract: The present invention provides a low-cost method for producing conductive particles in a short period of time by simplifying pretreatment in electroless plating. The method for producing conductive particles includes the steps of: introducing a solution composed mainly of palladium chloride and hydrochloric acid into an electroless plating bath containing particles of an organic material or an inorganic material while stirring the bath; and simultaneously applying an electroless plating to the surface of the particles and allowing the palladium catalyst to be carried on the surface of the particles to give conductive particles having an electroless plate coating.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: March 4, 2008
    Assignee: Kiyokawa Plating Industry Co., Ltd.
    Inventors: Hajime Kiyokawa, Kiyoto Fukuoka
  • Patent number: 7332193
    Abstract: An electroless plating method and composition for depositing Co, Ni, or alloys thereof onto a metal-based substrate in manufacture of microelectronic devices, involving a source of deposition ions selected from the group consisting of Co ions and Ni ions, a reducing agent for reducing the depositions ions to metal onto the substrate, and a hydrazine-based leveling agent.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: February 19, 2008
    Assignee: Enthone, Inc.
    Inventors: Charles Valverde, Nicolai Petrov, Eric Yakobson, Qingyun Chen, Vincent Paneccasio, Jr., Richard Hurtubise, Christian Witt
  • Patent number: 7332198
    Abstract: There is provided a plating apparatus and method which can control the temperature of a plating solution during plating more uniformly and easily form a uniform plated film on the to-be-plated surface of a workpiece, and which can simplify the device and decrease the footprint. The plating apparatus includes a plating bath having a double bath structure including an inner bath for holding a plating solution and carrying out plating, and an outer bath which surrounds the inner bath and is in fluid communication therewith. A heating device is disposed in the outer bath. The plating apparatus may further include means for circulating or stirring the plating solution in the plating bath.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: February 19, 2008
    Assignee: Ebara Corporation
    Inventors: Xinming Wang, Kenichi Abe, Koji Mishima
  • Publication number: 20080038476
    Abstract: A process is disclosed for the purpose of increasing the adhesion of a polymeric material to a metal surface. The process comprises plating the metal surface with a layer of electroless nickel, electroless cobalt or electroless (or immersion) tin followed by phosphating the plated layer prior to bonding the polymeric material thereto. The process is particularly suited to treating printed circuit board inner-layers and lead frames.
    Type: Application
    Filed: August 14, 2006
    Publication date: February 14, 2008
    Inventor: John L. Cordani
  • Patent number: 7323218
    Abstract: Methods of fabricating one-dimensional composite nanofiber on a template membrane with porous array by chemical or physical process are disclosed. The whole procedures are established under a base concept of “secondary template”. First of all, tubular first nanofibers are grown up in the pores of the template membrane. Next, by using the hollow first nanofibers as the secondary templates, second nanofibers are produced therein. Finally, the template membrane is removed to obtain composite nanofibers. Showing superior performance in weight energy density, current discharge efficiency and irreversible capacity, the composite nanofibers are applied to extensive scopes like thin-film battery, hydrogen storage, molecular sieving, biosensor and catalyst support in addition to applications in lithium batteries.
    Type: Grant
    Filed: April 21, 2003
    Date of Patent: January 29, 2008
    Assignee: Industrial Technology Research Institute
    Inventors: Jin-Ming Chen, Chien-Te Hsieh, Hsiu-Wen Huang, Yue-Hao Huang, Hung-Hsiao Lin, Mao-Huang Liu, Shih-Chieh Liao, Han-Chang Shih
  • Patent number: 7320936
    Abstract: An insulating layer (5) and a conductive seed layer (6) are applied to a substrate (1) in a simple process. A photo resist with palladium chloride are provided in a bath for electrophoretic deposition onto the substrate. The photo resist is an insulator and the palladium chloride is a catalyst. The layer is heated with UV to cure it. The layer is plasma etched to expose more of the palladium chloride, which acts as a catalyst for electrodes plating of the conductive seed layer. A thicker conductive layer (7) is then electroplated onto the seed layer. These steps may be repeated for successive insulating and/or conductive layers.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: January 22, 2008
    Assignee: University College Cork - National University of Ireland, Cork
    Inventors: Magall Brunet, Andrew Mark Connell, Paul McCloskey, Terence O'Donnell, Stephen O'Reilly, Sean Cian O'Mathuna
  • Publication number: 20080014362
    Abstract: The object of the present invention is to provide a pretreating agent for electroless plating that is stable and soluble in organic solvents, a method of electroless plating with excellent adhesiveness using it and an electroless plated product. An object to be plated is pre-treated using a pretreating agent for electroless plating comprising a noble metal soap of a fatty acid having 5 to 25 carbon atoms or preferably using a pretreating agent for electroless plating additionally comprising an imidazole silane coupling agent or other silane coupling agent having metal capturing ability, and then electroless plated. The noble metal soap is preferably a palladium soap.
    Type: Application
    Filed: November 11, 2004
    Publication date: January 17, 2008
    Inventors: Toshifumi Kawamura, Jun Suzuki, Toru Imori
  • Patent number: 7314650
    Abstract: Sputter targets comprising a target backing plate and a target deposit, are manufactured using electroless and electrolytic deposition of metal and metal alloys on a surface of the target backing plate. Portions of the target backing plate other than the surface can be protected from the deposition process. In addition, sputter targets comprising a target backing plate and a target deposit with complex combinations of materials are manufactured by simultaneous electroless deposition of a matrix metal and particulate material.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: January 1, 2008
    Inventor: Leonard Nanis
  • Publication number: 20070292615
    Abstract: The embodiments fill the need to enhance electro-migration performance, provide lower metal resistivity, and improve silicon-to-metal interfacial adhesion for copper interconnects by providing improved processes and systems that produce a silicon-to-metal interface. An exemplary method of preparing a substrate surface of a substrate to selectively deposit a layer of a metal on a silicon or polysilicon surface of the substrate to form a metal silicide in an integrated system is provided.
    Type: Application
    Filed: August 30, 2006
    Publication date: December 20, 2007
    Applicant: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, Tiruchirapalli Arunagiri, Johan Vertommen, Fritz C. Redeker, William Thie, Arthur M. Howald
  • Publication number: 20070292604
    Abstract: The embodiments fill the need to enhance electro-migration performance, provide lower metal resistivity, and improve metal-to-metal interfacial adhesion for copper interconnects by providing improved processes and systems that produce an improved metal-to-metal interface, more specifically copper-to-cobalt-alloy interface. An exemplary method of preparing a substrate surface of a substrate to selectively deposit a thin layer of a cobalt-alloy material on a copper surface of a copper interconnect of the substrate in an integrated system to improve electromigration performance of the copper interconnect is provided. The method includes removing contaminants and metal oxides from the substrate surface in the integrated system, and reconditioning the substrate surface using a reducing environment after removing contaminants and metal oxides in the integrated system.
    Type: Application
    Filed: August 30, 2006
    Publication date: December 20, 2007
    Applicant: Lam Research Corporation
    Inventors: Yezdi Dordi, John Boyd, Tiruchirapalli Arunagiri, Fritz C. Redeker, William Thie, Arthur M. Howald
  • Patent number: 7297373
    Abstract: A conductive composite material formed from an organic polymer base, a highly conductive metal interlayer, and an electroless nickel top layer is described. The composite material may be electrically conductive and resistant to corrosion. The highly conductive metal interlayer may be silver or copper. An electroless nickel plating process is described that efficiently deposits the nickel top layer without the use of, surfactants, and stabilizers at low temperatures. The method enables reduction of substantially all of a nickel salt onto the silver surface leaving a spent bath solution free of nickel that can be recycled.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: November 20, 2007
    Assignee: Noble Fiber Technologies, LLC
    Inventor: Vinesh Naik
  • Patent number: 7288177
    Abstract: An apparatus and method for plating a workpiece. The apparatus comprises, generally, an anode, a cathode, and a selective anode shield/material flow assembly. In use, both the anode and the cathode are immersed in a solution, and the cathode is used to support the workpiece. During an electroplating process, the anode and the cathode generate an electric field emanating from the anode towards the cathode, to generate a corresponding current to deposit an electroplating material on the workpiece. The selective shield/material flow assembly is located between the anode and the cathode, and forms a multitude of adjustable openings. These opening have sizes that are adjustable during the electroplating process for selectively and controllably adjusting the amount of electric flux passing through the selective shield/material flow assembly and the distribution of the electroplating material on the workpiece. The selective shield/material flow assembly can also be used with an electroless plating system.
    Type: Grant
    Filed: March 30, 2004
    Date of Patent: October 30, 2007
    Assignee: International Business Machines Corporation
    Inventors: Ralph A. Barrese, Gary Gajdorus, Allen H. Hopkins, John J. Konrad, Robert C. Schaffer, Timothy L. Wells
  • Patent number: 7288287
    Abstract: The insulating layer formation step of forming an insulating layer 24-1 on a base for resin application 20 by applying polymeric material, which has been diluted with a solvent, filled with inorganic filler to the base for resin application and by drying the base for resin application; the circuit formation portion forming step of creating a circuit formation portion and a via hole 25 in insulating layer 24-1 that has been formed in the above described insulating layer formation step by means of a laser treatment; and the circuit formation step of forming a circuit 23-1 by plating the circuit formation portion and via hole 25 that have been created in the above described circuit formation portion forming step are provided and the insulating layer formation step, the circuit formation portion forming step and the circuit formation step are repeated a plurality of times in this order and, thereby, a circuit formation part (multi-layered substrate) is manufactured.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: October 30, 2007
    Assignee: Omron Corporation
    Inventors: Hirokazu Tanaka, Satoshi Hirono
  • Publication number: 20070237977
    Abstract: A flexible thin metal film system is made by directly depositing an electrically-conductive metal onto the metal surface of a self-metallized polymeric film.
    Type: Application
    Filed: April 7, 2006
    Publication date: October 11, 2007
    Applicant: United States of America as represented by the Administrator of the National Aeronautics and Spac
    Inventors: Donald L. Thomsen, Robert G. Bryant
  • Publication number: 20070231607
    Abstract: A soft magnetic under layer (SUL) is formed on a non-magnetic substrate by an electroless plating method. The SUL formed by plating is subjected to magnetic field heat treatment on conditions that the heat treatment temperature is 150° C. to 350° C., a magnetic field applied to the substrate has a strength of 50 oersteds (Oe) or more, and the treatment time is selected within a range of five minutes to ten hours. Through the magnetic field heat treatment, magnetic anisotropy is obtained with a difference (?H=Hd?Hc) of 5 oersteds (Oe) or more in terms of absolute value between a magnetization saturation magnetic field strength (Hd) in the in-plane radial direction of a soft magnetic film and a magnetization saturation magnetic field strength (Hc) in the in-plane circumferential direction of the soft magnetic film, and the magnetic anisotropy is symmetric with respect to the axis of the substrate.
    Type: Application
    Filed: March 19, 2007
    Publication date: October 4, 2007
    Inventors: Masaru Ito, Ken Ohashi
  • Patent number: 7264848
    Abstract: The present invention provides a non-cyanide electroless gold plating solution free from a cyanide compound, comprising, as a completing agent of gold, a compound represented by the formula shown below or a salt thereof: X—(CH2)n—SH wherein n is 2 or 3 and X is SO3H or NH2, and having a pH value of 7 or less. The invention also provides a process for electroless gold plating using the non-cyanide electroless gold plating solution.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: September 4, 2007
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Masaki Sanada, Masao Nakazawa, Kei Imafuji
  • Publication number: 20070175358
    Abstract: An electroless gold plating solution that includes a solution- or water-soluble gold compound that provides gold ions, a complexing agent for the gold ions comprising a mixture of a sulfite and a thiosulfate in a weight ratio of greater than 1:2 to 50: 1, a reducing agent, and a benzoic acid compound having one to four hydroxyl group(s) or a solution- or water-soluble salt thereof in an amount sufficient to act as a stabilizer for the solution. Also disclosed are methods for electrolessly plating gold on a substrate or article.
    Type: Application
    Filed: December 5, 2006
    Publication date: August 2, 2007
    Inventor: Kilnam Hwang
  • Publication number: 20070175359
    Abstract: Electroless gold plating compositions that include an adhesion enhancer compound and a reduction accelerator are provided to obtain direct electroless gold plating over a gold, nickel or nickel alloy deposit. A method of electroless gold plating on a nickel-containing substrate is also disclosed.
    Type: Application
    Filed: December 5, 2006
    Publication date: August 2, 2007
    Inventor: Kilnam Hwang
  • Patent number: 7241479
    Abstract: The present invention is generally directed to a novel process for the production of nanowires and nanobelts and the novel nanostructures which can be produced according to the disclosed processes. The process can be carried out at ambient pressure and includes locating a metal in a reaction chamber, heating the chamber to a temperature at which the metal becomes molten, and flowing a vapor-phase reactant through the chamber. The vapor-phase reactant and the molten metal can react through a thermal CVD process, and nanostructures can form on the surface of the molten metal. Dimensions of the nanostructures can be controlled by reaction temperature.
    Type: Grant
    Filed: August 22, 2003
    Date of Patent: July 10, 2007
    Assignee: Clemson University
    Inventors: Apparao M. Rao, Rahul Rao
  • Patent number: 7241372
    Abstract: A plating apparatus and a plating liquid removing method removes a plating liquid remaining on a substrate-contacting portion, or portions in its vicinity, of a substrate holding member. The plating apparatus comprises a head having a rotatable housing provided with a substrate holding member for holding a substrate, a plating process container, disposed below the head, for holding a plating liquid therein, and a plating liquid removing mechanism for removing plating liquid remaining on the substrate-contacting portion, or the portions in its vicinity, at an inner circumferential edge of the substrate holding member.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: July 10, 2007
    Assignee: Ebara Corporation
    Inventors: Satoshi Sendai, Kenya Tomioka, Katsumi Tsuda
  • Patent number: 7235483
    Abstract: The method of the invention comprises accumulating experimental data or obtaining existing data with regard to the optimal time-temperature relationship of the deposition process on various film-formation stages for various materials, forming nuclei of a selected material on the surface of the treated object in the first stage under first temperature-controlled conditions for the formation of nuclei of said selected material, converting the nuclei of the aforementioned selected material into island-structured deposited layer of said material by causing lateral growth of the nuclei under second temperature-controlled conditions; converting the island-structure layer into a continuously interconnected cluster structure by causing further lateral growth of said island-structured deposited layer under third temperature-controlled conditions; forming a first continuous film of said material under fourth temperature controlled conditions which provides said first continuous film with predetermined properties; and t
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: June 26, 2007
    Assignee: Blue29 LLC
    Inventor: Igor C. Ivanov
  • Patent number: 7204871
    Abstract: A process for forming a coating on a metal substrate includes contacting the substrate with a molybdate solution having a pH of between 3.5 and 5 inclusive containing an acid with the proviso that the acid is not nitric acid. The substrate is contacted with the solution at a temperature between 30 and 75 degrees Celsius and results in a yellow coating that is kinetically stable from 20 seconds to 300 seconds before the coating darkens to a final black coloration. Water washing of the yellow coating precludes further color development. The resulting yellow coating is amenable to overlayering with a seal coat.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: April 17, 2007
    Assignee: Wolverine Plating Corp.
    Inventor: Richard J. Holden
  • Patent number: 7176133
    Abstract: An electroless metal deposition process to make a semiconductor device uses a plating bath solution having a reducing agent. A sample of the bath solution is taken and the pH of the sample is increased. The hydrogen evolved from the sample is measured. The hydrogen evolved is used to determine the concentration of the reducing agent present in the sample. Based on the determined reducing agent concentration, the plating bath solution is modified.
    Type: Grant
    Filed: November 22, 2004
    Date of Patent: February 13, 2007
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Steven M. Hues, Michael L. Lovejoy, Varughese Mathew
  • Patent number: 7172785
    Abstract: The invention relates to a process for depositing a metal on a material. The process comprises the steps of: immersing the material in deposition solution comprising the metal; inducing a material vibration in the deposition solution having a frequency corresponding to a resonance frequency of the material; including a solution vibration in the deposition solution in a direction non-parallel to the material vibration, said solution vibration having a frequency corresponding to the a resonance frequency of the deposition solution, whereby said metal is deposited onto the material. This process results in deposition of metal from the plating bath on the material in a controlled and substantially uniform thickness.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: February 6, 2007
    Inventors: G. Alan Thompson, Theresa M Anderson, David E. Marx
  • Patent number: 7163835
    Abstract: A method is described for producing thin semiconductor films on a substrate by contacting a substrate with a solution containing a metal salt, a source of a Group VIa element, and chelating agent, and a noble metal in its elemental form. The resulting semiconductor films are useful for electronic and photovoltaic applications.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: January 16, 2007
    Assignee: E. I. du Pont de Nemours and Company
    Inventor: Jeffrey Scott Meth
  • Patent number: 7112349
    Abstract: A method for treating a hinge holder includes the following steps: polishing a surface of the hinge holder; degreasing the hinge holder; cleaning the hinge holder; baking the hinge holder; cooling the hinge holder; screen-printing a part of the surface of the hinge holder; and plating the other part of the surface of the hinge holder with chromium or a chromium-containing compound. The plated hinge holder has a layer of chromium or chromium nitride on the surface, which renders the surface of the hinge holder more attractive and more wear-resistant. Therefore, it is not as easily scratched during assembly and frequent use.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: September 26, 2006
    Assignee: FIH Co., Ltd.
    Inventor: Wente Lai
  • Patent number: 7087104
    Abstract: A system and method for storing a solution containing a subset of a group consisting of a metal ion, a complexing agent, an ammonium salt, and a strong base and then nearer to a time of use in an electroless deposition process, using the solution to form an electroless deposition solution containing the entire group. In one embodiment of the invention, the metal ion includes a cobalt ion, the complexing agent includes citric acid, the ammonium salt includes ammonium chloride, and the strong base includes tetramethylammonium hydroxide.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: August 8, 2006
    Assignee: Intel Corporation
    Inventors: Hok-Kin Choi, Vani Thirumala, Valery Dubin, Chin-chang Cheng, Ting Zhong
  • Patent number: 7067172
    Abstract: Improved terminations, interconnection techniques, and inductive element features for multilayer electronic components are formed in accordance with disclosed plating techniques. Monolithic components are provided with plated terminations whereby the need for typical thick-film termination stripes is eliminated or greatly simplified. Such plated termination technology eliminates many typical termination problems and enables a higher number of terminations with finer pitch, which may be especially beneficial on smaller electronic components. The subject plated terminations are guided and anchored by exposed varying width internal electrode tabs and additional anchor tab portions. Such anchor tabs may be positioned internally or externally relative to a chip structure to nucleate additional metallized plating material. The combination of electrode tabs and anchor tabs may be exposed in respective arrangements to form generally discoidal portions of plated material.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: June 27, 2006
    Assignee: AVX Corporation
    Inventors: Andrew P. Ritter, John L. Galvagni, Jason MacNeal, Robert Heistand, II, Sriram Dattaguru
  • Patent number: 7063762
    Abstract: A method of making a circuitized substrate such as a laminate chip carrier in which a polymer, e.g., Teflon, is used as a dielectric layer and a promotion adhesion layer of a polymer is used to securely adhere a conductive layer thereto which is deposited by plating. The resulting product is thus able to provide extremely narrow conductive circuitry for subsequent connections, e.g., to a semiconductor chip. Electroless plating is the preferred plating method with the dielectric immersed in a solution of conductive monomers, e.g., pyrrole monomer, the solution also possibly containing a seed material such as palladium-tin.
    Type: Grant
    Filed: August 20, 2003
    Date of Patent: June 20, 2006
    Assignee: Endicott Interconnect Technologies, Inc.
    Inventors: Elizabeth Foster, Gregory Kevern, Anita Sargent