Silicon Or Metal Oxide Coating (e.g., Glass, Etc.) Patents (Class 427/567)
  • Patent number: 9028923
    Abstract: The present invention relates to a ceramic coating and ion beam mixing apparatus for improving corrosion resistance, and a method of reforming an interface between a coating material and a base material. In samples fabricated using the coating and ion beam mixing apparatus, adhesiveness is improved, and the base material is reinforced, thereby improving resistance to thermal stress at high temperatures and high-temperature corrosion resistance of a material to be used in a sulfuric acid decomposition apparatus for producing hydrogen.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: May 12, 2015
    Assignee: Korea Atomic Energy Research Institute
    Inventors: Jaewon Park, Chang-Kue Park, Jonghwa Chang, Byungho Choi, Yongwan Kim
  • Patent number: 8795767
    Abstract: Luminescent materials and the use of such materials in anti-counterfeiting, inventory, photovoltaic, and other applications are described herein. In one embodiment, a method of forming a luminescent material includes: (1) providing a source of A and X, wherein A is selected from at least one of elements of Group 1, and X is selected from at least one of elements of Group 17; (2) providing a source of B, wherein B is selected from at least one of elements of Group 14; (3) subjecting the source of A and X and the source of B to vacuum deposition to form a set of films adjacent to a substrate; and (4) heating the set of films to a temperature in the range of 120° C. to 350° C. to form a luminescent material adjacent to the substrate, wherein the luminescent material includes A, B, and X.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: August 5, 2014
    Assignee: OMNIPV, Inc.
    Inventors: William M. Pfenninger, Nemanja Vockic, John Kenney
  • Patent number: 8652589
    Abstract: The method for manufacturing a hydrogen permeation barrier comprises the steps of a) depositing on a substrate (SUB) a layer system (LS) comprising at least one layer (L1,L2,L3); characterized in that step a) comprises the step of b) depositing at least one hydrogen barrier layer (HPBL) comprising an at least ternary oxide. The apparatus comprises a sealable volume and a wall forming at least a portion of a boundary limiting said volume, wherein said wall comprises a hydrogen permeation barrier comprising a layer system (LS) comprising at least one layer, wherein said layer system comprises at least one hydrogen barrier layer (HPBL) comprising an at least ternary oxide. Preferably, said at least ternary oxide is substantially composed of Al, Cr and O, and said depositing said at least one hydrogen barrier layer (HPBL) is carried out using a physical vapor deposition method, in particular a cathodic arc evaporation method.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: February 18, 2014
    Assignee: Oerlikon Trading AG, Truebbach
    Inventor: Jurgen Ramm
  • Patent number: 8440037
    Abstract: A coated article is provided that may be heat treated in certain example embodiments. A coating of the coated article includes a zinc oxide inclusive layer located over and contacting a contact layer that is in contact with an infrared (IR) reflecting layer of a material such as silver. It has been found that the use of such a zinc oxide inclusive layer results in improved thermal stability upon heat treatment, increased visible transmission, and/or lower sheet resistance (Rs).
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: May 14, 2013
    Assignees: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.), Guardian Industries Corp.
    Inventors: Anton Dietrich, Philip J. Lingle, Jens-Peter Muller, Jean-Marc Lemmer
  • Patent number: 8360001
    Abstract: Chemical vapor deposition processes utilize chemical precursors that allow for the deposition of thin films to be conducted at or near the mass transport limited regime. The processes have high deposition rates yet produce more uniform films, both compositionally and in thickness, than films prepared using conventional chemical precursors. In preferred embodiments, a higher order silane is employed to deposit thin films containing silicon that are useful in the semiconductor industry in various applications such as transistor gate electrodes.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: January 29, 2013
    Assignee: ASM America, Inc.
    Inventors: Michael A. Todd, Mark Hawkins
  • Patent number: 8343591
    Abstract: A method for use with a coating process includes depositing a ceramic coating on a substrate within a coating chamber. Prior to depositing the ceramic coating, an electron beam source is used to heat a ceramic material. The ceramic material radiates heat to heat a substrate to an oxidation temperature to form an oxide layer on the substrate. A desired evaporation rate of the ceramic material is established during the heating to thereby provide an improved ceramic coating.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: January 1, 2013
    Assignee: United Technologies Corporation
    Inventors: James W Neal, Michael J. Maloney, David A. Litton, Christopher Masucci
  • Publication number: 20120100306
    Abstract: Particles coming from an evaporation source 9 are deposited on a substrate 21 at a specified film forming position 33 in a vacuum so as to form a thin film on the substrate 21. A rod-shaped material 32 containing a source material of the thin film is melted above the evaporation source 9 and the melted material is supplied to the evaporation source 9 in the form of droplets 14.
    Type: Application
    Filed: July 1, 2010
    Publication date: April 26, 2012
    Applicant: Panasonic Corporation
    Inventors: Yuma Kamiyama, Kazuyoshi Honda, Yasuharu Shinokawa
  • Patent number: 8012562
    Abstract: The present technology generally relates to a wear-resistant coating, especially for gas turbine components, comprising a horizontally segmented or multilayered structure, i.e. at least one relatively hard, ceramic layer and at least one relatively soft, metallic layer. The ceramic layer and the metallic layer are alternately arranged on top of each other in such a way that an external layer forming an external surface of the wear-resistant coating is embodied as a ceramic layer. According to the invention, at least the external, ceramic layer is segmented in a column-type manner in a vertical direction.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: September 6, 2011
    Assignee: MTU Aero Engines GmbH
    Inventors: Wolfgang Eichmann, Falko Heutling, Thomas Uihlein
  • Publication number: 20110111135
    Abstract: Particles coming from an evaporation source 9 are deposited on a substrate 21 at a predetermined film forming position 33 in a vacuum so as to form a thin film on the substrate 21. A bulk material 32 containing a source material of the thin film is melted above the evaporation source 9, and the melted material is supplied to the evaporation source 9 in the form of droplets 14. A silicon material 32 including a plurality of pores therein is used as the bulk material 32. Preferably, the pores have a lower average internal pressure than an atmospheric pressure. More preferably, the average internal pressure is 0.1 atm or less.
    Type: Application
    Filed: July 7, 2009
    Publication date: May 12, 2011
    Inventors: Yuma Kamiyama, Kazuyoshi Honda, Yasuharu Shinokawa
  • Patent number: 7838083
    Abstract: Methods and apparatus for depositing thermal barrier coatings on gas turbine blades and vanes using Electron Beam Physical Vapor Deposition (EBPVD) combined with Ion Beam Assisted Deposition (IBAD).
    Type: Grant
    Filed: January 28, 2006
    Date of Patent: November 23, 2010
    Assignee: Sandia Corporation
    Inventors: Dennis L. Youchison, Jimmie M. McDonald, Thomas J. Lutz, Michail A. Gallis
  • Publication number: 20100247803
    Abstract: A chemical vapor deposition (CVD) method for depositing a thin film on a surface of a substrate is described. The CVD method comprises disposing a substrate on a substrate holder in a process chamber, and introducing a process gas to the process chamber, wherein the process gas comprises a chemical precursor. The process gas is exposed to a non-ionizing heat source separate from the substrate holder to cause decomposition of the chemical precursor. A thin film is deposited upon the substrate.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 30, 2010
    Applicants: TOKYO ELECTRON LIMITED, AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Eric M. LEE, Raymond Nicholas VRTIS, Mark Leonard O'NEILL, Patrick Timothy HURLEY, Jacques FAGUET, Takashi MATSUMOTO, Osayuki AKIYAMA
  • Patent number: 7784306
    Abstract: An apparatus for and method of depositing material on a substrate, the method comprising the steps of: delivering from a first outlet a stream of droplets of a precursor liquid towards a substrate; applying an electric field between the first outlet and the substrate; and delivering from a second outlet a flow of fuel about the stream of droplets such as to provide an annular flame combustion region between the first outlet and the substrate through which at least a portion of the stream of droplets passes before reaching the substrate, whereby the precursor liquid is one or both of chemically reacted and decomposed to provide the deposited material.
    Type: Grant
    Filed: December 7, 1998
    Date of Patent: August 31, 2010
    Assignee: Innovative Materials Processing Technologies Limited
    Inventors: Kwang-Leong Choy, Issac Tsz Hong Chang
  • Patent number: 7575979
    Abstract: A method includes forming a fluid including an inorganic semiconductor material, depositing a layer of said fluid on a substrate to form a film, and curing said film to form a porous semiconductor film.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: August 18, 2009
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: David Punsalan, Peter Mardilovich, Randy Hoffman
  • Patent number: 7575784
    Abstract: Light reactive deposition uses an intense light beam to form particles that are directly coated onto a substrate surface. In preferred embodiments, a coating apparatus comprising a noncircular reactant inlet, optical elements forming a light path, a first substrate, and a motor connected to the apparatus. The reactant inlet defines a reactant stream path. The light path intersects the reactant stream path at a reaction zone with a product stream path continuing from the reaction zone. The substrate intersects the product stream path. Also, operation of the motor moves the first substrate relative to the product stream. Various broad methods are described for using light driven chemical reactions to produce efficiently highly uniform coatings.
    Type: Grant
    Filed: November 17, 2000
    Date of Patent: August 18, 2009
    Assignee: NanoGram Corporation
    Inventors: Xiangxin Bi, Ronald J. Mosso, Shivkumar Chiruvolu, Sujeet Kumar, James T. Gardner, Seung M. Lim, William E. McGovern
  • Publication number: 20080085375
    Abstract: An MgO protective layer formed on a front substrate of a plasma display panel and a method of manufacturing the protective layer are disclosed. The protective layer is manufactured by using an MgO pellet, which is simultaneously doped with a first doping material of BeO and/or CaO among alkali earth metals and a second material selected from the group consisting of Sc2O3, Sb2O3, Er2O3, Mo2O3, and Al2O3, as a deposition source through a vacuum deposition method. The protective layer remarkably improves a discharge efficiency of the PDP and shortens a discharge delay time, so that it is applied to a signal can PDP. Also, it lowers a manufacturing cost by reducing the number of electronic components.
    Type: Application
    Filed: February 16, 2007
    Publication date: April 10, 2008
    Inventors: Jeong Seok Kim, Seok Jung, You Han Kim, Jin Ho Pyo, Yong Seog Kim, Kyung Hyun Park
  • Patent number: 7285312
    Abstract: A method and superalloy component for depositing a layer of material onto gas turbine engine components by atomic layer deposition. A superalloy component may have a ceramic thermal barrier coating on at least a portion of its surface, comprising a superalloy substrate and a bonding coat; and aluminum oxide (Al2O3) layer may be deposited on top of an yttria-stabilized zirconia layer and form a bonding coat by atomic layer deposition. The yttria-stabilized zirconia layer may have a plurality of micron sized gaps extending from the top surface of the ceramic coating towards the substrate and defining a plurality of columns of the yttria-stabilized zirconia layer. Also, atomic layer deposition may be used to lay an aluminum oxide (Al2O3) layer over a tantalum oxide (Ta2O5) layer on a silicon-based substrate.
    Type: Grant
    Filed: January 16, 2004
    Date of Patent: October 23, 2007
    Assignee: Honeywell International, Inc.
    Inventor: Chien-Wei Li
  • Patent number: 7262897
    Abstract: A method of forming an inorganic alignment film on a base substrate is provided comprising forming a film made substantially of an inorganic material on the base substrate, and irradiating ion beams onto the surface of the film from a direction inclined at a predetermined angle ?b with respect to the direction vertical to the surface. By irradiating the ion beams onto the film, concave portions having a predetermined directivity are formed on the film. The predetermined angle ?b is preferably 2° or more.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: August 28, 2007
    Assignee: Seiko Epson Corporation
    Inventors: Hidenobu Ota, Yukihiro Endo, Osamu Iwamoto
  • Patent number: 7229675
    Abstract: The invention relates to metallurgy and mechanical engineering, in particular to the development of methods for providing metallic pieces with protective coatings with a view to improving the performance characteristics thereof. In accordance with the inventive method, a multilayer coating is formed by combining and simultaneously or consecutively using of various technologies including ion-plasma evaporation diffusive metallization and controlled atmosphere thermal treatment. The obtained coatings possess superior characteristics with respect to overall properties and are used for gas turbine construction, in particular, for manufacturing gas turbine vanes of aircraft engines.
    Type: Grant
    Filed: April 10, 2000
    Date of Patent: June 12, 2007
    Inventors: Anatoly Nikolaevich Paderov, Jury Genrikhovich Vexler
  • Patent number: 7175888
    Abstract: The present invention is a turbine engine component comprising a superalloy substrate, a bond coat overlying the substrate having a thickness in the range of about 0.0005 inch to about 0.005 inch, a thin alumina scale overlying the bond coat, and a thermal barrier coating (TBC) overlying the thin alumina scale, the TBC having a thickness in the range of about 0.0025 inch to about 0.010 inch, and comprising at least mischmetal oxide.
    Type: Grant
    Filed: March 3, 2004
    Date of Patent: February 13, 2007
    Assignee: General Electric Company
    Inventors: Mary B. Johnson, legal representative, Robert William Bruce, Lyman A. Johnson, deceased
  • Patent number: 7170663
    Abstract: A method of forming an inorganic alignment film on a base substrate is provided comprising forming a film made substantially of an inorganic material on the base substrate, and irradiating ion beams onto the surface of the film from a direction inclined at a predetermined angle ?b with respect to the direction vertical to the surface. By irradiating the ion beams onto the film, concave portions having a predetermined directivity are formed on the film. The predetermined angle ?b is preferably 2° or more.
    Type: Grant
    Filed: September 1, 2004
    Date of Patent: January 30, 2007
    Assignee: Seiko Epson Corporation
    Inventors: Hidenobu Ota, Yukihiro Endo, Osamu Iwamoto
  • Patent number: 7112453
    Abstract: This invention provides methods of retentate chromatography for resolving analytes in a sample. The methods involve adsorbing the analytes to a substrate under a plurality of different selectivity conditions, and detecting the analytes retained on the substrate by desorption spectrometry. The methods are useful in biology and medicine, including clinical diagnostics and drug discovery.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: September 26, 2006
    Assignee: Ciphergen Biosystems, Inc.
    Inventors: T. William Hutchens, Tai-Tung Yip
  • Patent number: 7087266
    Abstract: A thermal barrier coating, or TBC, and method for forming the TBC. The TBC is formed of a thermal-insulating material that contains yttria-stabilized zirconia (YSZ) alloyed with at least a third oxide. The TBC is formed to also contain elemental carbon, and may potentially contain carbides and/or a carbon-containing gas that forms from the thermal decomposition of carbon. The TBC is characterized by lower density and thermal conductivity, high temperature stability and improved mechanical properties. To exhibit the desired effect, the third oxide is more particularly one that increases the lattice strain energy of the TBC microstructure as a result of having an ion size that is sufficiently different than a zirconium ion.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: August 8, 2006
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, Boris A. Movchan, Yuriy E. Rudoy, Leonella M. Nerodenko, Irene Spitsberg, David John Wortman
  • Patent number: 6991826
    Abstract: This invention relates to antisoiling compositions for antireflective substrates. More particularly, this invention relates to methods for depositing antisoiling compositions onto antireflective substrates. In particular, this invention relates to a method of depositing an antisoiling composition on an antireflective substrate comprising vaporizing an antisoiling composition and depositing the antisoiling composition onto an antireflective substrate. In another aspect, this invention relates to method of preparing an antireflective film stack comprising depositing an antireflective layer onto the surface of a transparent substrate and vapor depositing an antisoiling layer onto the surface of the antireflective layer. In yet another aspect, this invention relates to a method of depositing an antisoiling composition on an antireflective coated ophthalmic lens comprising vaporizing an antisoiling composition and depositing the antisoiling composition onto an antireflective coated ophthalmic lens.
    Type: Grant
    Filed: April 20, 2004
    Date of Patent: January 31, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Mark J. Pellerite, Rudolf J. Dams, Steven J. Martin
  • Patent number: 6982797
    Abstract: The invention relates to an apparatus for devices for determining properties of thin layers applied on a substrate. This apparatus comprises two changing magazines wherein one magazine is provided for crystal resonators and the other magazine for test glasses. The changing magazine for crystal resonators has the form of a disk and is encompassed by the annular magazine for test glasses. Both can be rotated independently of one another. Each position of the magazines can be reproduced with the aid of sensors and evaluation devices. Consequently, it is possible to carry out multiple coatings.
    Type: Grant
    Filed: January 20, 2003
    Date of Patent: January 3, 2006
    Assignee: Leybold Optics GmbH
    Inventor: Eckhard Wirth
  • Patent number: 6846742
    Abstract: Embodiments of the present invention include a method of depositing an improved seasoning film. In one embodiment the method includes, prior to performing a substrate processing operation, forming a layer of silicon over an interior surface of the substrate processing chamber as opposed to a layer of silicon oxide. In certain embodiments, the layer of silicon comprises at least 70% atomic silicon, is deposited from a high density silane (SinH2n+2) process gas and/or is deposited from a plasma having a density of at least 1×1011 ions/cm3.
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: January 25, 2005
    Assignee: Applied Materials, Inc.
    Inventor: Kent Rossman
  • Publication number: 20040247796
    Abstract: Conducting polymers having improved optical properties, and a method of manufacturing the conducting polymers, are disclosed. The conducting polymers are prepared by a process wherein organic ions and neutral oligomers are deposited simultaneously on a substrate surface to provide a conducting polymer film.
    Type: Application
    Filed: May 17, 2004
    Publication date: December 9, 2004
    Inventors: Luke Hanley, Sanja Tepavcevic, Yongsoo Choi
  • Patent number: 6758915
    Abstract: The invention is a grain-oriented magnetic steel sheet having extremely low iron loss, suitable for use as an iron core material for transformers and power generators, and a method for producing the same. The method includes forming a coating layer on a surface of a steel sheet having a thickness of 0.27 mm or less by vapor deposition in a low oxidizing atmosphere with an oxygen partial pressure (Po2) of less than 0.1 atm and a total pressure of 0.1 atm or more. The steel sheet has extremely low iron loss with a thickness of 0.27 mm or less and includes a coating layer formed by vapor deposition on a matrix surface.
    Type: Grant
    Filed: December 5, 2002
    Date of Patent: July 6, 2004
    Assignee: JFE Steel Corporation
    Inventors: Minoru Takashima, Mineo Muraki, Hiroi Yamaguchi, Mitsumasa Kurosawa, Michiro Komatsubara
  • Patent number: 6673386
    Abstract: A method for forming a pattern on a surface of a panel substrate, includes electrically charging pattern-forming material particles, jetting out the electrically charged pattern-forming material particles through a nozzle by applying electrostatic force to the pattern-forming material particles to form a pattern, and fixing the pattern onto the panel substrate.
    Type: Grant
    Filed: June 28, 2001
    Date of Patent: January 6, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Daido Komyoji, Naoko Matsuda, Akira Fukano, Katsutoshi Ogawa, Akira Kumon, Hiroyuki Naka
  • Patent number: 6620465
    Abstract: An improved method for applying a ceramic material, such as a thermal barrier coating to an article. A method for applying a ceramic material as a coating to a substrate article in which the thermal conductivity of the ceramic material is reduced or lowered is provided. The thermal conductivity of a coating applied by a physical vapor deposition (PVD) method is dependent upon its distance from the source(s) of material used for the coating. The thermal conductivity of the applied coating is altered by adjusting the position of the article undergoing the PVD process by increasing the distances of the article or workpiece from the ingot or source of ceramic material to provide a coating of lower thermal conductivity. In accordance with the present invention, the article to be coated is positioned at a distance required to achieve at least a 10% reduction in the thermal conductivity of the applied coating.
    Type: Grant
    Filed: April 23, 1999
    Date of Patent: September 16, 2003
    Assignee: General Electric Company
    Inventors: Joseph D. Rigney, David J. Wortman
  • Patent number: 6602553
    Abstract: An article that is particularly well suited for use as a gas turbine engine component has a metallic substrate and a ceramic thermal barrier layer including a mixed metal oxide system comprising a compound selected from the group consisting of (i) a lanthanum aluminate and (ii) a calcium zirconate, the calcium in which is partially replaced by at least one calcium-substitute element, such as strontium (Sr) or barium (Ba). In addition, the lanthanum in the lanthanum aluminate can be partially replaced by a lanthanum-substitute element from the lanthanide group, particularly gadolinium (Gd). A process for producing such an article comprises providing a pre-reacted mixed metal oxide system as described above and applying it to the substrate by plasma spraying or an evaporation coating process.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: August 5, 2003
    Assignees: Siemens Aktiengesellshaft, Rolls-Royce Deutschland GmbH
    Inventors: Beate Heimberg, Wolfram Beele, Karl Kempter, Ulrich Bast, Thomas Haubold, Michael Hoffmann, Axel Endriss, Peter Greil, Chu-Wan Hong, Fritz Aldinger, Hans J. Seifert
  • Patent number: 6598425
    Abstract: A method and apparatus for manufacturing optical components. A burner generates soot, and a surface area collector collects the soot. The burner is disposed such that the soot collected within the surface area collector is substantially not reheated by subsequently deposited soot. Magnetic forces direct the soot to desired location(s) within the surface area collector. The surface area collector operates at relatively low temperatures sufficient to retain rather volatile substances, such as fluorine, in the soot.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: July 29, 2003
    Assignee: Corning Incorporated
    Inventors: Daniel W. Hawtof, Joseph M. Whalen
  • Patent number: 6578381
    Abstract: The oxides-enclosed fine glass particles are arranged such that two or more pieces of at least two kinds of enclosing particles, which comprise oxides, double oxides, or salts of oxyacids, or double oxides or double salts thereof, are enclosed in each of the fine glass particles. The fine particles can be easily manufactured by mixing a powder material of glass with a powder material of oxides which comprise oxides, double oxides, or salts of oxyacids, or double oxides or double salts thereof that are not made to glass; converting the thus obtained mixture of the materials into a mixture in a vapor-state by supplying the thermal plasma thereto; and quickly cooling the mixture in the vapor-state. Highly-scattered fine particles of oxides can be easily obtained from the fine particles, and thus a plurality of kinds of fine particles of oxides can be evenly and uniformly mixed in a small amount with a mother material without being unevenly scattered.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: June 17, 2003
    Assignees: Nisshin Seifun Group Inc., Nisshin Engineering Inc.
    Inventors: Keiichi Nishimura, Takashi Fujii, Kazuhiro Yubuta, Sadao Shinozaki
  • Patent number: 6576294
    Abstract: Barrier film with a high colorless transparency comprising a flexible plastic substrate. A barrier layer is formed on the surface and has a thickness ranging from approximately 50 to less than 200 Angstroms and is formed of a material selected from the group of aluminum oxide, tin oxide and yttrium oxide. An additional barrier layer formed of silicon dioxide may also be formed on the barrier layer.
    Type: Grant
    Filed: May 14, 1993
    Date of Patent: June 10, 2003
    Assignee: Flex Products, Inc.
    Inventors: Roger W. Phillips, Lauren R. Wendt, Myra Tan-Johnson, David W. Todd, Charles Thomas Markantes
  • Patent number: 6387539
    Abstract: A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating characterized by a microstructure having gaps (28) where the thermal barrier coating comprises a first thermal barrier layer (40), and a second thermal barrier layer (30) with a pyrochlore crystal structure having a chemical formula of An+2−xBm+2+xO7−y, where A is selected from the group of elements consisting of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof, where B is selected from the group of elements consisting of Zr, Hf, Ti and mixtures thereof, where n and m are the valence of A and B respectively, and for −0.5≦x≦0.
    Type: Grant
    Filed: June 18, 2001
    Date of Patent: May 14, 2002
    Assignee: Siemens Westinghouse Power Corporation
    Inventor: Ramesh Subramanian
  • Patent number: 6365016
    Abstract: A method and apparatus for depositing a coating on a substrate. A method of coating a substrate comprises evaporating a first reactant; introducing the evaporated reactant into a plasma; and depositing the first reactant on a surface of the substrate. This method may be used to deposit an electrically conductive, ultraviolet filter coating at high rate on a glass or polycarbonate substrate, for example. An apparatus for depositing a UV filter coating on a polymeric substrate comprises a plasma generator having an anode and a cathode to form a plasma, and a first inlet for introducing a first reactant into the plasma, the first reactant comprising an evaporated material that is deposited on the substrate by the plasma. Optionally, a nozzle can be utilized to provide a controlled delivery of the first reactant into the plasma.
    Type: Grant
    Filed: March 17, 1999
    Date of Patent: April 2, 2002
    Assignee: General Electric Company
    Inventors: Charles Dominic Iacovangelo, Keith Milton Borst, Elihu Calvin Jerabek, Patrick Peter Marzano, Barry Lee-Mean Yang
  • Patent number: 6358572
    Abstract: A method for manufacturing a nonlinear optical thin film of a silica glass system with sufficient nonlinear optical characteristics, in which a glass substrate 12 is disposed within a vacuum deposition chamber 10 and an electron beam is applied to a SiO2—GeO2-system glass placed on a hearth liner 14 to form a SiO2—GeO2-system thin film on the surface of the substrate 12. In an application of this method, ions of argon, for example, are emitted from an ion source to produce dipoles in the deposited SiO2—GeO2-system thin film. By applying an electric field to the SiO2—GeO2-system thin film thus formed, the dipoles are oriented to let the thin film exhibit nonlinear optical characteristics.
    Type: Grant
    Filed: September 20, 1999
    Date of Patent: March 19, 2002
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Naoki Nakamura, Hiroshi Hasegawa, Kiyohito Murata, Hideki Nakayama
  • Patent number: 6342278
    Abstract: A method of depositing a ceramic thermal barrier coating on an article that will be subjected to a hostile environment, such as turbine, combustor and augmentor components of a gas turbine engine. The thermal barrier coating is deposited by electron beam physical vapor deposition (EBPVD) using process parameters that include an absolute pressure of greater than 0.010 mbar and an oxygen partial pressure of greater than 50%, preferably at or close to 100%. Under these conditions, the desired ceramic material is evaporated with an electron beam to produce a vapor that deposits on the component to form a thermal barrier coating of the ceramic material.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: January 29, 2002
    Assignee: General Electric Company
    Inventors: Joseph D. Rigney, Antonio F. Maricocchi, Brent R. Tholke, Karl S. Fessenden, John D. Evans, Sr.
  • Patent number: 6332016
    Abstract: In order to provide a photoelectric conversion device of high S/N ratio or high resolution in which the outputs of sensor cells except any defective sensor cell can be made to have normal values, thereby to obtain data of higher precision, any switching element that does not operate normally is removed in a photoelectric conversion device wherein a plurality of sensor cells, in each of which a photoelectric element and a switching element are connected, are arrayed in two dimensions on a substrate.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: December 18, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventor: Isao Kobayashi
  • Patent number: 6296895
    Abstract: A pure metal is vaporized in a receiver, and a quantity of oxygen slightly substoichiometric for the oxide is introduced. To determine the thickness of the layer deposited on the film and to control the vaporization rate, optical sensors are installed in an area where the layer, because of the presence of unoxidized metal, has sufficient absorption for optical measurement. After the determination of the transparency by the sensors, the layer is subjected to a secondary oxidation process.
    Type: Grant
    Filed: May 1, 1995
    Date of Patent: October 2, 2001
    Assignee: Balzers und Leybold Deutschland Holding AG
    Inventors: Gerhard Steiniger, Rainer Ludwig, Gerd Hoffmann
  • Patent number: 6287644
    Abstract: A continuously-graded bond coat comprises a gradient of at least one material characteristic value. The gradient extends from a first material characteristic value at a first surface region to a second material characteristic value at a second surface region. The continuously-graded bond coat can be used in a thermal barrier coating system. A source ingot for forming the continuously-graded bond coat comprises aluminum, in an atomic percent range from about 50.0 to less than about 100.0; chromium in an atomic percent range from about 5.0 to about 40.0; silicon in an atomic percent range from about 1.0 to about 17.0; zirconium in an atomic percent range from about a trace to about a 0.5, yttrium in an atomic percent range from a trace to about 2.0; and hafnium in an atomic percent range from about 0.5 to about 2.0. A method for forming the continuously-graded bond coat with the gradient is also provided by the invention.
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: September 11, 2001
    Assignee: General Electric Company
    Inventors: Melvin Robert Jackson, Ann Melinda Ritter, Michael Francis Xavier Gigliotti, Jr., Ji-Cheng Zhao
  • Patent number: 6265353
    Abstract: In a method for producing laminate, a buffer layer is applied to a substrate, with the buffer layer material being evaporated from the buffer layer material dispensing devices at an angle &agr;1≠0 at the normal to the substrate surface onto the latter, before an oriented thin layer is evaporated. According to the invention, provision is made such that (a) following evaporation of the buffer layer and prior to the evaporation of the oriented thin layer, at least one cover layer is evaporated under deposition conditions that vary from those under which the buffer layer was applied, especially at a different pressure, different temperature, different rate, and/or different angle &agr;2≠&agr;1, especially &agr;2<&agr;1, preferably &agr;2≈0° to the substrate surface normal, and/or is evaporated on the buffer layer in such fashion that the buffer layer has a biaxial texture and/or facets.
    Type: Grant
    Filed: April 12, 1999
    Date of Patent: July 24, 2001
    Assignee: Theva Duennschichttechnik GmbH
    Inventors: Helmut Kinder, Markus Bauer, Joachim Schwachulla
  • Patent number: 6258467
    Abstract: A device (10) comprising a substrate (22) having a deposited ceramic thermal barrier coating layer (20) characterized by a microstructure having gaps (28) where the thermal barrier coating (20) consists essentially of a pyrochlore crystal structure having a chemical formula consisting essentially of An+2−xBm+2+xO7−y, where A is selected from the group of elements selected from La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and mixtures thereof; where B is selected from the group of elements selected from Zr, Hf, Ti and mixtures thereof; n and m are the valence of A and B respectively, and for −0.5≦x≦0.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: July 10, 2001
    Assignee: Siemens Westinghouse Power Corporation
    Inventor: Ramesh Subramanian
  • Publication number: 20010006708
    Abstract: An electron beam evaporator, which is formed of the component assemblies: beam generator, deflection system and water-cooled crucible/rotary crucible, is fastened on the cover plate of a flat hollow body.
    Type: Application
    Filed: June 16, 1997
    Publication date: July 5, 2001
    Inventors: STEFAN LOCHER, ECKHARD WIRTH
  • Patent number: 6235352
    Abstract: A method of repairing a damaged area of a thermal barrier coating on a component which is subjected to a hostile thermal environment, which comprises cleaning the damaged area, applying a partially stabilized zirconium sol-gel to the area, and pyrolizing the sol-gel to form a TBC repair layer.
    Type: Grant
    Filed: November 29, 1999
    Date of Patent: May 22, 2001
    Assignee: Electric Power Research Institute, Inc.
    Inventors: Gerald R. Leverant, Stuart T. Schwab, Partha P. Paul, Narayana S. Cheruvu
  • Patent number: 6183884
    Abstract: A metallic article includes a bond coating and a ceramic thermal barrier coating on the bond coating. The ceramic thermal barrier coating includes a plurality of columnar grains, which extend perpendicularly to the surface of the metallic article. Each columnar grain includes a plurality of layers. Some of the layers include sub-grains extending at an acute angle to the surface of the metallic article to form voids between adjacent sub-grains. The voids are arranged at an acute angle to the surface of the metallic article and reduce the thermal conductivity of the ceramic thermal barrier coating. Some of the layers include sub-grains extending perpendicularly to the surface of the metallic article to provide erosion resistance.
    Type: Grant
    Filed: December 16, 1998
    Date of Patent: February 6, 2001
    Assignees: Rolls-Royce PLC, Chromalloy United Kingdom Limited
    Inventor: David S Rickerby
  • Patent number: 6153271
    Abstract: A process for depositing a transparent coating of indium tin oxide on a substrate comprising providing said substrate in a partial vacuum environment and conducting electron beam evaporation of tin oxide doped indium oxide granules while operating an ion source providing oxygen adjacent said substrate until a coating of indium tin oxide is deposited on at least a portion of said substrate.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: November 28, 2000
    Assignee: General Vacuum, Inc.
    Inventor: Gerald T. Mearini
  • Patent number: 6147033
    Abstract: This invention relates to an apparatus and method for forming a high temperature superconducting film on a tape substrate. In this invention, the superconducting film is deposited on the tape substrate wound around a cylindrical substrate holder inserted in an auxiliary chamber. The holder rotates during the whole deposition process. Vapors of film materials are supplied from a main chamber through an opening between the two chambers. According to the present invention, it is possible to form a highly uniform high temperature superconducting film on a tape substrate at high speeds suitable for large scale production. The manufacturing speed can easily be controlled by the size of the substrate holder.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: November 14, 2000
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Do Jun Youm, Doo Hoon Goo, Sang Hyun Oh
  • Patent number: 6110604
    Abstract: A metallic article includes a bond coating and a ceramic thermal barrier coating on the bond coating. The ceramic thermal barrier coating includes a plurality of columnar grains extending substantially perpendicularly to the surface of the metallic article. Each columnar gain has a plurality of first layers, a plurality of second layers and a plurality of third layers. The first layers have a different structure from the second layers and the third layers. The second layers have a different structure from the third layers. The first layers have the same composition as the third layers. The second layers have a greater proportion of voids than the first layers and the third layers. The voids reduce the thermal conductivity of the thermal barrier coating. The second layers may also have a different composition from the first layers and the third layers to reduce the thermal conductivity.
    Type: Grant
    Filed: August 3, 1998
    Date of Patent: August 29, 2000
    Assignee: Rolls-Royce, PLC
    Inventor: David S Rickerby
  • Patent number: 6103318
    Abstract: A method of forming a layer of silicon on a surface comprises the steps of depositing silicon on the surface by a physical deposition process such as electron beam evaporation and, during said deposition process, subjecting the forming film to ionic bombardment. The resultant silicon film has stresses which are considerably reduced compared to a film produced by an ordinary physical deposition process. This method is particularly well adapted to the formation of relatively thick silicon layers (.gtoreq.1 .mu.m) on a layer (or stack of layers) of silica, to serve as an etching mask in a subsequent deep etching of the silica by reactive ion etching.
    Type: Grant
    Filed: May 26, 1998
    Date of Patent: August 15, 2000
    Assignee: Corning Incorporated
    Inventors: Alain M J Beguin, Philippe Lehuede
  • Patent number: 6096700
    Abstract: A non-chrome process for the pretreatment of substrate surfaces to simultaneously clean them and improve their bonding strength for organic coatings such as adhesives, protective primers, sealants, paints, composites and similar materials conventionally bonded to such substrates, including non-chromated or chromated curable organic resin protective coatings applied directly to bare aluminum substrates. The invention involves the use of novel wipe solvent compositions containing a major volume of an environmentally-safe volatile organic solvent which has a low composite vapor pressure or is otherwise exempt from federal, state or local regulations, and a minor volume of a polyfunctional coupling agent, preferably of the silane type.
    Type: Grant
    Filed: August 24, 1998
    Date of Patent: August 1, 2000
    Assignee: Northrop Grumman Corporation
    Inventors: John Douglas Weir, Joanne Swiderski McLaughlin