With Simultaneous Sputter Etching Of Substrate Patents (Class 427/524)
  • Patent number: 6348238
    Abstract: A thin film is fabricated while causing ions in a plasma P to be incident by effecting biasing relative to the space potential of the plasma P by imparting a set potential to the surface of a substrate 9. A bias system 6 causes the substrate surface potential Vs to vary in pulse form by imposing an electrode imposed voltage Ve in pulse form on a bias electrode 23 which is in a dielectric block 22. The pulse frequency is lower than the oscillation frequency of ions in the plasma P, and the pulse period T, pulse width t and pulse height h are controlled by a control section 62 in a manner such that the incidence of ions is optimized. The imposed pulses are controlled in a manner such that the substrate surface potential Vs recovers to a floating potential Vf at the end of a pulse period T, and that the ion incidence energy temporarily crosses a thin film sputtering threshold value in a pulse period T.
    Type: Grant
    Filed: February 15, 2000
    Date of Patent: February 19, 2002
    Assignee: Anelva Corporation
    Inventors: Shigeru Mizuno, Makoto Satou, Manabu Tagami, Hideki Satou
  • Patent number: 6270857
    Abstract: When an insulator is irradiated with an electron beam, a pulse-shape voltage is applied to the insulator from a pulse power source. As a result, a charge-up state of the insulator can be prevented. If an object which must be subjected to surface modification is an insulator, the object can effectively be irradiated with the electron beam to perform the surface modification.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: August 7, 2001
    Assignee: Sony Corporation
    Inventors: Minehiro Tonosaki, Mitsunori Ueda, Masato Kobayashi, Hiroyuki Okita
  • Patent number: 6217724
    Abstract: A plasma treatment system (200) for implantation with a novel susceptor with a silicon coating (203). The system (200) has a variety of elements such as a chamber, which can have a silicon coating formed thereon, in which a plasma is generated in the chamber. The system (200) also has a susceptor disposed in the chamber to support a silicon substrate. The silicon coating reduces non-silicon impurities that may attach to the silicon substrate. In a specific embodiment, the chamber has a plurality of substantially planar rf transparent windows (26) on a surface of the chamber. The system (200) also has an rf generator (66) and at least two rf sources in other embodiments.
    Type: Grant
    Filed: December 18, 1998
    Date of Patent: April 17, 2001
    Assignee: Silicon General Corporation
    Inventors: Paul K. Chu, Chung Chan
  • Patent number: 6217951
    Abstract: An impurity solid including boron as impurity and a solid sample to which boron is introduced are held in a vacuum chamber. Ar gas is introduced into the vacuum chamber to generate plasma composed of the Ar gas. A voltage allowing the impurity solid to serve as a cathode for the plasma is applied to the impurity solid and the impurity solid is sputtered by ions in the plasma, thereby mixing boron included in the impurity solid into the plasma composed of Ar gas. A voltage allowing the solid sample to serve as a cathode for the plasma is applied to the solid sample, and boron mixed into the plasma is introduced to the surface portion of the solid sample.
    Type: Grant
    Filed: October 21, 1996
    Date of Patent: April 17, 2001
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Bunji Mizuno, Hiroaki Nakaoka, Michihiko Takase, Ichiro Nakayama
  • Patent number: 6103010
    Abstract: A thin ferromagnetic film is deposited directly onto the surface of a waveguide. The crystalline orientation of the ferromagnetic film is restricted to a predetermined orientation by pulverizing nuclei that do not have the predetermined orientation.
    Type: Grant
    Filed: September 16, 1997
    Date of Patent: August 15, 2000
    Assignee: Alcatel
    Inventor: Christian Belouet
  • Patent number: 6094292
    Abstract: A multi-layered, active, thin film, solid-state electrochromic device having a high reflectivity in the near infrared in a colored state, a high reflectivity and transmissivity modulation when switching between colored and bleached states, a low absorptivity in the near infrared, and fast switching times, and methods for its manufacture and switching are provided. In one embodiment, a multi-layered device comprising a first indium tin oxide transparent electronic conductor, a transparent ion blocking layer, a tungsten oxide electrochromic anode, a lithium ion conducting-electrically resistive electrolyte, a complimentary lithium mixed metal oxide electrochromic cathode, a transparent ohmic contact layer, a second indium oxide transparent electronic conductor, and a silicon nitride encapsulant is provided. Through elimination of optional intermediate layers, simplified device designs are provided as alternative embodiments.
    Type: Grant
    Filed: February 20, 1998
    Date of Patent: July 25, 2000
    Assignee: Trustees of Tufts College
    Inventors: Ronald B. Goldner, Alexandra Gerouki, Te-Yang Liu, Mark A. Goldner, Terry E. Haas
  • Patent number: 5900126
    Abstract: An improved magnetic-recording disk and a process for manufacturing magnetic-recording disks are disclosed. A precision cold-rolled authentic stainless steel is the substrate for a magnetic-recording disk. The surface of the substrate may be hardened by plasma nitriding, plasma carburizing, or plasma carbonitriding. A hard coating may be applied to the substrate by evaporative reactive ion plating or reactive sputtering of aluminum nitride, silicon nitride, silicon carbide, or nitrides, carbides, or borides of titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, or tungsten.
    Type: Grant
    Filed: June 3, 1996
    Date of Patent: May 4, 1999
    Assignee: Tulip Memory Systems, Inc.
    Inventors: Carl W. Nelson, Richard D. Weir
  • Patent number: 5858471
    Abstract: A deposition process provides selective areal deposition on a substrate surface having separate areas of different materials comprises forming a plasma over the substrate, injecting coating species into the plasma by either of sputtering or gaseous injection, adding a reactive gas for altering surface binding energy at the coating surface, and biasing the substrate during deposition to bombard the substrate with ionic species from the plasma. Surface binding energy is altered, in the general case, differently for the separate areas, enhancing selectivity. Bias power is managed to exploit the alteration in surface binding energy. In the case of gaseous injection of the coating species, and in some cases of sputtering provision of the coating material, the temperature of the substrate surface is managed as well. In an alternative embodiment, selectivity is to phase of the coating material rather than to specific areas on the substrate, and a selected phase may be preferentially deposited on the substrate.
    Type: Grant
    Filed: October 3, 1996
    Date of Patent: January 12, 1999
    Assignee: Genus, Inc.
    Inventors: Mark A. Ray, Gary E. McGuire
  • Patent number: 5855966
    Abstract: A method for precison polishing non-planar, aspherical surfaces in substrates, particularly surfaces of molding tool substrates for molding optical surfaces therewith, which is accomplished by coating the non-planar, aspherical surface with a layer of material having a melt temperature which is less than a temperature at which the substrate will distort, heating the layer of material coated on the non-planar, aspherical surface to at least the melt temperature thereby flowing the layer of material to yield a surface tension smooth surface superimposed over the non-planar, aspherical surface, and etching the surface tension smooth surface down into the substrate to completely remove the layer.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: January 5, 1999
    Assignee: Eastman Kodak Company
    Inventor: David A. Richards
  • Patent number: 5851367
    Abstract: A method for selectively applying CVD copper to metallic surfaces, that are co-located with non-metallic surfaces, is provided. The method prepares both the metal and non-metallic surfaces with a low energy ion etch of an inert gas through the use of an ion gun. The etching promotes the growth of copper on the metallic surface, and inhibits the growth on the non-metallic surface. Following an application of CVD copper, the surfaces are etched again to clean any residual copper from the non-metallic surface, and to again prepare the surfaces for another deposition of copper. Through repeated cycles of etching and copper deposition, the copper overlying the metallic surface is accumulated to achieve the desired thickness, while the non-metallic surface remains free of copper. A method is also provided for the selective deposition of copper on metallic surfaces to fill interconnects in damascene IC structures.
    Type: Grant
    Filed: October 11, 1996
    Date of Patent: December 22, 1998
    Assignees: Sharp Microelectronics Technology, Inc., Sharp Kabushiki Kaisha
    Inventors: Tue Nguyen, Lawrence J. Charneski, Sheng Teng Hsu
  • Patent number: 5654043
    Abstract: Method and apparatus for treating a workpiece implantation surface by causing ions to impact the workpiece implantation surface. An implantation chamber defines a chamber interior into which one or more workpieces can be inserted. A support positions one or more workpieces within an interior region of the implantation chamber so that implantation surfaces of the workpieces are facing the interior region. A dopant material in the form of a gas is injected into the implantation chamber to cause the gas to occupy a region of the implantation chamber in close proximity to the one or more workpieces. A plasma of implantation material is created within the interior region of the implantation chamber. First and second conductive electrodes positioned within the implantation chamber include conductive surfaces in proximity to the chamber interior occupied by the one or more workpieces. A voltage source outside the chamber relatively biases the first and second conductive electrodes.
    Type: Grant
    Filed: October 10, 1996
    Date of Patent: August 5, 1997
    Assignee: Eaton Corporation
    Inventors: Jiqun Shao, A. Stuart Denholm
  • Patent number: 5573798
    Abstract: This invention relates to a pH measuring electrode having a sensor film which is sensitive to a hydrogen ion (H.sup.+) in the solution. The pH measuring electrode of this invention has a sensor film of a metal oxide deposited on an electrically insulative ceramics substrate so that the sensor film can be very miniaturized in its size. Therefore, the entire pH measuring electrode can be made considerably small and simple in construction. Also, this invention provides another pH measuring electrode which further includes a porous film of an insulation material coated on the surface of the metal oxide sensor film so that the sensor film is not affected by any coexistent substances.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: November 12, 1996
    Assignee: Toa Electronics Ltd.
    Inventors: Akihiko Kato, Masaharu Yamasato, Tomio Taguchi, Yoshiki Yanagida, Teruaki Katube
  • Patent number: 5556519
    Abstract: A magnetron sputter ion plating system has two or more magnetron assemblies spaced around a substrate centrally located relative to the magnetrons. The magnetrons are arranged so that adjacent magnetrons have outer magnetic assemblies of opposite polarity, so that magnetic field lines link adjacent magnetrons, so as to produce a substantially closed ring of magnetic flux. This substantially traps all electrons generated in the system, and increase the level of ionization surrounding the substrates increasing the ion bombardment of the substrates. Several embodiments are disclosed.
    Type: Grant
    Filed: March 17, 1994
    Date of Patent: September 17, 1996
    Inventor: Dennis G. Teer
  • Patent number: 5437729
    Abstract: A method for tailoring or patterning the surface of ceramic articles is provided by implanting ions to predetermined depth into the ceramic material at a selected surface location with the ions being implanted at a fluence and energy adequate to damage the lattice structure of the ceramic material for bi-axially straining near-surface regions of the ceramic material to the predetermined depth. The resulting metastable near-surface regions of the ceramic material are then contacted with energy pulses from collapsing, ultrasonically-generated cavitation bubbles in a liquid medium for removing to a selected depth the ion-damaged near-surface regions containing the bi-axially strained lattice structure from the ceramic body.
    Type: Grant
    Filed: April 8, 1993
    Date of Patent: August 1, 1995
    Assignee: Martin Marietta Energy Systems, Inc.
    Inventors: Lynn A. Boatner, Janet Rankin, Paul Thevenard, Laurence J. Romana
  • Patent number: 5389195
    Abstract: The present invention is a surface modification process which provides a means of rapidly heating a thin layer of a polymer surface or a thin coating of material on a coated substrate and various surfaces produced by such a process.
    Type: Grant
    Filed: March 7, 1991
    Date of Patent: February 14, 1995
    Assignee: Minnesota Mining and Manufacturing Company
    Inventors: Andrew J. Ouderkirk, Douglas S. Dunn, Edward C. Yu, Susan N. Bohlke
  • Patent number: 5346600
    Abstract: Plasma-enhanced magnetron-sputtered deposition (PMD) of materials is employed for low-temperature deposition of hard, wear-resistant thin films, such as metal nitrides, metal carbides, and metal carbo-nitrides, onto large, three-dimensional, irregularly shaped objects (20) without the requirement for substrate manipulation. The deposition is done by using metal sputter targets (18) as the source of the metal and immersing the metal sputter targets in a plasma (16) that is random in direction and fills the deposition chamber (12) by diffusion. The plasma is generated from at least two gases, the first gas comprising an inert gas, such as argon, and the second gas comprising a nitrogen source, such a nitrogen, and/or a carbon source, such as methane. Simultaneous with the deposition, the substrate is bombarded with ions from the plasma by biasing the substrate negative with respect to the plasma to maintain the substrate temperature and control the film microstructure.
    Type: Grant
    Filed: August 14, 1992
    Date of Patent: September 13, 1994
    Assignee: Hughes Aircraft Company
    Inventors: Simon K. Nieh, Jesse N. Matossian, Frans G. Krajenbrink
  • Patent number: 5273849
    Abstract: Repair of transparent errors in masks utilized for lithographic processes in the manufacture of devices is accomplished by a particularly expedient procedure. In this procedure a metal ion beam such as a gallium ion beam is directed to the region that is to be repaired. An organic gas, including a material having an aromatic ring with an unsaturated substituent, is introduced into this region. The interaction of the gas with the ion beam produces an opaque adherent deposit. The resolution for this deposition is extremely good and is suitable for extremely fine design rules, e.g., 1 .mu.m and below.
    Type: Grant
    Filed: March 12, 1992
    Date of Patent: December 28, 1993
    Assignee: AT&T Bell Laboratories
    Inventors: Lloyd R. Harriott, Michael J. R. Vasile
  • Patent number: 5246576
    Abstract: The electrode of the present invention has metallic surface within a laser produced opening where the metallic surface extends into an electronic metallic conductive pathway and the pathway is covered for electric insulation by an encapsulant layer. The encapsulant layer around the metallic surface has the opening to allow the exposure of the metallic surface from the encapsulant layer. The metallic pathway and encapsulant are resident on a substrate, and are produced from layered circuitry. The electrochemical cell has the aforementioned electrode juxtaposed to another electrode. This electrode is part of the patterned metallic layer that is produced by layered circuitry. The electrode extends into an electronic metallic conductive pathway that is spaced apart and electronically insulated from the other pathway. The insulation can be supplied by a covering of encapsulant material that covers the pathway except does not cover the second electrode.
    Type: Grant
    Filed: December 10, 1990
    Date of Patent: September 21, 1993
    Assignee: PPG Industries, Inc.
    Inventors: Matthew J. Leader, Jeffery A. Graves
  • Patent number: 5246741
    Abstract: A substrate to be modified is placed in a vacuum vessel, a reducing atmosphere is provided over the substrate and simultaneously therewith the substrate is irradiated with accelerated ions, whereby oxygen which bonds to the substrate is freed from the substrate, the oxygen bonds to a material which forms the reducing atmosphere and the surface of the substrate is modified by the accelerated ion. The surface of the substrate can be thus efficiently modifed at relatively low temperatures. Furthermore, by evaporating carbon for an alumina substrate or alumina powder or providing hydrocarbon gas over the alumina substrate or alumina powder in a vacuum vessel, the alumina substrate or alumina powder is providing in the reducing atmosphere and the alumina substrate or alumina powder is irradiated with accelerated nitrogen ions from an ion source, whereby aluminum and oxygen which constitute the alumina substrate or alumina powder are cut off from each other by irradiation with the accelerated nitrogen ions.
    Type: Grant
    Filed: December 20, 1990
    Date of Patent: September 21, 1993
    Assignee: Hitachi, Ltd.
    Inventors: Koukichi Ouhata, Kenichi Natsui
  • Patent number: 5234560
    Abstract: A method and apparatus for controlling thin layer sputtering, especially titanium-nitride-type hard, abrasion-proof layers. Ionization current on substrates, especially at greater distances from cathode, is increased and layers are more homogenous. Density and homogeneity of both ionization and electron current on substrates are increased and ionic cladding during layer sputtering and with floating potential of substrates is possible. Substrates are placed in a holding space defined by lines of force of a magnetic multipolar field that includes a closed tunnel of magnetron-type lines of force above the sputtered cathode and whose direction on the boundary of the holding space alternates from positive to negative polarity and vice versa. In the holding space, interaction of the glow discharge with the magnetic multipolar field forms a homogenous plasma whose particles bombard the substrates.
    Type: Grant
    Filed: April 16, 1992
    Date of Patent: August 10, 1993
    Assignee: Hauzer Holdings BV
    Inventors: Stanislav Kadlec, Jindrich Musil
  • Patent number: 5158931
    Abstract: A laser beam 5 is directed to a target made of an oxide superconductor to allow a target spot which is irradiated with the beam to be evaporated and a matter which is evaporated to be deposited as a thin film on the surface of a substrate 3 at which time excited oxygen is supplied to or near a thin film deposition site on the substrate 3. In this way, an oxide superconductor thin film is formed on the substrate with oxygen atoms incorporated in the crystal structure of the thin film.
    Type: Grant
    Filed: November 16, 1989
    Date of Patent: October 27, 1992
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Etsuo Noda, Setsuo Suzuki, Osami Morimiya, Kazuo Hayashi