Inorganic Metal Compound Present In Plating Or Implanted Material (e.g., Nitrides, Carbides, Borides, Etc.) Patents (Class 427/530)
  • Patent number: 7727927
    Abstract: Activation of a tungsten-containing catalyst using water in a PEM-type fuel cell is described as well as cathode operation of the tungsten-containing catalyst.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: June 1, 2010
    Assignee: Global Tungsten & Powders Corp.
    Inventor: Joel B. Christian
  • Publication number: 20100104766
    Abstract: A method for use with a coating process includes depositing a ceramic coating on a substrate within a coating chamber. Prior to depositing the ceramic coating, an electron beam source is used to heat a ceramic material. The ceramic material radiates heat to heat a substrate to an oxidation temperature to form an oxide layer on the substrate. A desired evaporation rate of the ceramic material is established during the heating to thereby provide an improved ceramic coating.
    Type: Application
    Filed: October 24, 2008
    Publication date: April 29, 2010
    Inventors: James W. Neal, Michael J. Maloney, David A. Litton, Christopher Masucci
  • Publication number: 20100072058
    Abstract: A process for surface treating a plastic substrate is provided. The method includes the steps of providing a plastic substrate; forming a golden-colored vacuum coated layer which is nonconductive on the plastic substrate; and forming a protective coating on the vacuum coated layer. A golden vacuum coated layer which is nonconductive is formed on the plastic substrate by the present process.
    Type: Application
    Filed: August 5, 2009
    Publication date: March 25, 2010
    Applicants: SHENZHEN FUTAIHONG PRECISION INDUSTRY CO., LTD., FIH (HONG KONG) LIMITED
    Inventors: CHWAN-HWA CHIANG, BIN ZHANG, GANG XIONG, FENG-YUEN DAI, JENG-SHIUNG CHEN
  • Publication number: 20100040951
    Abstract: The negative electrode for a lithium secondary battery includes: a current collector 11 having a plurality of bumps 11a on a surface thereof; a first active material layer formed on the current collector 11; and a second active material layer 15 disposed on the first active material layer 12 and including a plurality of active material particles 14. Each of the plurality of active material particles 14 is located on a corresponding bump 11a of the current collector 11, and each of the first active material layer 12 and the plurality of active material particles 14 has a chemical composition represented as SiOx (0<x<1).
    Type: Application
    Filed: March 13, 2008
    Publication date: February 18, 2010
    Inventors: Taisuke Yamamoto, Kazuya Iwamoto, Yasutaka Kogetsu
  • Patent number: 7651792
    Abstract: A hard film contains [(Nb1?d,Tad)aAl1?a](C1?xNx), [(Nb1?d,Tad)a,Al1?a?b?c,Sib,Bc](C1?xNx), [(Cr,V)p(Nb,Ta)q(Al,Si,B)r](C1?xNx), or [(Ti,Cr,V)p(Nb,Ta)q(Al,Si,B)r](C1?xNx), in which the atomic ratios satisfy the following conditions: 0.4?a?0.6, 0<b+c?0.15, 0?d?1, 0.4?x?1, provided that one of “b” and “c” may be zero but both of them are not simultaneously zero, p+q+r=1; pTi+pCr+pV=p; qNb+qTa=q; rAl+rsi+rB=r, 0.05?q, 0.5?r?0.73, 0?rsi+rB?0.15, and 0.4?x?1.0, provided that when pTi is greater than zero, the total of pCr, pV, rSi, and rB is greater than zero.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: January 26, 2010
    Assignee: Kobe Steel, Ltd.
    Inventor: Kenji Yamamoto
  • Publication number: 20090317958
    Abstract: Ion Implantation is used to form the memristor material and electrode structure with memristance. First, numerous electron-rich element atoms are implanted into a layer made of transition metal or non-metal. Then, a treating process (such as annealing) is proceeded to expel some electron-rich element atoms away the layer. After that, some electron-rich element vacancy rich regions are formed inside the layer, and then a memristor material is formed. Significantly, the usage of ion implantation can precisely control and flexibly adjust the distribution of the implanted atoms, and then both the amount and distribution of these depleted regions can be effectively adjusted. Hence, the quality of the memristor material is improved.
    Type: Application
    Filed: June 17, 2009
    Publication date: December 24, 2009
    Inventors: Daniel TANG, Hong Xiao
  • Publication number: 20090315000
    Abstract: The present invention provides a transparent conductive film having high conductivity and a production method therefor. The present invention further provides a sintered body for forming the transparent conductive film and a production method therefor. The transparent conductive film comprises Ga, Ti, and O. The sintered body comprises Ga, Ti, and O. The method for producing a sintered body comprises the steps of: (a) mixing a titanium-containing powder and a gallium-containing powder; and (b) compacting and sintering the obtained mixture.
    Type: Application
    Filed: August 13, 2007
    Publication date: December 24, 2009
    Inventor: Akira Hasegawa
  • Patent number: 7622161
    Abstract: A method of making a coated article (e.g., window unit), and corresponding coated article are provided. A layer of or including diamond-like carbon (DLC) is formed on a glass substrate. Then, a protective layer is formed on the substrate over the DLC inclusive layer. During heat treatment (HT), the protective layer prevents the DLC inclusive layer from significantly burning off. Thereafter, the resulting coated glass substrate may be used as desired, it having been HT and including the protective DLC inclusive layer.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: November 24, 2009
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Patent number: 7604846
    Abstract: The present invention relates to a manufacturing method of colored diamond and, more particularly, to a manufacturing method of colored diamond by ion implantation and heat treatment. The manufacturing method comprises a first step of implanting ions to the surface of diamond by accelerating the ions under vacuum, and a second step of heat-treating the implanted diamond. By implanting ions inducing the change in the optical band gap of a diamond, the manufacturing method provides a colored diamond with relatively lower cost compared to a metal ion implantation in the prior art, and a uniform color is obtained by heat treatment. Additionally, the manufacturing method of the present invention provides a diamond having various colors with permanent color development effects, by controlling the condition of ion implantation and heat treatment.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: October 20, 2009
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Jaewon Park, Jaehyung Lee, Changwon Sohn, Byungho Choi
  • Patent number: 7601619
    Abstract: A method and an apparatus for plasma processing which can accurately monitor an ion current applied to the surface of a sample. Predetermined gas is exhausted via an exhaust port by a turbo-molecular pump while introducing the gas within the vacuum chamber from a gas supply device, and the pressure within the vacuum chamber is kept at a predetermined value by a pressure regulating valve. A high-frequency power supply for a plasma source supplies a high-frequency power to a coil provided near a dielectric window to generate inductively coupled plasma within the vacuum chamber. A high-frequency power supply for the sample electrode for supplying the high-frequency power to the sample electrode is provided. A matching circuit for the sample electrode and a high-frequency sensor are provided between the sample electrode high-frequency power supply and the sample electrode. An ion current applied to the surface of a sample can be accurately monitored buy using the high-frequency sensor and an arithmetic device.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: October 13, 2009
    Assignee: Panasonic Corporation
    Inventors: Tomohiro Okumura, Yuichiro Sasaki, Katsumi Okashita, Hiroyuki Ito, Bunji Mizuno, Cheng-Guo Jin, Ichiro Nakayama
  • Patent number: 7585396
    Abstract: A coated article is provided that may be used as a vehicle windshield, insulating glass (IG) window unit, or the like. Ion beam treatment is performed on a layer(s) of the coating. For example, an overcoat layer (e.g., of silicon nitride) of a low-E coating may be ion beam treated in a manner so as to cause the ion beam treated layer to include (a) nitrogen-doped Si3N4, and/or (b) nitrogen graded silicon nitride. It has been found that this permits durability of the coated article to be improved.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: September 8, 2009
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Patent number: 7578889
    Abstract: Systematic and effective methodology to clean capacitively coupled plasma reactor electrodes and reduce surface roughness so that the cleaned electrodes meet surface contamination specifications and manufacturing yields are enhanced. Pre-cleaning of tools used in the cleaning process helps prevent contamination of the electrode being cleaned.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 25, 2009
    Assignee: Lam Research Corporation
    Inventors: Hong Shih, Yaobo Yin, Shun Jackson Wu, Armen Avoyan, John E. Daugherty, Linda Jiang
  • Patent number: 7566481
    Abstract: A method is provided for making a coated article including an anti-etch layer(s) that is resistant to attacks by at least some fluoride-based etchant(s) for at least a period of time. In certain example embodiments, an anti-etch layer(s) is provided on a glass substrate in order to protect the glass substrate from attacks by fluoride-based etchant(s). In certain example embodiments, the anti-etch layer(s) is formed using at least one ion beam (possibly in combination with at least one sputtering target). In certain embodiments, a diamond-like carbon (DLC) inclusive layer(s) may be provided over and/or under the anti-etch layer.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: July 28, 2009
    Assignee: Guardian Industries Corp.
    Inventor: Vijayen S. Veerasamy
  • Patent number: 7556189
    Abstract: Nano-structured interconnect formation and a reworkable bonding process using solder films. Large area fabrication of nano-structured interconnects is demonstrated at a very fine pitch. This technology can be used for pushing the limits of current flip chip bonding in terms of pitch, number of I/Os, superior combination of electrical and mechanical properties as well as reworkability. Sol-gel and electroless processes were developed to demonstrate film bonding interfaces between metallic pads and nano interconnects. Solution-derived nano-solder technology is an attractive low-cost method for several applications such as MEMS hermetic packaging, compliant interconnect bonding and bump-less nano-interconnects.
    Type: Grant
    Filed: May 26, 2005
    Date of Patent: July 7, 2009
    Assignee: Georgia Tech Research Corporation
    Inventors: Ankur Aggarwal, Isaac Robin Abothu, Pulugurtha Markondeya Raj, Rao R. Tummala
  • Publication number: 20090162565
    Abstract: A tantalum nitride film is formed by introducing a raw gas consisting of a coordination compound constituted by an elemental tantalum (Ta) having a coordinated ligand represented by the general formula: N?(R, R?) (in the formula, R and R? may be the same or different and each represents an alkyl group having 1 to 6 carbon atoms) and an oxygen atom-containing gas into a film-forming chamber to make them react with one another on a substrate and to thus form a compound represented by the formula: TaOxNy(R,R?)z according to the CVD technique; and then introducing an H atom-containing gas into the chamber to thus form a tantalum nitride film rich in tantalum atoms. The resulting tantalum nitride film has a low resistance, low contents of C and N atoms, and a high compositional ratio: Ta/N, can ensure sufficiently high adherence to the electrical connection-forming film and can thus be useful as a barrier film.
    Type: Application
    Filed: March 3, 2006
    Publication date: June 25, 2009
    Inventors: Narishi Gonohe, Satoru Toyoda, Harunori Ushikawa, Tomoyasu Kondo, Kyuzo Nakamura
  • Publication number: 20090120101
    Abstract: Organic matrix composite components, systems using such components, and methods for manufacturing such components are provided. In this regard, a representative organic matrix composite component includes: an organic matrix composite; a layer of aluminum applied to the organic matrix composite; and a wear resistant coating applied to the aluminum layer.
    Type: Application
    Filed: October 31, 2007
    Publication date: May 14, 2009
    Applicant: UNITED TECHNOLOGIES CORP.
    Inventors: Gary M. Lomasney, Joseph Parkos, JR.
  • Publication number: 20090098307
    Abstract: A manufacturing method for a far-infrared irradiating substrate is provided. The manufacturing method comprises steps of providing a substrate, providing a far-infrared irradiating material and evaporating the far-infrared irradiating material to form a thin film onto the substrate. The far-infrared irradiating substrate provided by the present invention not only has a high emission coefficient of far-infrared ray, but also do not cause a potential exposure of an ionizing radiation.
    Type: Application
    Filed: February 22, 2008
    Publication date: April 16, 2009
    Applicants: NATIONAL APPLIED RESEARCH LABORATORIES, TAIPEI MEDICAL UNIVERSITY
    Inventors: Po-Kai CHIU, Wen-Hao CHO, Han-Chang PAN, Yung-Sheng LIN, Ting-Kai LEUNG
  • Publication number: 20080312748
    Abstract: A process for forming a ceramic layer comprising a compound of a metal on a deposition surface of a workpiece comprises providing a reactive gas, selecting the amounts of a vapor of the metal and ions of the metal relative to each other, generating the metal vapor, and projecting an ion beam of the metal ions. The metal vapor, the metal ions, and the reactive gas form the ceramic layer with a desired structure. The process may include the step of controlling a deposition surface temperature. In one embodiment, the metal vapor comprises zirconium vapor and the ion beam comprises zirconium ions. The relative amounts of the zirconium vapor and the zirconium ions are selected to form a zirconia ceramic layer on the deposition surface. The zirconia may have multiple crystal phases that are formed according to a predetermined ratio.
    Type: Application
    Filed: June 18, 2007
    Publication date: December 18, 2008
    Applicant: ZIMMER, INC.
    Inventors: Jeffrey P. Anderson, Oludele Popoola
  • Patent number: 7465478
    Abstract: A method of processing a workpiece includes placing the workpiece on a workpiece support pedestal in a main chamber with a gas distribution showerhead, introducing a process gas into a remote plasma source chamber and generating a plasma in the remote plasma source chamber, transporting plasma-generated species from the remote plasma source chamber to the gas distribution showerhead so as to distribute the plasma-generated species into the main chamber through the gas distribution showerhead, and applying plasma RF power into the main chamber.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: December 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Hiroji Hanawa, Kartik Ramaswamy, Andrew Nguyen, Amir Al-Bayati, Biagio Gallo
  • Publication number: 20080305360
    Abstract: An organic light emitting device includes an organic light emitting diode on a substrate and an encapsulation layer covering the organic light emitting diode. The encapsulation layer includes an organic layer, an inorganic layer on the organic layer, and an intermixing region between the organic layer and the inorganic layer, the organic layer includes an organic material, the inorganic layer includes an inorganic material, and the intermixing region includes the organic material and the inorganic material.
    Type: Application
    Filed: June 5, 2008
    Publication date: December 11, 2008
    Inventors: Dong-Won Han, Yeon-Gon Mo, Jin-Ho Kwack
  • Publication number: 20080298910
    Abstract: A droplet-free wear-resistant coating is manufactured by depositing a wear resistant nitride coating containing a nitride layer which contains at least one metal or metal compound of a metal selected from the group consisting of Ti, Cr, Al, Si and combinations thereof, on a surface of a substrate by cathodic-arc evaporation using a Venetian blind filter system in front of an arc cathode; to reduce metal microdroplets and/or metal microparticles in the wear resistant coating compared to an wear resistant coating obtained without a Venetian blind filter system.
    Type: Application
    Filed: March 31, 2008
    Publication date: December 4, 2008
    Applicant: GUEHRING OHG
    Inventors: Frank Weber, Samuel Harris
  • Patent number: 7435443
    Abstract: The invention is directed to a method of producing the material that is unaffected by the low-temperature degradation, humidity-enhanced phase transformation typical of yttria-stabilized zirconia, as well as of yttria-stabilized tetragonal zirconia polycrystalline ceramic (Y-TZP). Because of the high fracture toughness and high mechanical strength, this class of materials is widely used, including as implants, such as for the packaging material for small implantable neural-muscular sensors and stimulators. The destructive phase transformation rate is dramatically reduced by coating the surface of the Y-TZP component with dense alumina by a physical vapor deposition process, preferably ion beam assisted deposition.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: October 14, 2008
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventor: Guangqiang Jiang
  • Publication number: 20080226890
    Abstract: Layered materials are provided that have surprisingly low thermal conductivities. A plurality of layers of a selected material such as, for example, tungsten diselenide, is formed by a modulated elemental reactants method to produce a low thermal conductivity material. The layers are generally stacked but substantially randomly arranged as stacked.
    Type: Application
    Filed: October 20, 2006
    Publication date: September 18, 2008
    Inventors: David C. Johnson, Ngoc Nguyen
  • Patent number: 7417241
    Abstract: An object of the present invention is to provide an ion implantation method for shortening a down time of an ion implantation apparatus after exposure of a chamber and for improving throughput and a method for manufacturing a semiconductor device. Specifically, the object of the invention is to provide an ion implantation method that can improve throughput during an ion implantation step of B and a method for manufacturing a semiconductor device. The ion implantation method comprises the steps of: introducing an impurity imparting p-type conductivity and H2O in an ion source; ionizing the impurity imparting p-type conductivity; and implanting into a semiconductor film.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: August 26, 2008
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Hiroto Shinoda
  • Patent number: 7341648
    Abstract: The invention relates to a method for coating piston rings (10) for internal combustion engines, wherein at least the bearing surface of the piston ring is provided with an anti-abrasion and anti-corrosion coating (12) by means of a PVD or electroplating process.
    Type: Grant
    Filed: November 27, 2003
    Date of Patent: March 11, 2008
    Assignee: MAHLE GmbH
    Inventor: Wolfgang Issler
  • Patent number: 7323213
    Abstract: An apparatus has a green compact electrode including a material of a coating formed on a workpiece by a discharge, a power source for supplying a first voltage, a voltage detector for detecting a voltage between the workpiece and the electrode, and a pulse current generator for generating and outputting a pulse current from the first voltage, and for cutting off the output when a predetermined period of time has passed after the voltage is detected to be less than a detection voltage. The pulse current is supplied between the workpiece and the electrode, and the detection voltage is less than the first voltage by 5% to 20% of the first voltage.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: January 29, 2008
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Tooru Inoue, Akihiro Goto
  • Patent number: 7300684
    Abstract: The coating of internal surfaces of a workpiece is achieved by connecting a bias voltage such that the workpiece functions as a cathode and by connecting an anode at each opening of the workpiece. A source gas is introduced at an entrance opening, while a vacuum source is connected at an exit opening. Pressure within the workpiece is monitored and the resulting pressure information is used for maintaining a condition that exhibits the hollow cathode effect. Optionally, a pre-cleaning may be provided by introducing a hydrocarbon mixture and applying a negative bias to the workpiece, so as to sputter contaminants from the workpiece using argon gas. Argon gas may also be introduced during the coating processing to re-sputter the coating, thereby improving uniformity along the length of the workpiece. The coating may be a diamond-like carbon material having properties which are determined by controlling ion bombardment energy.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: November 27, 2007
    Assignee: Sub-One Technology, Inc.
    Inventors: William John Boardman, Andrew William Tudhope, Raul Donate Mercado
  • Patent number: 7261914
    Abstract: This invention is a method of forming a nitride layer on at least one metal or metal alloy biomedical device, comprising: providing a vacuum chamber with at least one biomedical device positioned thereon on a worktable within the vacuum chamber; reducing the pressure in the vacuum chamber; introducing nitrogen into the vacuum chamber so that the pressure in the vacuum chamber is about 0.01 to about 10 milli-Torr; generating electrons within the vacuum chamber to form positively charged nitrogen ions; providing a negative bias to the worktable so that the positively charged nitrogen ions contact the biomedical devices under conditions such that a nitride layer forms on the at least one prosthetic device.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: August 28, 2007
    Assignee: Southwest Research Institute
    Inventors: Ronghua Wei, Thomas L. Booker, Christopher Rincon, James H. Arps
  • Patent number: 7229675
    Abstract: The invention relates to metallurgy and mechanical engineering, in particular to the development of methods for providing metallic pieces with protective coatings with a view to improving the performance characteristics thereof. In accordance with the inventive method, a multilayer coating is formed by combining and simultaneously or consecutively using of various technologies including ion-plasma evaporation diffusive metallization and controlled atmosphere thermal treatment. The obtained coatings possess superior characteristics with respect to overall properties and are used for gas turbine construction, in particular, for manufacturing gas turbine vanes of aircraft engines.
    Type: Grant
    Filed: April 10, 2000
    Date of Patent: June 12, 2007
    Inventors: Anatoly Nikolaevich Paderov, Jury Genrikhovich Vexler
  • Patent number: 7204013
    Abstract: In a method of forming a magnetoresistive sensor, first and second magnetic leads are formed. Next, a junction of magnetic and electrically conductive material is formed between the first and second magnetic leads. Finally, the magnetic and electrical conductivity of an outer shell portion of the junction is reduced to form a constricted junction comprising a magnetic and electrically conductive junction core that is at least partially surrounded by the outer shell portion. Another aspect of the present invention is directed to the magnetoresistive sensor that is formed using the method.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: April 17, 2007
    Assignee: Seagate Technology LLC
    Inventors: Ge Yi, Suguo Huo
  • Patent number: 7189437
    Abstract: An exemplary method for using a mobile plating system is provided that includes locating the mobile plating system at a desired location for plating, positioning an external vacuum pump from an interior position of a mobile storage volume of the mobile plasma plating system to an exterior position, and coupling the external vacuum pump to a vacuum chamber within the mobile storage volume of the mobile plasma plating system using a flexible piping segment, rigid coupling with a dampening effect, or other arrangement operable to reduce and/or eliminate the mechanical vibrations within the vacuum chamber due to the operation of the external vacuum pump.
    Type: Grant
    Filed: January 6, 2003
    Date of Patent: March 13, 2007
    Assignee: Basic Resources, Inc.
    Inventors: Jerry D. Kidd, Craig D. Harrington, Daniel N. Hopkins
  • Patent number: 7147932
    Abstract: A coated steel strip product with a dense and hard abrasion resistant coating on one side or both sides of said strip. The thickness of said coating is in total maximally 25 ?m, the hardness of said coating is at least 600 HV and the tensile strength of the steel strip substrate is at least 1200 MPa. The coating is preferably applied by electron beam evaporation and the coating may be, e.g., of Al2O3. The coated metal strip is useful for the manufacturing of doctor and coater blades for paper and printing industry.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: December 12, 2006
    Assignee: Sandvik Intellectual Property AB
    Inventors: Anna Hultin Stigenberg, Mikael Schuisky
  • Patent number: 7147931
    Abstract: A coated steel strip product with a dense and hard abrasion resistant coating on one side or both sides of said strip substrate is provided. The thickness of said coating is in total maximally 25 ?m, the hardness of said coating is at least 600 HV and the tensile strength of the steel strip substrate is at least 1200 MPa. The coating is preferably applied by electron beam evaporation and the coating may be, e.g., of Al2O3. The coated metal strip is suitable for shaving equipment, medical instruments, utility and industrial knives as well as saw applications.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: December 12, 2006
    Assignee: Sandvik Intellectual Property AB
    Inventors: Anna Hultin Stigenberg, Mikael Schuisky
  • Patent number: 7052585
    Abstract: A coated article is provided which includes a layer including titanium oxycarbide. In order to form the coated article, a layer of titanium oxide is deposited on a substrate by sputtering or the like. After sputtering of the layer including titanium oxide, an ion beam source(s) is used to implant at least carbon ions into the titanium oxide. When implanting, the carbon ions have sufficient ion energy so as to knock off oxygen (O) from TiOx molecules so as to enable a substantially continuous layer comprising titanium oxycarbide to form near a surface of the previously sputtered layer.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: May 30, 2006
    Assignee: Guardian Industries Corp.
    Inventors: Vijayen S. Veerasamy, Scott V. Thomsen, Rudolph Hugo Petrmichl
  • Patent number: 7045175
    Abstract: A method for manufacturing a magnetic recording medium includes forming a first protective layer of first material over a magnetic film provided on a substrate. The first protective layer has a thickness of about 0.2 nm to about 2 nm. A second protective layer of second material is formed over the first protective layer by driving ions of the second material into the first protective layer. The first protective layer is configured to prevent the ions of the second material from penetrating into the magnetic film.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: May 16, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Shigehiko Fujimaki, Toru Yatsue, Yuuichi Kokaku, Toshinori Ono
  • Patent number: 6960280
    Abstract: The present invention provides a method of forming a surface coating having a micro-Vickers hardness of about 1600 kgf/mm2 or more on a substrate made of metal, alloy or ceramic. The method comprises subjecting the substrate to a reactive plasma process which uses a target material consisting of tungsten or its alloy, a sputtering gas consisting of argon, and at least one reactive gas selected firm the group consisting of carbon dioxide and carbon monoxide, to form a tungsten oxycarbide coating on the surface of the substrate, wherein the reactive plasma process is performed additionally using at least one noble gas selected from the group consisting of helium, neon, krypton and radon, as an auxiliary gas, while maintaining the substrate at a temperature in the range of about 550 to 680 K.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: November 1, 2005
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventor: Tetsuo Kado
  • Patent number: 6955578
    Abstract: A method of varying a transmittance of a transparent conductive film includes forming the transparent conductive film on a substrate and injecting a high energy source into the transparent conductive film to vary the transmittance of the transparent conductive film.
    Type: Grant
    Filed: June 10, 2002
    Date of Patent: October 18, 2005
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-Il Park, Chang-Soo Kim
  • Patent number: 6913795
    Abstract: A method of making a tetrahedral amorphous carbon (ta-C) film comprises depositing carbon atoms over the surface of an object. The surface of the object is kept exposed to fluorine atoms during the deposition of the carbon atoms. The method allows the fluorine atoms to scatter within the deposited carbon atoms in the tetrahedral amorphous carbon film. The hardness of the tetrahedral amorphous carbon film can be improved in response to an increased content of sp3 carbon bonds included within the tetrahedral amorphous carbon film. In addition, the tetrahedral amorphous carbon film still provides a sufficient repellent performance to water due to the fluorine atoms existing near the exposed surface of the tetrahedral amorphous carbon film.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: July 5, 2005
    Assignee: Fujitsu Limited
    Inventor: Hiroyuki Hyodo
  • Patent number: 6902773
    Abstract: The fabrication of an overcoat layer starts with a low energy ion beam to avoid magnetic layer implantation problems, followed by higher deposition energies where the higher energy atoms are implanted into the previously formed lower energy overcoat layer, rather than the magnetic layer. The energy gradient ion beam deposition process therefore results in a thin overcoat layer that is denser than a comparable layer formed by low energy magnetron sputtering, and which overcoat layer provides good mechanical and corrosion protection to the magnetic layer.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: June 7, 2005
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Daryl J. Pocker, Jan-Ulrich Thiele, Richard L. White, Bing K. Yen
  • Patent number: 6893543
    Abstract: A method and apparatus for producing an information carrier which has at least two solid material interfaces at which information is, or may be applied and where the information is stored by local modulation of at least one characteristic of the solid material. Reflection of electromagnetic radiation at the interface depends on this characteristic. The method and apparatus applies at least one intermediate layer between the two solid material interfaces. The intermediate layer transmits the radiation and is at least predominantly made of either SixCy or SivNw, or both.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: May 17, 2005
    Assignee: Unaxis Balzers AG
    Inventor: Eduard Kügler
  • Patent number: 6884473
    Abstract: A method for fabricating a metal silicide layer includes forming a dielectric layer on a substrate, followed by forming a polysilicon material conductive layer on the dielectric layer. An adhesion layer is then formed on the conductive layer, wherein the adhesion layer is a nitrogen rich layer or a nitrogen ion implanted layer. A metal silicide layer is then formed on the adhesion layer. The adhesion between the metal silicide layer and the conductive layer is more desirable due the adhesion layer.
    Type: Grant
    Filed: December 24, 2002
    Date of Patent: April 26, 2005
    Assignee: Macronix International Co., Ltd.
    Inventor: Kent Kuohua Chang
  • Patent number: 6797335
    Abstract: This invention relates to metallurgy and machine building, more specifically to the development of a method that improves service life, durability and repair of machine components by applying coatings to working surfaces followed by special treatment of the surfaces. The essence of the invention is deposition of erosion and corrosion resistant coatings on machine components, that comprises a plurality of microlayers wherein each of the microlayers comprises one or more elements selected from the transition metal group, solid solutions or interstitial phases based thereon, and wherein one or more of the microlayers is subjected to high energy non-metallic ion deposition that causes changes in structure and composition of the deposited microlayer thus improving performance characteristics. After the full coating has been deposited, a vibromechanical treatment with micro-pellets is applied to the surface of machine components, that improves distribution of residual stresses.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: September 28, 2004
    Inventors: Anatol y Nikolaevich Paderov, Jouri Genrihovich Ve Xler
  • Patent number: 6787198
    Abstract: The present invention involves the hydrothermal treatment of nanostructured films to form high k PMOD™ films for use in applications that are temperature sensitive, such as applications using a polymer based substrate. After a PMOD™ precursor is deposited and converted on a substrate, and possibly after other process steps, the amorphous, nanoporous directly patterned film is subjected to low temperature hydrothermal treatment to densify and possibly crystallize the resulting high dielectric PMOD™ film. A post hydrothermal treatment bake is then performed to remove adsorped water.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: September 7, 2004
    Assignee: EKC Technology, Inc.
    Inventors: Shyama P. Mukherjee, Harold O. Madsen, Paul J. Roman, Jr., Leo G. Svendsen
  • Patent number: 6783795
    Abstract: In a power supply apparatus for discharge surface treatment which uses a green compact electrode as a discharge electrode, allows a pulse-type discharge to take place between said discharge electrode and a workpiece, and forms a film, which is made of an electrode material or a material obtained when the electrode material reacts to a discharge energy, on a surface of the workpiece following three measures are taken. (1) When a discharge voltage detected by the voltage detection means is less than or equal to discharge detection voltage set value which is slightly lower than a power supply voltage, the electric current cut-off means forcibly cuts off an output of the oscillator so that long-time pulse is prevented. (2) A capacitor is connected in parallel with an oscillation circuit of the oscillator, and the long-time pulse is prevented by capacitor discharge. (3) Time that the discharge takes place once is controlled by a timer so that the long-time pulse is prevented.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: August 31, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Tooru Inoue, Akihiro Goto
  • Patent number: 6767658
    Abstract: Disclosed is a hard film exhibiting high wear resistance, with composition of (Alb,[Cr1−&agr;V&agr;]c(C1−dNd), satisfying the condition of 0.5≦b≦0.8, 0.2≦c≦0.5, b+c=1, 0.05≦&agr;≦0.95, 0.5≦d≦1 (where b and c each represents atomic ratio of Al and Cr+V, and d denotes atomic ratio of N, &agr; denotes atomic ratio of V.), or with composition of (M&agr;,Alb,[Cr−&agr;V&agr;]c)(C1−dNd), wherein M is at least one element selected from Ti, Nb, W, Ta and Mo and satisfying the condition of 0.02≦a≦0.3, 0.5≦b≦0.8, 0.05≦c, a+b+c=1, 0.5≦d≦1, 0≦&agr;≦1 (where a represents atomic ratio of M). However, the case is exempted where M is Ti and the value of &agr; is 0.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: July 27, 2004
    Assignee: Kobe Steel, Ltd.
    Inventors: Kenji Yamamoto, Toshiki Sato
  • Patent number: 6756086
    Abstract: A diamond semiconductor includes a high-quality thin diamond film layer with few crystal defects and few impurities, implanted with ions of dopant elements and controllable in conductivity determined by a kind and a concentration of the dopant elements. The diamond semiconductor is fabricated by a method including the step of implanting ions of dopant elements into a high-quality thin diamond film layer with few crystal defects and few impurities under conditions that can attain given distribution of concentrations of the dopant elements and with the high-quality thin diamond film layer kept to a temperature in accordance with the conditions so as not to be graphitized, to thereby enable the diamond semiconductor to have conductivity determined by a kind and a concentration of the dopant elements.
    Type: Grant
    Filed: March 6, 2002
    Date of Patent: June 29, 2004
    Assignees: Agency of Industrial Science and Technology, Ministry of International Trade and Industry, Japan Science and Technology Corporation
    Inventors: Masataka Hasegawa, Masahiko Ogura, Daisuke Takeuchi, Hideyo Okushi, Naoto Kobayashi, Sadanori Yamanaka
  • Patent number: 6723388
    Abstract: This invention comprises methods for making nanostructured and nanoporous thin film structures of various compositions. These films can be directly patterned. In these methods, precursor films are deposited on a surface and different components of the precursor film are reacted under selected conditions, forming a nanostructured or nanoporous film. Such films can be used in a variety of applications, for example, low k dielectrics, sensors, catalysts, conductors or magnetic films. Nanostructured films can be created: (1) using one precursor component and two reactions, (2) using two or more components based on differential rates of photochemical conversion, (3) using two precursors based on the thermal sensitivity of one precursor and the photochemical sensitivity of the other, and (4) by photochemical reaction of a precursor film and selected removal of a largely unreacted component from the film.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: April 20, 2004
    Assignee: EKC Technology, Inc.
    Inventors: Leo G. Svendsen, Shyama P. Mukheriee, Paul J. Roman, Jr., Ross H. Hill, Harold O. Madsen, Xin Zhang, Donna Hohertz
  • Patent number: 6683012
    Abstract: Metal which forms a crystalline insulation layer is sputtered at a target and deposited as a film on a silicon substrate, the metal is chemically combined with reactive gas around the silicon substrate to thereby grow a crystal layer of a crystalline insulation substance, and a voltage is applied to the substrate so that ions of the reactive gas around the substrate are attracted to a surface of the silicon substrate and chemically combined with silicon, whereby an insulation silicon compound layer is formed. As a result, a structure is obtained in which a crystalline insulation layer is formed on a crystalline silicon layer through an amorphous insulation film which is formed by a silicon compound which has an excellent insulation characteristic.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: January 27, 2004
    Assignee: Rohm Co., Ltd.
    Inventors: Tomonobu Hata, Kimihiro Sasaki, Akira Kamisawa
  • Patent number: 6660340
    Abstract: A method and apparatus for enhancing the adhesion of a diamond-like carbon (DLC) film to a substrate and for producing a strongly adhered DLC film on a substrate. The adhesion is enhanced by ion beam pre-processing of the substrate prior to DLC film formation.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: December 9, 2003
    Assignee: Epion Corporation
    Inventor: Sean R. Kirkpatrick
  • Patent number: 6649031
    Abstract: A corrosion resistant coated fuel cell plate and method of making the same are embodied in a metal plate provided with a multilayered conductive coating and then with an overcoating which fills in fine scale porosities in the coating. In one preferred embodiment, the overcoating is amorphous graphite applied through a deposition process. In another preferred embodiment, the overcoating is a thin layer of oxide created by a chemical anodization process.
    Type: Grant
    Filed: October 8, 1999
    Date of Patent: November 18, 2003
    Assignee: Hybrid Power Generation Systems, LLC
    Inventors: Zafar Iqbal, Dave Narasimhan, James V. Guiheen, Timothy Rehg