Superposed Diverse Or Multilayer Similar Coatings Applied Patents (Class 427/454)
  • Patent number: 8197950
    Abstract: This invention relates to dense, vertically cracked thermal barrier coatings made from high purity yttria or ytterbia stabilized zirconia powders. The high purity yttria or ytterbia stabilized zirconia powder consisting essentially of less than about 0.01 weight percent silicon dioxide (silica), less than about 0.002 weight percent aluminum oxide (alumina), less than about 0.005 weight percent calcium oxide, less than about 0.005 weight percent ferric oxide, less than about 0 to about 0.002 weight percent magnesium oxide, less than about 0 to about 0.005 weight percent titanium dioxide, from about 1.5 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria), less than 0.1 weight percent other impurity oxides, and the balance zirconium oxide (zirconia) and the balance zirconium oxide (zirconia).
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: June 12, 2012
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Thomas Alan Taylor, Danny Lee Appleby, Ann Bolcavage, Albert Feuerstein, Neil Hitchman
  • Patent number: 8192807
    Abstract: A method and apparatus for making an optical fiber preform, including injecting a plasma gas source into the first end of a tubular member; generating a ring plasma flame with the plasma gas source flowing through a plasma gas feeder nozzle, the plasma gas feeder nozzle including: an inner tube, an outer tube, wherein the plasma gas source is injected between the inner tube and the outer tube to produce the ring plasma flame, such that at least a portion of the ring plasma flame is directed radially toward the inner surface of the tubular member; traversing the tubular member along the longitudinal axis relative to the plasma flame; depositing at least one soot layer on the interior surface of the tubular member by introducing reagent chemicals into the plasma flame; and fusing all of the soot layers into a glass material on the interior surface of the tubular member.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: June 5, 2012
    Assignee: Silica Tech, LLC
    Inventors: Mikhail I. Guskov, Mohd A. Aslami, Evgueni B. Danilov, Dau Wu
  • Publication number: 20120111872
    Abstract: A cooking utensil and a manufacturing method thereof are provided. The cooking utensil includes a cooking body, a first metal-ceramic composite layer having an electromagnetic property and a second metal-ceramic composite layer having a heat conductive property. The cooking body has an external bottom surface. The first metal-ceramic composite layer is disposed on the external bottom surface of the cooking body. The second metal-ceramic composite layer is disposed on the first metal-ceramic composite layer. The cooking utensil is suitable for both an induction cooker and a gas burner.
    Type: Application
    Filed: December 21, 2010
    Publication date: May 10, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ming-Sheng Leu, Wu-Han Liu, Wei-Tien Hsiao, Chang-Chih Hsu, Mao-Shin Liu, Zhong-Ren Wu
  • Patent number: 8168261
    Abstract: The invention provides a process for applying a heat shielding coating system on a metallic substrate. The coating system comprises at least three individual layers selected from the group of barrier layer, hot gas corrosion protection layer, protection layer, heat barrier layer, and smoothing layer. The coating system is applied to the metallic substrate by low pressure plasma spraying in a single operation cycle. This process enables the layers to be applied in an arbitrary sequence. The process is preferably used in applying a coating system to a turbine blade, particularly a stator or a rotor blade of a stationary gas turbine or of an aircraft engine, or to another component in a stationary or aircraft turbine that is subjected to hot gas.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: May 1, 2012
    Assignee: Sulzer Metco A.G.
    Inventors: Ing Michael Loch, Gérard Barbezat
  • Publication number: 20120099972
    Abstract: An abrasive coating is formed on a rotor shaft that rotates with respect to cantilevered vanes. The coating is formed by thermal spray techniques and comprises a ceramic layer on a metal bond coat. The coating surface is roughened by crush grinding or by grit blasting to increase the abradability of the surface.
    Type: Application
    Filed: October 25, 2010
    Publication date: April 26, 2012
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Changsheng Guo, Christopher W. Strock, Thomas W. Stowe, Paul W. Baumann
  • Patent number: 8163353
    Abstract: A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: April 24, 2012
    Assignee: Siemens Energy, Inc.
    Inventor: Chun Lu
  • Publication number: 20120088034
    Abstract: A wafer has a rare earth oxide layer disposed, typically sprayed, on a substrate. It is useful as a dummy wafer in a plasma etching or deposition system.
    Type: Application
    Filed: December 20, 2011
    Publication date: April 12, 2012
    Applicant: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Toshihiko Tsukatani, Takao Maeda, Junichi Nakayama, Hirofumi Kawazoe, Masaru Konya, Noriaki Hamaya, Hajime Nakano
  • Patent number: 8153204
    Abstract: A method of imparting one or more of a variety of functional characteristic to a portion of an engine (e.g., a turbine or diesel engine) by depositing particles from different particle feedstocks so as to form a high temperature resistant coating on a surface of the engine portion, where the particle feedstocks are varied in-situ while the particle are being deposited and at least one functional characteristic corresponds to, or results from, using different particle feedstocks.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: April 10, 2012
    Assignee: Siemens Energy, Inc.
    Inventor: Anand A. Kulkarni
  • Patent number: 8137442
    Abstract: Process for producing at least one nanoporous layer of nanoparticles chosen from nanoparticles of a metal oxide, nanoparticles of metal oxides, and mixtures of said nanoparticles, on a surface of a substrate, in which at least one colloidal sol, in which said nanoparticles are dispersed and stabilized, is injected into a thermal plasma jet which sprays said nanoparticles onto said surface. Nanoporous layer and device, especially a separation device, comprizing said layer.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: March 20, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Bruno Pintault, David Guenadou, Luc Bianchi, Philippe Belleville, Karine Valle, Christophe Boscher, Joël Toulc'Hoat
  • Patent number: 8084100
    Abstract: Using this method, a coating (1) is manufactured on a substrate (2), which forms a surface of a base body. In this method a layer (3) with ceramic coating material is applied to the substrate in a process chamber (6) using a plasma beam (30) and using an LPPS or LPPS-TF process. The substrate contains at least one metal Me. At a set reaction temperature of the substrate and in the presence of oxygen, an oxide, which results reactively with metal M diffused on the surface, is generated as a ceramic intermediate layer (4). The ceramic layer (3) is deposited on this intermediate layer.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: December 27, 2011
    Assignee: Sulzer Metco AG
    Inventors: Arno Refke, Wolfram Beele
  • Patent number: 8070915
    Abstract: A static dewatering element (10) for a web forming machine has a thermally sprayed coating (26) manufactured of powder particles (34). The powder particles (34) are agglomerates composed of primary particles (36). The average size of the primary particles (36) is smaller than 0.5 ?m. The invention also relates to a method for covering a static dewatering element designed for a web forming machine.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: December 6, 2011
    Assignee: Metso Paper, Inc.
    Inventors: Antti Ahmaniemi, Veli-Pekka Tarkiainen
  • Patent number: 8067067
    Abstract: Disclosed herein is a method for applying plasma-resistant coatings for use in semiconductor processing apparatus. The coatings are applied over a substrate which typically comprises an aluminum alloy of the 2000 series or the 5000 through 7000 series. The coating typically comprises an oxide or a fluoride of Y, Sc, La, Ce, Eu, Dy, or the like, or yttrium-aluminum-garnet (YAG). The coating may further comprise about 20 volume % or less of Al2O3. The coatings are typically applied to a surface of an aluminum alloy substrate or an anodized aluminum alloy substrate using a technique selected from the group consisting of thermal/flame spraying, plasma spraying, sputtering, and chemical vapor deposition (CVD). To provide the desired corrosion resistance, it is necessary to place the coating in compression. This is accomplished by controlling deposition conditions during application of the coating.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: November 29, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Senh Thach, Jim Dempster, Li Xu
  • Patent number: 8043665
    Abstract: A method of controlling gloss of an image includes applying an overcoat composition of at least one gellant, at least one curable monomer, at least one curable wax and optionally at least one photoinitiator over a substrate, wherein the overcoat composition is curable upon exposure to ultraviolet radiation; following the applying of the overcoat composition and prior to curing the overcoat composition by applying ultraviolet radiation, applying heat to heat the applied overcoat composition to a temperature of at least 35° C.; and subsequent to the applying heat, applying ultraviolet radiation to the overcoat composition to substantially cure the overcoat composition.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: October 25, 2011
    Assignee: Xerox Corporation
    Inventors: Michelle N. Chretien, Jennifer L. Belelie, Gordon Sisler
  • Publication number: 20110256389
    Abstract: A corrosion and abrasion resistant multilayer coating protects a compressor operating in a marine environment. The coating includes a thermal sprayed cermet layer and an organic based sealant layer.
    Type: Application
    Filed: December 18, 2007
    Publication date: October 20, 2011
    Applicant: CARRIER CORPORATION
    Inventor: Karl J. Dendis
  • Publication number: 20110244693
    Abstract: A component for a semiconductor processing apparatus includes a matrix defining a shape of the component, and a protection film covering a predetermined surface of the matrix. The protection film consists essentially of an amorphous oxide of a first element selected from the group consisting of aluminum, silicon, hafnium, zirconium, and yttrium. The protection film has a porosity of less than 1% and a thickness of 1 nm to 10 ?m.
    Type: Application
    Filed: June 17, 2011
    Publication date: October 6, 2011
    Inventors: Akitake Tamura, Kazuya Dobashi, Teruyuki Hayashi
  • Publication number: 20110220285
    Abstract: Embodiments of the present invention provide methods for forming a hardened and roughened ceramic component. Specific steps include forming a sintered ceramic component, texturing the surface of the sintered ceramic component, and firing the component to harden it. The resulting ceramic component may have a textured surface, and in a specific embodiment, the textured surface has a roughness of about 100 to about 2000 ?in Ra.
    Type: Application
    Filed: February 11, 2011
    Publication date: September 15, 2011
    Applicant: MORGAN ADVANCED CERAMICS, INC.
    Inventors: Cheng-Tsin Lee, Ho Ouk, Gary D. Harland, Edward Tomasek
  • Publication number: 20110180546
    Abstract: The present invention relates to a cooking item comprising a vitreous coating with improved impact-resistance properties. The present invention also relates to a method for manufacturing such an item.
    Type: Application
    Filed: October 16, 2009
    Publication date: July 28, 2011
    Applicant: SEB SA
    Inventors: Stéphanie Le Bris, Aurélien Dubanchet, Jean-Luc Perillon
  • Publication number: 20110177358
    Abstract: A coating for a metal surface that provides excellent resistance to both electrochemical corrosion and mechanical insult is provided. The coating involves at least an inner coating that is a sacrificial anodic layer and an outer coating that is a protective dielectric material made of inorganic metal oxide. Some versions of the coating include an intermediate layer as well that serves to improve adhesion between the coatings and may provide additional galvanic protection. Although the coating can be made by a variety of methods, advanced methods of spray application are provided for making high-quality lightweight versions the coating.
    Type: Application
    Filed: January 20, 2010
    Publication date: July 21, 2011
    Applicant: UNITED STATES PIPE AND FOUNDRY COMPANY, LLC
    Inventors: A Michael Horton, William H Owen
  • Publication number: 20110151132
    Abstract: Methods for providing a coating system for reducing CMAS infiltration of substrates exposed to hot and harsh climates. Exemplary methods include optionally disposing a bond coat on a substrate, disposing an inner ceramic layer over the bond coat, or on the substrate in the absence of a bond coat, and disposing an outer alumina-containing layer including up to 50 percent by weight titania, using a high velocity oxygen fuel (HVOF) technique. Additional ceramic layers and alumina-containing layers may be provided to achieve a CMAS resistant coating. One or more suitable heat treatments may be utilized to phase-stabilize the alumina. The coating may be used for gas turbine engine components. Deposition techniques for the ceramic layer(s) may depend on the end use of the component.
    Type: Application
    Filed: March 31, 2010
    Publication date: June 23, 2011
    Inventors: Bangalore Nagaraj, Terry Lee Few, Timothy P. McCaffrey, Brian P. L. Heureux
  • Publication number: 20110086179
    Abstract: A turbine engine component has a substrate, a thermal barrier coating deposited onto the substrate, and a sealing layer of ceramic material on an outer surface of the thermal barrier coating for limiting molten sand penetration.
    Type: Application
    Filed: December 17, 2010
    Publication date: April 14, 2011
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Kevin W. Schlichting, Michael J. Maloney, David A. Litton, Melvin Freling, John G. Smeggil, David Snow
  • Publication number: 20110081542
    Abstract: A process for the production of a substrate having antimicrobial properties is described. It comprises a step consisting of the déposition of a métal non-gelling layer comprising an inorganic antimicrobial agent, starting from a precursor, in métal, colloid, chelate or ion form on at least one of the surfaces of the glass substrate; and a step consisting of the diffusion of the agent into said at least one surface of the substrate by thermal treatment. Alternatively, the substrate may be coated with an underlayer or a topcoat and the diffusion occurs either in the underlayer or in the topcoat. Glass and metallic substrates having antimicrobial properties are also described. In particular, a substrate exhibiting a bactericidal activity measured in accordance with standard JIS Z 2801 of higher than log 2.
    Type: Application
    Filed: December 16, 2005
    Publication date: April 7, 2011
    Applicant: AGC FLAT GLASS EUROPE S.A.
    Inventors: Georges Pilloy, Christophe Ego, Jean-Pierre Poels, Muriel Tournay, Andre Hecq, Kadosa Hevesi, Nadia Jacobs
  • Patent number: 7914856
    Abstract: The present invention provides methods for manufacturing an article having a wetting-resistant surface. The method includes providing a mixture comprising a plurality of micron-sized first particles and a plurality of nano-sized second particles, and a binder; depositing the mixture onto a substrate to form a wetting-resistant surface via a thermal spray process. The mixture is deposited without substantial melting of the first and second particles. The wetting-resistant surface has wettability sufficient to generate, with a reference fluid, a static contact angle of greater than about 90 degrees.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: March 29, 2011
    Assignee: General Electric Company
    Inventors: Tao Deng, Dennis Michael Gray, Todd Charles Curtis, Yuk-Chiu Lau, Dalong Zhong, Ming Feng Hsu, Nitin Bhate, Kripa Kiran Varanasi, Pazhayannur Ramanathan Subramanian, Margaret Louise Blohm
  • Publication number: 20110033284
    Abstract: A coated article includes an article having at least one surface and a thermal barrier coating system disposed upon the at least one surface. The thermal barrier coating system has at least two layers, with each layer having a different microstructure. The microstructure of each layer may be any one of the following: columnar, amorphous, randomized, and splat-like. The thermal barrier coating system typically exhibits a thermal conductivity of no more than 16 BTU in/hr ft2 F.
    Type: Application
    Filed: August 4, 2009
    Publication date: February 10, 2011
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Brian S. Tryon, Kevin W. Schlichting, Melvin Freling, David A. Litton
  • Publication number: 20100323119
    Abstract: The present invention relates to a process for the preparation of an organic film on a portion of the surface of a solid support made of (co)polymer, characterized in that it comprises the successive steps consisting in (i) subjecting said surface portion to an oxidizing treatment and (ii) grafting an organic film to said surface portion by radical chemical grafting.
    Type: Application
    Filed: April 30, 2010
    Publication date: December 23, 2010
    Applicant: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Thomas Berthelot, Alexandre Garcia, Sebastien Roussel, Fabien Nekelson
  • Publication number: 20100304035
    Abstract: A linear process tool comprising at least two deposition modules each comprising one or more plasma spray guns operable to move in a direction approximately orthogonal to the direction of a substrate carrier is configured to deposit at least a first and second layer, in direct contact with each other, wherein a first layer is of first composition and the second layer is of second composition different than the first composition.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 2, 2010
    Applicant: Integrated Photovoltic, Inc.
    Inventors: Raanan Zehavi, Sharone Zehavi, Lawrence Hendler, Tatyana Dulkin
  • Patent number: 7833586
    Abstract: A thermally sprayed alumina-based coating is deposited onto a thermal barrier coating to provide an article such as a turbine engine component with both CMAS mitigation and antifouling. The alumina-based coating increases a melting point of the CMAS to a temperature greater than an operating temperature of the turbine engine component. The surface roughness of the thermally sprayed alumina based coating in less than 4.0 micrometers to 0.75 micrometers. The alumina based coatings include at least 60 weight percent alumina based on a total weight of the alumina-based coating.
    Type: Grant
    Filed: October 24, 2007
    Date of Patent: November 16, 2010
    Assignee: General Electric Company
    Inventor: Joshua L. Margolies
  • Publication number: 20100266392
    Abstract: A protective coating for a surface exposed to hot gas flow comprises a thermal layer, a conducting layer and an abrasive layer. The thermal layer comprises stabilized zirconia, and overlies the surface. The conducting layer overlies the thermal layer. The abrasive layer comprises abrasive particles bonded in a metal matrix that is electroplated onto the conducting layer.
    Type: Application
    Filed: April 17, 2009
    Publication date: October 21, 2010
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Joseph J. Parkos, JR., Melvin Freling
  • Publication number: 20100159270
    Abstract: A composition useful as a thermal barrier coating on a superalloy substrate intended for use in hostile thermal environments. The coating comprises zirconia stabilized in a predominately tetragonal phase. The composition includes a ceramic component consisting essentially of zirconia (ZrO2) or a combination of zirconia and hafnia (HfO2) and a stabilizer component comprising, in combination, a first co-stabilizer selected from YbO1.5, HoO1.5, ErO1.5, TmO1.5, LuO1.5, and combinations thereof, and a second co-stabilizer selected from TiO2, PdO2, VO2, GeO2, and combinations thereof. Optionally, the stabilizer component includes Y2O3. The stabilizer component is present in an amount effective to achieve the predominantly tetragonal phase in the coating.
    Type: Application
    Filed: December 18, 2008
    Publication date: June 24, 2010
    Inventors: Ming Fu, Brian Thomas Hazel, Brett Boutwell, Tobias A. Schaedler, Curtis Alan Johnson, Don M. Lipkin, Venkat S. Venkataramani
  • Publication number: 20100159151
    Abstract: Methods of making components having calcium magnesium aluminosilicate (CMAS) mitigation capability including providing a component; applying an environmental barrier coating to the component, the environmental barrier coating having a separate CMAS mitigation layer including a CMAS mitigation composition selected from the group consisting of zinc aluminate spinel, alkaline earth zirconates, alkaline earth hafnates, rare earth gallates, beryl, and combinations thereof.
    Type: Application
    Filed: December 19, 2008
    Publication date: June 24, 2010
    Inventors: GLEN HAROLD KIRBY, BRETT ALLEN BOUTWELL, JOHN FREDERICK ACKERMAN
  • Patent number: 7713587
    Abstract: A method of coating a substrate is disclosed. The method includes providing a substrate; depositing an infrared reflecting layer over at least a portion of a substrate; depositing a primer layer over at least a portion of the infrared reflective layer; depositing a dielectric layer over at least a portion of the primer layer; and depositing an absorbing layer, wherein the absorbing layer is deposited either under the infrared reflective layer or over the dielectric layer, wherein the absorbing layer comprises an alloy and/or mixture of (a) a metal having an index of refraction at 500 nm less than or equal to 1.0 and (b) a material having a ?G°f of greater than or equal to ?100 at 1000° K. The metal can be silver and the material can be tin.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: May 11, 2010
    Assignee: PPG Industries Ohio, Inc.
    Inventors: James J. Finley, James P. Thiel, Harry Buhay
  • Patent number: 7712216
    Abstract: A restoration process for restoring surface porosity defects resulting from the casting process in metal cast products. The areas of a cast product having surface porosity defects are identified and the areas not containing surface porosity defects are masked using an adhesive, reusable, rubberized mask. The masked surface is subsequently cleaned and a metal spray is applied to the surface porosity defects. The mask is removed and the restored surface porosity defects are hand finished to create a cast product having less than 0.05% surface porosity.
    Type: Grant
    Filed: December 13, 2006
    Date of Patent: May 11, 2010
    Assignee: Brunswick Corporation
    Inventors: Douglas M. Woehlke, Raymond J. Donahue, Kevin R. Anderson
  • Patent number: 7709057
    Abstract: Described herein is a method for providing a clean edge at the interface of a portion of a substrate coated with a coating system and an adjacent portion of the substrate which is uncoated. The method includes the step of forming a zone of non-adherence on the substrate portion which is to be uncoated, prior to application of the coating system. The zone of non-adherence is adjacent the interface, so that the coating system will not adhere to the zone of non-adherence, but will adhere to the portion of the substrate which is to be coated with the coating system.
    Type: Grant
    Filed: April 8, 2003
    Date of Patent: May 4, 2010
    Assignee: General Electric Company
    Inventors: Robert Anthony Fusaro, Jr., Timothy Francis Bethel
  • Publication number: 20100104764
    Abstract: A ceramic thermal barrier coating (8) for coating the surface (7) of a component (1) of a nickel-based superalloy, and an adhesive coating optionally applied thereon (6), preferably a gas turbine component, includes zirconium oxide (ZrO2) stabilized by yttrium oxide (Y2O3) and production-related impurities, as well as at least one high-temperature and oxidation resistant intermetallic compound, for example NiAl, YRh, ErIr, the volume fraction of which decreases continuously or in stages as the distance from the surface (7) of the component (1)/the adhesive coating (6) increases. Advantageously, a less steep stress gradient is produced by gradually varying the composition of the thermal barrier coating (8).
    Type: Application
    Filed: January 4, 2010
    Publication date: April 29, 2010
    Inventor: Mohamed Youssef Nazmy
  • Publication number: 20100098923
    Abstract: A segmented abradable ceramic coating comprises a bond coat layer, at least one segmented 7 weight percent yttria-stabilized zirconia layer disposed upon said bond coat layer, and at least one 12 weight percent yttria-stabilized zirconia layer disposed upon said at least one segmented 7 weight percent yttria-stabilized zirconia layer.
    Type: Application
    Filed: October 5, 2006
    Publication date: April 22, 2010
    Inventors: Melvin Freling, Kevin W. Schlichting
  • Publication number: 20100086757
    Abstract: A method is provided for coating a component with a multilayer ceramic coating in which the individual layers of the ceramic coating are applied covering one another on the component, and in which ceramic particles are supplied to a coating burner, melted partly or completely by the coating burner, and deposited on the component. The ceramic particles have a particle size, which increases from layer to layer, and are supplied to the coating burner. Furthermore, a multilayer ceramic coating and a component which has with a multilayer ceramic coating are provided.
    Type: Application
    Filed: September 21, 2007
    Publication date: April 8, 2010
    Inventors: Thomas Berndt, Francis-Jurjen Ladru, Marcus Mensing, Gerhard Reich, Falk Stadelmaier
  • Publication number: 20100065300
    Abstract: Provided is a power feeding structure of an electrostatic chuck including a lower insulation layer, an electrode layer and a surface insulation dielectric layer formed on an upper surface side of a metal substrate in order from the metal substrate, in which the lower insulation layer, the electrode layer and the surface insulation dielectric layer are not cracked easily.
    Type: Application
    Filed: September 19, 2006
    Publication date: March 18, 2010
    Inventors: Kinya Miyashita, Yoshihiro Watanabe
  • Publication number: 20100067837
    Abstract: The present invention provides a method of making a foil component of a foil bearing, where the foil component has an inner surface, an inner portion, and an outer portion. In one embodiment, and by way of example only, the method includes thermally spraying a first material onto an outer surface of a sacrificial substrate to form the foil component inner portion, where the first material includes a solid film lubricant, and the outer surface has a shape that is complementary to the inner surface of the foil component. A second material is then thermally sprayed over the inner portion to form the outer portion, and the second material includes a metal. The sacrificial substrate is then removed to expose the foil component.
    Type: Application
    Filed: October 24, 2006
    Publication date: March 18, 2010
    Inventor: Christopher M. Weyant
  • Patent number: 7678428
    Abstract: A method of forming a thermally insulating layer system on a metallic substrate surface is disclosed.
    Type: Grant
    Filed: March 18, 2003
    Date of Patent: March 16, 2010
    Assignee: Sulzer Metco AG
    Inventors: Gerard Barbezat, Arno Refke, Michael Loch
  • Publication number: 20100062173
    Abstract: A thermal barrier coating material, containing a metal binding layer laminated on a base material and ceramic layer laminated on the metal binding layer, the ceramic layer comprising partially stabilized ZrO2 which is partially stabilized by additives of Dy2O3 and Yb2O3.
    Type: Application
    Filed: November 13, 2009
    Publication date: March 11, 2010
    Applicant: MITSUBISHI HEAVY INDUSTRIES LTD.
    Inventors: Taiji Torigoe, Kazutaka Mori, Ikuo Okada, Sunao Aoki, Kouji Takahashi, Minoru Ohara, Takehiko Hirata, Hideaki Kaneko
  • Publication number: 20100028549
    Abstract: In a process for forming a coating on a substrate, a rare earth oxide stabilized zirconia composition is provided. At least one additional constituent is provided comprising titania stabilized with zirconia. The rare earth oxide stabilized zirconia composition and additional constituent are blended to form a blended material. The blended material is deposited onto the substrate.
    Type: Application
    Filed: July 31, 2008
    Publication date: February 4, 2010
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Kevin W. Schlichting, Paul H. Zajchowski
  • Publication number: 20100015473
    Abstract: A multi-layer coating for protection of metals and alloys against oxidation at high temperatures in general is provided. The invention utilizes a multi-layer ceramic coating on metals or alloys for increased oxidation-resistance, comprising at least two layers, wherein the first layer (3) which faces the metal containing surface and the second layer facing the surrounding atmosphere (4) both comprise an oxide, and wherein the first layer (3) has a tracer diffusion coefficient for cations Mm+, where M is the scale forming element of the alloy, and the second layer (4) has a tracer diffusion coefficient for oxygen ions O2? satisfying the following formula: wherein p(O2)m is the oxygen partial pressure in equilibrium between the metallic sub-strate and MaOb, p(O2)ex is the oxygen partial pressure in the reaction atmosphere, DM is the tracer diffusion coefficient of the metal cations Mm+ in the first layer (3), and Do is O tracer diffusion coefficient in the second layer (4).
    Type: Application
    Filed: April 24, 2007
    Publication date: January 21, 2010
    Applicant: TECHNICAL UNIVERSITY OF DENMARK
    Inventors: Peter Vang Hendriksen, Lars Mikkelsen, Peter Halvor Larsen, Soeren Linderoth, Mogens Mogensen
  • Publication number: 20090324930
    Abstract: An environmental coating system for silicon based substrates wherein a porous intermediate barrier layer having an elastic modulus of about 30 to 150 GPa is provided between a silicon metal containing bondcoat and a ceramic top environmental barrier layer.
    Type: Application
    Filed: June 25, 2008
    Publication date: December 31, 2009
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Sonia Tulyani, Tania Bhatia
  • Publication number: 20090324989
    Abstract: Components (1) have a thermal barrier coating (2-6) on the surface thereof, wherein the thermal barrier coating includes at least one layer (3) having chemically stabilized zirconia, and wherein at least indirectly adjacent to the layer (3) with chemically stabilized zirconia and on its surface facing side, there is provided a protective layer (4) and/or a infiltration zone (5) which does not react with environmental contaminant compositions that contain oxides of calcium and which does not react with the material of the layer (3) having chemically stabilized zirconia. Methods for making such components as well as to uses of specific systems for coating thermal barrier coatings, can prevent CMAS.
    Type: Application
    Filed: May 26, 2009
    Publication date: December 31, 2009
    Inventors: Gregoire Etienne Witz, Hans-Peter Bossmann, Valery Shklover, Sharath Bachegowda
  • Patent number: 7622160
    Abstract: A method for applying a thermal barrier coating to an article having cooling holes and concurrently cleaning obstructions, such as TBC overspray or other debris, from those holes is disclosed. A thermal barrier coating is applied to a first surface of an article having cooling holes. Concurrently therewith, a plurality of particles are projected against a second surface of the article, such that at least some of the particles pass through the cooling holes, strike the overspray constituents prior to cooling, knocking at least some of the obstructions out of the cooling hole.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: November 24, 2009
    Assignee: General Electric Company
    Inventors: Bhupendra K. Gupta, Ray Heidorn, Tom Tomlinson, Mark M Glevicky, George E Moertle, Thomas George Holland
  • Patent number: 7604845
    Abstract: A method of forming a coating film of ceramic material on a surface of an internal member disposed in a vacuum processing apparatus, the surface of the internal member having holes formed therein. The method involves: (A) filling the holes of the internal member with padding plugs, each of which has a core member made from a metal material and a metal-resin composite layer covering the circumferential surface of the core member, the metal-resin composite layer being a complex composed of a metal material and a resinous material exhibiting nonconjugative property to a coating film; (B) forming a ceramic coating film on the surface of the internal member by plasma spraying after step (A); and (C) extracting the padding plugs out of the holes after step (B).
    Type: Grant
    Filed: September 17, 2003
    Date of Patent: October 20, 2009
    Assignee: Tokyo Electron Limited
    Inventors: Jun Takeuchi, Masaaki Kishida, Tadakazu Matsunaga, Shosuke Endoh
  • Patent number: 7597938
    Abstract: A method of making an oven door, or other coated article, is provided so as to have a color suppression coating on a substrate such as a glass substrate. Flame pyrolysis (or combustion CVD) is used in depositing at least part of a color suppression coating. For example, in an example embodiment of this invention, flame pyrolysis can be used to deposit a single SnO2 layer from suitable Sn inclusive precursor(s), or alternatively a multi-layer coating may be formed at least partially using flame pyrolysis. In another example embodiment, the coating may include a base layer of silicon oxide formed using flame pyrolysis, and another layer of tin oxide formed in any suitable manner over the base layer of silicon oxide.
    Type: Grant
    Filed: November 29, 2004
    Date of Patent: October 6, 2009
    Assignee: Guardian Industries Corp.
    Inventor: Scott V. Thomsen
  • Publication number: 20090194233
    Abstract: A component (10) for a semiconductor processing apparatus includes a matrix (10a) defining a shape of the component, and a protection film (10c) covering a predetermined surface of the matrix. The protection film (10c) consists essentially of an amorphous oxide of a first element selected from the group consisting of aluminum, silicon, hafnium, zirconium, and yttrium. The protection film (10c) has a porosity of less than 1% and a thickness of 1 nm to 10 ?m.
    Type: Application
    Filed: June 23, 2006
    Publication date: August 6, 2009
    Applicant: Tokyo Electron Limited
    Inventors: Akitake Tamura, Kazuya Dobashi, Teruyuki Hayashi
  • Patent number: 7563488
    Abstract: The invention relates to a process for manufacturing a sputter target. The process comprises the steps of—providing a target holder (12); —applying an intermediate layer (14) on said target holder; —applying a top layer (16) on top of said intermediate layer; said top layer comprising a material having a melting point which is substantially higher than the melting point of said target material; —heating the target holder coated with said intermediate layer and said top layer.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: July 21, 2009
    Assignee: NV Bekaert SA
    Inventors: Wilmert De Bosscher, Hilde Delrue, Johan Vanderstraeten
  • Patent number: 7544394
    Abstract: In accordance with an embodiment of the invention, an article is provided. The article comprises a substrate comprised of silicon containing material, an environmental barrier coating (EBC) overlying the substrate and a thermal barrier coating (TBC) on the environmental barrier coating. The thermal barrier coating comprising a compound having a rhombohedral phase.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: June 9, 2009
    Assignee: General Electric Company
    Inventors: Brett Allen Rohrer Boutwell, Irene Spitsberg, Christine Govern, Bangalore A. Nagaraj, Brian Thomas Hazel, Ramgopal Darolia, Curtis Alan Johnson, Yan Gao, Mark Daniel Gorman
  • Patent number: 7537806
    Abstract: In accordance with an embodiment of the invention, a thermal barrier coating for inclusion in a thermal barrier coating system is provided. The thermal barrier coating comprises a compound having a rhombohedral phase. In accordance with another embodiment of the invention, a thermal barrier coating is provided that comprises a compound having the formula of: A4B3O12, wherein A is at least one rare earth element; and B is selected from the group consisting of Zr, Hf and mixtures thereof.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: May 26, 2009
    Assignee: General Electric Company
    Inventors: Brett Allen Rohrer Boutwell, Ramgopal Darolia, Curtis Alan Johnson, Irene Spitsberg, Mark Daniel Gorman, Yan Gao