Metal Or Metal Alloy Substrate Patents (Class 427/528)
  • Patent number: 11248289
    Abstract: A multilayered corrosion and anti-galling coating for threads and wearable materials is a liner that can be superimposed onto the surface of a device in order to protect the surface from environmental hazards. To accomplish this, the coating has a base adhesive layer, an intermediary insulation layer, an interstitial adhesive layer, and a lubricating material layer. The base adhesive layer adheres to the device's surface thus enabling the coating to form a sealing liner. The intermediary insulation layer is positioned in between the base adhesive layer and the interstitial adhesive layer. As a result, the intermediary insulation layer prevents negative chemical interactions between the base adhesive layer and the interstitial adhesive layer. The lubricating material layer is super imposed onto the interstitial adhesive layer to provide a friction-reducing coating for the device's surface.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: February 15, 2022
    Assignee: DALLAS THIN FILMS
    Inventor: Steven Craig Shafer
  • Patent number: 9841732
    Abstract: A watch external part of the present invention is equipped with a substrate and a coating formed using an aerosol deposition method. The coating is selectively provided at a portion of a site observable in a state with the watch external part incorporated in a watch. The substrate is made of a material including one type or two or more types selected from a group consisting of sapphire glass, quartz, and plastic. The watch external part is further equipped with a ground layer having at least one layer between the substrate and the coating.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: December 12, 2017
    Assignee: Seiko Epson Corporation
    Inventor: Yoshifumi Ito
  • Patent number: 9422994
    Abstract: A cast-iron friction member is manufactured by: performing a nitrocarburizing treatment on a cast workpiece at a treatment temperature of 500° C. to 600° C. to thus form a nitrogen compound layer on a surface of the workpiece; and exposing the workpiece to an atmosphere when a temperature becomes 400° C. to 480° C. after the nitrocarburizing treatment so as to cool the workpiece to a room temperature while keeping a contact state with oxygen to thus form an iron oxide layer including Fe3O4 on a surface of the nitrogen compound layer.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: August 23, 2016
    Assignee: AKEBONO BRAKE INDUSTRY CO., LTD.
    Inventors: Yoshiyuki Sugai, Katsuji Seki, Takuya Takada
  • Patent number: 9028923
    Abstract: The present invention relates to a ceramic coating and ion beam mixing apparatus for improving corrosion resistance, and a method of reforming an interface between a coating material and a base material. In samples fabricated using the coating and ion beam mixing apparatus, adhesiveness is improved, and the base material is reinforced, thereby improving resistance to thermal stress at high temperatures and high-temperature corrosion resistance of a material to be used in a sulfuric acid decomposition apparatus for producing hydrogen.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: May 12, 2015
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Jaewon Park, Chang-Kue Park, Jonghwa Chang, Byungho Choi, Yongwan Kim
  • Patent number: 9011668
    Abstract: A method for the antimicrobial provision of implant surfaces with silver, in which the method comprises an anodizing of the implant surface with an electrolyte, in which the electrolyte has a silver-yielding substance. Alternatively, the method comprises a silver implantation or a silver PVD deposition.
    Type: Grant
    Filed: December 2, 2008
    Date of Patent: April 21, 2015
    Assignee: Stryker Trauma GmbH
    Inventor: Andreas Speitling
  • Patent number: 8999456
    Abstract: A method for manufacturing a drug-releasing stent is provided. The method includes providing a titanium precursor, a carrier gas and a reactant gas in a plasma vacuum chamber, and generating a plasma for 1 to 6 hours to form a titanium oxide thin film on the surface of a stent. The method further includes providing steam or oxygen and hydrogen in the plasma vacuum chamber and generating a low-temperature plasma for 10 minutes to 2 hours to modify the surface of the titanium oxide thin film. The method further includes reacting the titanium oxide thin film of the stent with a drug in an acidic solution and under an inert gas atmosphere at room temperature to 100° C. for 30 minutes to 4 hours to attach the drug.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: April 7, 2015
    Assignee: Industry Foundation of Chonnam National University
    Inventors: Dong Lyun Cho, Sun-Jung Song, Myung Ho Jeong, Kyoung Seok Kim, Yu Jeong Park
  • Publication number: 20150072236
    Abstract: Using metal foams for the electrode of secondary lithium battery, preparing method thereof, and secondary lithium battery including the metal foam. A metal foam is used in an electrode of secondary lithium battery where the surface and the inner pore walls are coated with the active materials, a method of manufacturing such metal foam, and secondary lithium battery including the metal foam.
    Type: Application
    Filed: April 18, 2014
    Publication date: March 12, 2015
    Inventors: Ji Hyun Um, Hyeji Park, Myounggeun Choi, Hyelim Choi, Yong-Hun Cho, Yung-Eun Sung, Heeman Choe
  • Patent number: 8974867
    Abstract: A method for making a strip shaped graphene layer includes the following steps. First, a carbon nanotube structure on a surface of a metal substrate is provided. The carbon nanotube structure includes at least one drawn carbon nanotube film. The at least one drawn carbon nanotube film includes a number of carbon nanotube segments, each of the number of carbon nanotube segments being substantially parallel to each other and separated from each other by a strip-shaped gap. Second, carbon ions are implanted into the metal substrate through the strip-shaped gaps. Third, the metal substrate is annealed to obtain the strip shaped graphene layer.
    Type: Grant
    Filed: December 29, 2012
    Date of Patent: March 10, 2015
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Xiao-Yang Lin, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20150045205
    Abstract: A soft-landing (SL) instrument for depositing ions onto substrates using a laser ablation source is described herein. The instrument of the instant invention is designed with a custom drift tube and a split-ring ion optic for the isolation of selected ions. The drift tube allows for the separation and thermalization of ions formed after laser ablation through collisions with an inert bath gas that allow the ions to be landed at energies below 1 eV onto substrates. The split-ring ion optic is capable of directing ions toward the detector or a landing substrate for selected components. The inventors further performed atomic force microscopy (AFM) and drift tube measurements to characterize the performance characteristics of the instrument.
    Type: Application
    Filed: November 12, 2013
    Publication date: February 12, 2015
    Inventors: Guido Fridolin Verbeck, IV, Stephen Davila
  • Publication number: 20140272291
    Abstract: A method for fabricating a hydrophilic aluminum surface includes: an activation step of preparing doped aluminum having an activated surface through doping treatment on a part or whole of an aluminum surface with applying reactive gas thereto; and a structure forming step of preparing a hydrophilic aluminum surface through oxidizing treatment on the doped aluminum to have nano-patterns comprising nano-protrusion structures on the aluminum surface. Hydrophobic aluminum can be fabricated into artificially hydrophilic or super-hydrophilic aluminum, and the hydrophilic aluminum surface body that does not have an aging effect and has long-lasting hydrophilicity can be provided.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Myoung Woon MOON, Seong Jin KIM, Heon Ju LEE, Eu Sun YU, Tae Jun KO, Kyu Hwan OH, Kwang Ryeol LEE
  • Publication number: 20140227631
    Abstract: The present invention proposed manufacturing method of coating layers with good conductivity and corrosion resistance at high productivity comprising etching the oxide layer on the stainless steel substrate by plasma etching to activate the surface and prevent from decreasing it's conductivity, coating metal nitrides like CrN or TiN in nano size thickness on the etched surface and coating carbon layer at nano size thickness on top of it. According to the present invention, it is possible to produce manufacture fuel cell bipolar plate, electrode material and stainless steel with reinforced conductivity and corrosion resistance in mass.
    Type: Application
    Filed: February 9, 2013
    Publication date: August 14, 2014
    Inventors: Youngha Jun, Jaimoo Yoo, Kiho Yeo, Shin Eui Chul
  • Publication number: 20140216723
    Abstract: A slip component for a downhole tool has a bearing surface hard surface treated. The slip component, which can be a slip or other component of a slip mechanism used on a packer, bridge plug, or other downhole tool, is composed of a metallic base material such as magnesium, aluminum, an aluminum alloy, or a magnesium alloy. To hard surface treat the slip component, at least the bearing surface is positioned relative to an electro sparking apparatus. Using the electrosparking apparatus, an external layer is bonded at least on the bearing. In a further embodiment, an intermediate layer can be first bonded onto at least the bearing surface by ion sputtering an intermediate material onto the metallic base material of the slip component. Then, an external layer can be bonded at least on the intermediate layer by electrospark deposition.
    Type: Application
    Filed: February 7, 2013
    Publication date: August 7, 2014
    Inventor: Robert P. Badrak
  • Patent number: 8795790
    Abstract: [Problem] An object is to provide a magnetic recording medium with improved HDI characteristics, such as impact resistance, and its manufacturing method. [Solution] A typical structure of a magnetic recording medium 100 according to the present invention includes, on a base, at least a magnetic recording layer 122, a protective layer 126, and a lubricating layer 128, wherein the magnetic recording layer 122 includes, in an in-plane direction, a magnetic recording part 136 configured of a magnetic material and a non-recording part 134 magnetically separating the magnetic recording part 136, and a surface corresponding to the non-recording part 134 protuberates more than a surface corresponding to the magnetic recording part 136.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: August 5, 2014
    Assignee: WD Media (Singapore) Pte. Ltd.
    Inventors: Yoshiaki Sonobe, Akira Shimada, Tsuyoshi Ozawa, Masanori Aniya
  • Patent number: 8758575
    Abstract: Conventional electrochromic devices frequently suffer from poor reliability and poor performance. Improvements are made using entirely solid and inorganic materials. Electrochromic devices are fabricated by forming an ion conducting electronically insulating interfacial region that serves as an IC layer. In some methods, the interfacial region is formed after formation of an electrochromic and a counter electrode layer. The interfacial region contains an ion conducting electronically insulating material along with components of the electrochromic and/or the counter electrode layer. Materials and microstructure of the electrochromic devices provide improvements in performance and reliability over conventional devices.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: June 24, 2014
    Assignee: View, Inc.
    Inventors: Zhongchun Wang, Anshu Pradhan, Robert T. Rozbicki
  • Publication number: 20140127580
    Abstract: Embodiments of the present disclosure provide for a structure, methods of making the structure, methods of using the structure, and the like. In particular, the structure includes a porous germanium layer, where the porous germanium layer includes a porous network that improves the performance of the structure.
    Type: Application
    Filed: June 26, 2012
    Publication date: May 8, 2014
    Inventors: Kevin Scott Jones, Bradley Robert Yates, Blake Leonardl Darby
  • Publication number: 20140030512
    Abstract: The present invention provides a film formation method capable of forming a favorable amorphous carbon film under a low vacuum by using a bipolar-type PBII apparatus and the amorphous carbon film to be produced by the film formation method. The film formation method is carried out to form the amorphous carbon film under a low vacuum (1000 to 30000 Pa) by using a power source for the bipolar-type PBII apparatus. There are provided inside a chamber (1) a power source side electrode (3) connected to a power source (6) for the PBII apparatus and a grounding side electrode (4) opposed to the power source side electrode (3). A base material (2) is disposed on one of the power source side electrode (3) and the grounding side electrode (4). Plasma of a noble gas and that of a hydrocarbon-based gas are generated between the base material (2) and the electrode where the base material (2) is not disposed to form the amorphous carbon film on a surface of the base material (2).
    Type: Application
    Filed: April 20, 2012
    Publication date: January 30, 2014
    Applicant: NTN CORPORATION
    Inventors: Kouya Oohira, Masaki Nakanichi, Yosuke Taguchi, Setsuo Nakao
  • Publication number: 20130306199
    Abstract: Described herein is a feedstock including a core comprising BMG and a sheath attached the core. The sheath has a different physical property, a different chemical property or both from the core. Alternatively, the feedstock can include a sheath that encloses one or more core comprising BMG. The feedstock can be manufactured by attaching the sheath to the core, shot peening the core, etching the core, ion implanting the core, or applying a coating to the core, etc. The feedstock can be used to make a part by injection molding. The sheath can be used to adjust the composition of the core to reach the composition of the part.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 21, 2013
    Applicants: Crucible Intellectual Property LLC, Apple Inc.
    Inventors: Christopher D. Prest, Joseph C. Poole, Joseph Stevick, Theodore Andrew Waniuk, Quoc Tran Pham
  • Publication number: 20130299339
    Abstract: An aluminum alloy component has a surface region alloyed with an anodic metal to increase corrosion resistance in aqueous environments with high salinity or sulfur content.
    Type: Application
    Filed: June 17, 2013
    Publication date: November 14, 2013
    Inventors: Thomas J. Watson, Thomas J. Garosshen
  • Publication number: 20130266738
    Abstract: A method for making a strip shaped graphene layer includes the following steps. First, a carbon nanotube structure on a surface of a metal substrate is provided. The carbon nanotube structure includes at least one drawn carbon nanotube film. The at least one drawn carbon nanotube film includes a number of carbon nanotube segments, each of the number of carbon nanotube segments being substantially parallel to each other and separated from each other by a strip-shaped gap. Second, carbon ions are implanted into the metal substrate through the strip-shaped gaps. Third, the metal substrate is annealed to obtain the strip shaped graphene layer.
    Type: Application
    Filed: December 29, 2012
    Publication date: October 10, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: XIAO-YANG LIN, KAI-LI JIANG, SHOU-SHAN FAN
  • Patent number: 8551578
    Abstract: A method for patterning a magnetic thin film on a substrate includes: providing a pattern about the magnetic thin film, with selective regions of the pattern permitting penetration of energized ions of one or more elements. Energized ions are generated with sufficient energy to penetrate selective regions and a portion of the magnetic thin film adjacent the selective regions. The substrate is placed to receive the energized ions. The portion of the magnetic thin film is subjected to thermal excitation. The portions of the magnetic thin film are rendered to exhibit a magnetic property different than selective other portions. A method for patterning a magnetic media with a magnetic thin film on both sides of the media is also disclosed.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: October 8, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Omkaram Nalamasu, Steven Verhaverbeke, Majeed Foad, Mahalingam Venkatesan, Nety M. Krishna
  • Patent number: 8535766
    Abstract: A method for patterning a magnetic thin film on a substrate includes: providing a pattern about the magnetic thin film, with selective regions of the pattern permitting penetration of energized ions of one or more elements. Energized ions are generated with sufficient energy to penetrate selective regions and a portion of the magnetic thin film adjacent the selective regions. The substrate is placed to receive the energized ions. The portions of the magnetic thin film are rendered to exhibit a magnetic property different than selective other portions. A method for patterning a magnetic media with a magnetic thin film on both sides of the media is also disclosed.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: September 17, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Steven Verhaverbeke, Omkaram Nalamasu, Majeed Foad, Mahalingam Venkatesan, Nety M. Krishna
  • Publication number: 20130192996
    Abstract: An aluminum alloy component has a surface region alloyed with an anodic metal to increase corrosion resistance in aqueous environments with high salinity or sulfur content.
    Type: Application
    Filed: January 29, 2013
    Publication date: August 1, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventor: United Technologies Corporation
  • Publication number: 20130192982
    Abstract: An aluminum alloy component has a surface region alloyed with an anodic metal to increase corrosion resistance in aqueous environments with high salinity or sulfur content.
    Type: Application
    Filed: February 1, 2012
    Publication date: August 1, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Thomas J. Watson, Thomas J. Garosshen
  • Publication number: 20130101751
    Abstract: The present disclosure describes methods of inserting lithium into an electrochromic device after completion. In the disclosed methods, an ideal amount of lithium can be added post-fabrication to maximize or tailor the free lithium ion density of a layer or the coloration range of a device. Embodiments are directed towards a method to insert lithium into the main device layers of an electrochromic device as a post-processing step after the device has been manufactured. In an embodiment, the methods described are designed to maximize the coloration range while compensating for blind charge loss.
    Type: Application
    Filed: July 9, 2012
    Publication date: April 25, 2013
    Applicant: ITN Energy Systems Inc.
    Inventors: Brian Spencer Berland, Bruce Roy Lanning, Jonathan Mack Frey, Kathryn Suzanne Barrett, Paul DuPont, Ronald William Schaller
  • Publication number: 20130058009
    Abstract: The present invention relates to a metal current collector including a metal substrate having grooves on a surface thereof, a carbon buffer layer formed on the metal substrate, and a conductive layer formed on the carbon buffer layer, a method for preparing the same, and electrochemical capacitors comprising the same. According to the present invention, a metal current collector including a metal substrate having grooves on a surface thereof, a carbon buffer layer formed on the metal substrate, and a conductive layer formed on the carbon buffer layer has a large surface area and low electrical resistance. This metal current collector can be effectively used in electrochemical capacitors with high capacity and high output characteristics by improving contact characteristics with an active material layer.
    Type: Application
    Filed: May 24, 2012
    Publication date: March 7, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Hak Kwan Kim, Jun Hee Bae, Ho Jin Yun, Bae Kyun Kim
  • Patent number: 8337958
    Abstract: A process for manufacturing electrodes for electrolysis, including the steps of forming an arc ion plating undercoating layer comprising valve metal or valve metal alloy including a crystalline tantalum component and a crystalline titanium component on the surface of the electrode substrate comprising valve metal or valve metal alloy, by an arc ion plating method; heat sintering the electrode substrate to transform only the tantalum component of the arc ion plating undercoating layer into an amorphous substance; and forming an electrode catalyst layer on the surface of the arc ion plating undercoating layer including the valve metal or valve metal alloy including the tantalum component transformed to the amorphous substance and the crystalline titanium component.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: December 25, 2012
    Assignee: Permelec Electrode Ltd.
    Inventors: Yi Cao, Masashi Hosonuma
  • Patent number: 8333002
    Abstract: In a surface finishing method for a stainless steel material, excimer irradiation is made on a surface of the stainless steel material by emitting ultraviolet light to improve wetness. Then, a surface finishing is applied on the surface of the stainless steel material wherein the wetness is improved. In manufacturing a gasket, the stainless steel material or plate is cut in a predetermined shape, and holes and bead are formed in the metal formation plate. Then, the plate may be assembled with other plate.
    Type: Grant
    Filed: May 15, 2007
    Date of Patent: December 18, 2012
    Assignee: Ishikawa Gasket Co., Ltd.
    Inventors: Tadashi Kasuya, Shinichi Sato, Mizuhiro Toki
  • Publication number: 20120297825
    Abstract: An improved jewelry article with a brilliant, preferably white, coating securely bonded to a substrate. The coating comprises predominantly chromium and, where a white finish is desired, a platinum group metal, preferably platinum. The substrate comprises predominantly tungsten carbide and a substantial amount of metal, preferably nickel. The coating is applied to the substrate using vapor deposition, such as physical vapor deposition. The metal and especially nickel will facilitate adhesion between the chromium in the coating and the substrate. The vapor deposition will further provide for superior adhesion as compared to traditional plating techniques. The improved jewelry article will maintain the brilliant, preferably white, finish of the coating due to the hard scratch resistant predominantly chromium coating and the improved adhesion between the coating and substrate.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 29, 2012
    Applicant: Stuller, Inc.
    Inventor: Glenn A. Miller
  • Patent number: 8313623
    Abstract: A cathode for electrolytic processes, particularly suitable for hydrogen evolution in chlor-alkali electrolysis comprises a metal substrate provided with a catalytic coating made of two layers containing palladium, rare earths (such as praseodymium) and a noble component selected between platinum and ruthenium. The rare earth percent amount by weight is lower in the outer layer than in the inner layer.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: November 20, 2012
    Assignee: Industrie de Nora S.p.A.
    Inventors: Antonio Lorenzo Antozzi, Alice Calderara, Marianna Brichese
  • Publication number: 20120219822
    Abstract: A housing is provided which includes an aluminum or aluminum alloys substrate, an aluminum layer and a corrosion resistant layer formed on the aluminum or aluminum alloys substrate in that order. The corrosion resistant layer is an Al—O—N layer. Then, La ions is implanted in the Al—O—N layer by ion implantation process. The atomic percentages of N and O in the Al—O—N gradient layer gradually increase from the bottom of the layer near the aluminum or aluminum alloys substrate to the top of the layer away from aluminum or aluminum alloys substrate by physical vapor deposition. The housing has a higher corrosion resistance. A method for making the housing is also provided.
    Type: Application
    Filed: August 10, 2011
    Publication date: August 30, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY (ShenZhen) CO., LTD.
    Inventors: HSIN-PEI CHANG, WEN-RONG CHEN, HUANN-WU CHIANG, CHENG-SHI CHEN, YI-CHI CHAN, XIAO-QIANG CHEN
  • Publication number: 20120219819
    Abstract: A housing is provided which includes an aluminum or aluminum alloys substrate, an aluminum layer and a corrosion resistant layer formed on the aluminum or aluminum alloys substrate in that order. The corrosion resistant layer is an Al—O—N layer. Then, Gd ions is implanted in the Al—O—N layer by ion implantation process. The atomic percentages of N and O in the Al—O—N gradient layer gradually increase from the bottom of the layer near the aluminum or aluminum alloys substrate to the top of the layer away from aluminum or aluminum alloys substrate by physical vapor deposition. The housing has a higher corrosion resistance. A method for making the housing is also provided.
    Type: Application
    Filed: July 27, 2011
    Publication date: August 30, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., HONG FU JIN PRECISION INDUSTRY(ShenZhen) CO., LTD.
    Inventors: Hsin-Pei CHANG, Wen-Rong CHEN, Huann-Wu CHIANG, Cheng-Shi CHEN, Yi-Chi CHAN, Xiao-Qiang CHEN
  • Publication number: 20120219409
    Abstract: A pump used in a gasification system, the pump comprises a housing having an inlet and an outlet, a rotor supported within the housing for rotation relative to the housing, the rotor comprising a hub, a plurality of disks spaced apart by sections of the hub, and defining a plurality of transport channels for transporting solid carbonaceous feedstocks for the gasification system, and an interior feedstock facing surface adjacent to the solid carbonaceous feedstocks, wherein at least a portion of the interior feedstock facing surface is coated with a coating.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 30, 2012
    Inventors: Judeth Brannon Corry, James Michael Storey, Minghu Guo, Wei Chen, Cai Zeng, Richard L. Zhao, Steven Craig Russell
  • Patent number: 8192805
    Abstract: Embodiments of methods for improving electrical leakage performance and minimizing electromigration in semiconductor devices are generally described herein. Other embodiments may be described and claimed.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: June 5, 2012
    Assignee: TEL Epion Inc.
    Inventors: Noel Russell, Steven Sherman, John J. Hautala
  • Publication number: 20120114870
    Abstract: The invention discloses a manufacturing method of a noble metal plating layer comprising the following steps: preparing a base material which is an alloy including a nickel base and at least one element with high oxidation valence on an object to be plated; soaking the object to be plated in a plating solution including pre-plating noble metal ions to make the element in the base material to be dissolved in the plating solution to obtain at least one ion with high oxidation valence; performing a chemical displacement reaction among the base material, the at least one ion having high oxidation valence, and the pre-plating noble metal ion in the plating solution to precipitate the pre-plating noble metal ion onto a surface of the object to be plated to form a noble metal plating layer.
    Type: Application
    Filed: April 2, 2011
    Publication date: May 10, 2012
    Applicant: NATIONAL DEFENSE UNIVERSITY
    Inventors: SUNG-YING TSAI, MING-DER GER, YUH SUNG, YANN-CHENG CHEN
  • Publication number: 20120094114
    Abstract: A metal foil comprising an electric resistance film in which the metal foil is made of copper or copper alloy, the surface roughness of at least one surface thereof is set to a 10-point average roughness Rz of 6.0 ?m to 8.0 ?m, and an electric resistance film is formed on that surface, wherein the peel strength of the electric resistance film is 0.60 kN/m or more, and variation of the resistance value of the electric resistance film is ±10% or less. Provided is a copper foil with an electric resistance film in which an electric resistance film is formed on the copper foil to enable the resistor to be built into the substrate, the adhesiveness thereof to a resin substrate is ensured, and variation of the resistance value of the electric resistance film is reduced.
    Type: Application
    Filed: March 10, 2010
    Publication date: April 19, 2012
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventor: Toshio Kurosawa
  • Publication number: 20110314991
    Abstract: The present invention provides a shearing die having longer life and a method for manufacturing the same.
    Type: Application
    Filed: June 28, 2011
    Publication date: December 29, 2011
    Applicants: Nippon Koshuha Steel Co., Ltd., Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Kenji YAMAMOTO, Yasuhiro Hayashida, Junji Yoshida
  • Patent number: 8067104
    Abstract: A magnetic recording medium includes a substrate; and a recording film formed on the substrate and including a main magnetic film, the main magnetic film where a recording area and a guard area are formed by local ion doping, the guard area having saturation magnetization smaller than saturation magnetization of the recording area. A primary layer is provided at a substrate side of the main magnetic film. A main ingredient of the primary layer is at least one kind of atom selected from a group consisting of Cr, B, Mo, Al, Si, and C.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: November 29, 2011
    Assignee: Fujitsu Limited
    Inventors: Tsutomu Tanaka, Kenji Sato
  • Publication number: 20110287318
    Abstract: Provided are novel multidimensional electrode structures containing high capacity active materials for use in rechargeable electrochemical cells. These structures include main support structures and multiple nanowires attached to the support structures and extending into different directions away from these supports. The active material may be deposited as a layer (uniform or non-uniform) surrounding the nanowires and, in certain embodiments, the main supports and even substrate. The active material layer may be sufficiently thin to prevent pulverization of the layer at given operating conditions. Interconnections between the electrode structures and/or substrate may be provided by overlaps formed during deposition of the active layer. Silicide-based nano wires structures may be formed on the main supports in a fluidized bed reactor by suspending the metal-containing main supports in a silicon-containing process gas. A layer of silicon may be then deposited over these silicide nanowires.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 24, 2011
    Applicant: AMPRIUS, INC.
    Inventors: Ghyrn E. Loveness, Constantin I. Stefan, Song Han
  • Publication number: 20110269619
    Abstract: A soft-landing (SL) instrument for depositing ions onto substrates using a laser ablation source is described herein. The instrument of the instant invention is designed with a custom drift tube and a split-ring ion optic for the isolation of selected ions. The drift tube allows for the separation and thermalization of ions formed after laser ablation through collisions with an inert bath gas that allow the ions to be landed at energies below 1 eV onto substrates. The split-ring ion optic is capable of directing ions toward the detector or a landing substrate for selected components. The inventors further performed atomic force microscopy (AFM) and drift tube measurements to characterize the performance characteristics of the instrument.
    Type: Application
    Filed: April 19, 2011
    Publication date: November 3, 2011
    Applicant: University of North Texas
    Inventors: Guido Fridolin Verbeck, Stephen Davila
  • Patent number: 8048492
    Abstract: A magnetoresistive effect element is produced by forming a first magnetic layer, a spacer layer including an insulating layer and a conductive layer which penetrates through the insulating layer and passes a current, on the first magnetic layer, and a second magnetic layer all of which or part of which is treated with ion, plasma or heat, on the formed spacer layer.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: November 1, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hideaki Fukuzawa, Hiromi Yuasa, Yoshihiko Fuji, Hitoshi Iwasaki
  • Publication number: 20110236592
    Abstract: The present invention relates to a method for treating a metal element subjected to an ion beam, where: the ions of the beam are selected from among boron, carbon, nitrogen, and oxygen; the ion acceleration voltage, greater than or equal to 10 kV, and the power of the beam, between 1 W and 10 kW, as well as the ion load per surface unit are selected so as to enable the implantation of ions onto an implantation area with a thickness eI of 0.05 ?m to 5 ?m, and also enable the diffusion of ions into an implantation/diffusion area with a thickness eI+eP, of 0.1 ?m to 1,000 ?m; the temperature TZF of the area of the metal element located under the implantation/diffusion area is less than or equal to a threshold temperature TSD. In this manner, metal surfaces having remarkable mechanical characteristics are advantageously produced.
    Type: Application
    Filed: November 30, 2009
    Publication date: September 29, 2011
    Applicant: QUERTECH INGENIERIE
    Inventor: Denis Busardo
  • Patent number: 7998535
    Abstract: The present invention is related to a method for the production of metal coated steel products including steps of: providing a steel product with a metal coating; adding an additional metallic element to the metal coating; subjecting the metal coated steel product to a thermal treatment. The method is characterized in that: prior to the addition of the additional element, the steel product is subjected to a plasma treatment via a dielectric barrier discharge, for cleaning and activating the surface of the metal coating; the additional element is added through a physical vapor deposition technique; the thermal treatment is applied by directing high energy infra red radiation towards the outer surface of the metal coating.
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: August 16, 2011
    Assignee: Arcelormittal France
    Inventors: Marijke De Meyer, Serge Claessens, Franz Horzenberger
  • Patent number: 7981483
    Abstract: Embodiments of methods for improving electrical leakage performance and minimizing electromigration in semiconductor devices are generally described herein. Other embodiments may be described and claimed.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: July 19, 2011
    Assignee: TEL Epion Inc.
    Inventors: Noel Russell, Steven Sherman, John J. Hautala
  • Publication number: 20110081557
    Abstract: The present invention provides adhesiveless copper clad laminates wherein there is formed a copper film layer having high adhesiveness and insulation reliability, and a method for manufacturing such adhesiveless copper clad laminates.
    Type: Application
    Filed: August 24, 2010
    Publication date: April 7, 2011
    Inventors: Junichi Nagata, Yoshiyuki Asakawa
  • Publication number: 20110059334
    Abstract: The present invention provides adhesiveless copper clad laminates, which does not have defects on a copper film part due to a pin hole generated at the time of forming a base metal layer on an insulating film by dry plating process, has excellent adhesion between the insulating film and the base metal layer and corrosion resistance, and has a copper film layer having high insulation reliability, and provides a method for manufacturing such adhesiveless copper clad laminates. In adhesiveless copper clad laminates according to the present invention provided by forming a base metal layer directly at least on one plane of an insulating film without having an adhesive in between, and then by forming a copper film layer on the base metal layer, the base metal layer having a film thickness of 3 to 50 nm is formed by dry plating method and mainly contains a chrome-molybdenum-nickel alloy wherein the chrome ratio is 4 to 22 weight %, the molybdenum ratio is 5 to 40 weight %, and the balance is nickel.
    Type: Application
    Filed: August 24, 2010
    Publication date: March 10, 2011
    Inventors: Junichi Nagata, Yoshiyuki Asakawa
  • Publication number: 20100310899
    Abstract: A method for making a housing comprises of providing a metal substrate; forming a base paint coating on the substrate; vacuum depositing a first metal coating on the base paint coating, the first metal coating being a chromium coating or a stainless steel coating; vacuum depositing a second metal coating on the first metal coating, the second metal coating being a commix metal coating containing chromium and stainless steel; and vacuum depositing a third metal coating on the second metal coating, the third metal coating being a stainless steel coating. A housing made by the above mentioned method is also described there.
    Type: Application
    Filed: February 9, 2010
    Publication date: December 9, 2010
    Applicants: SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD., FIH (HONG KONG) LIMITED
    Inventors: ZONG-HUA HU, HAI-BO PAN, XU LI, YI-JUN HUANG, CHWAN-HWA CHIANG, FENG-YUEN DAI
  • Patent number: 7842353
    Abstract: A process for manufacturing electrodes for electrolysis, including steps of forming an arc ion plating (AIP) undercoating layer including valve metal or valve metal alloy containing a crystalline tantalum component and a crystalline titanium component on a surface of the electrode substrate comprising valve metal or valve metal alloy, by an arc ion plating method; heat sintering, including the steps of coating a metal compound solution, which includes valve metal as a chief element, onto the surface of the AIP undercoating layer, followed by heat sintering to transform only the tantalum component of the AIP undercoating layer into an amorphous substance, and to form an oxide interlayer, which includes a valve metal oxides component as a chief element, on the surface of the AIP undercoating layer containing the transformed amorphous tantalum component and the crystalline titanium component; and forming an electrode catalyst layer on the surface of the oxide interlayer.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: November 30, 2010
    Assignee: Permelec Electrode Ltd.
    Inventors: Yi Cao, Hajime Wada, Masashi Hosonuma
  • Patent number: 7838083
    Abstract: Methods and apparatus for depositing thermal barrier coatings on gas turbine blades and vanes using Electron Beam Physical Vapor Deposition (EBPVD) combined with Ion Beam Assisted Deposition (IBAD).
    Type: Grant
    Filed: January 28, 2006
    Date of Patent: November 23, 2010
    Assignee: Sandia Corporation
    Inventors: Dennis L. Youchison, Jimmie M. McDonald, Thomas J. Lutz, Michail A. Gallis
  • Publication number: 20100247883
    Abstract: A protecting coating for a copper substrate is disclosed. The coating comprises seed layer comprising titanium ions that forms an “alloy-like” structure with the copper substrate. The coating further comprises a first layer of carbon disposed on the seed layer comprising titanium ions. A second layer comprising titanium is disposed on the first layer of carbon, and a second layer of carbon is disposed on the second layer comprising titanium.
    Type: Application
    Filed: March 31, 2009
    Publication date: September 30, 2010
    Applicant: SEAGATE TECHNOLOGY, LLC
    Inventors: Yongping Gong, Kristoffer Steven Scheponik
  • Publication number: 20100231338
    Abstract: First, an R—Fe—B based rare-earth sintered magnet body including, as a main phase, crystal grains of an R2Fe14B type compound that includes a light rare-earth element RL, which is at least one of Nd and Pr, as a major rare-earth element R is provided. Next, an M layer, including a metallic element M that is at least one element selected from the group consisting of Al, Ga, In, Sn, Pb, Bi, Zn and Ag, is deposited on the surface of the sintered magnet body and then an RH layer, including a heavy rare-earth element RH that is at least one element selected from the group consisting of Dy, Ho and Tb, is deposited on the M layer. Thereafter, the sintered magnet body is heated, thereby diffusing the metallic element M and the heavy rare-earth element RH from the surface of the magnet body deeper inside the magnet.
    Type: Application
    Filed: January 12, 2007
    Publication date: September 16, 2010
    Applicant: HITACHI METALS, LTD.
    Inventors: Hideyuki Morimoto, Tomoori Odaka, Masao Noumi