Electrical Discharge (e.g., Arcs, Sparks, Etc.) Patents (Class 427/580)
  • Patent number: 10016853
    Abstract: A method for repairing a blade tip of a turbine blade based on welding below and above a designated depth recommended for repair of turbine blades. A damaged portion of the turbine blade is inspected to identify a standard cut portion and an angled cut portion. The standard cut portion is damaged above a standard cut line and the angled cut portion is damaged below the standard cut line. The damaged portion of the turbine blade is removed. The standard cut portion is removed using a first removal process and the angled cut portion is removed using a second removal process. The angled cut portion is built up with a first weld repair process. The angled cut portion is built up to the standard cut portion. The standard cut portion and the angled cut portion are built up with a second weld repair process.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 10, 2018
    Assignee: ANSALDO ENERGIA SWITZERLAND AG
    Inventors: Brian L. Henderson, David R. Kaser, Warren Martin Miglietti, Andrew C. Pappadouplos
  • Patent number: 9359667
    Abstract: A low temperature deposition device according to the present invention includes: a thermal deposition source unit spraying a deposition beam; a differential pumping unit connected to the thermal deposition source unit and passing the deposition beam; and a cooling gas inlet connected to the differential pumping unit and inserting a cooling gas inside the differential pumping unit to cool the deposition beam. According to the present invention, the inorganic deposition beam of low temperature is deposited on the substrate to form the inorganic metal layer of low temperature so that the damage to the organic layer may be minimized when forming the inorganic metal layer of low temperature on the organic layer.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: June 7, 2016
    Assignee: Samsung Display Co., Ltd.
    Inventors: Kyul Han, O-Hyun Kwon, Dong-Woo Shin, Seul-Ong Kim, Byoung-Ki Choi
  • Patent number: 9323051
    Abstract: Embodiments of the present invention provide systems and methods for inhibiting contamination enhanced laser induced damage (CELID) based on fluorinated self-assembled monolayers (F-SAMs) disposed on optics. For example, a coating for inhibiting CELID to an optic disposed in a sealed gas environment or vacuum may include an F-SAM that includes a fluorinated hydrocarbon tail group covalently bound to the optic by a head group. The coating may be formed by heating the optic and a liquid-phase precursor of the F-SAM to generate a gas-phase precursor, and exposing the heated optic to the gas-phase precursor for a period of time sufficient for the gas-phase precursor to coalesce at and covalently bond to the optic and form the F-SAM. The optic may include silica, and the F-SAM may include a siloxane group covalently bound to the silica.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: April 26, 2016
    Assignee: The Aerospace Corporation
    Inventors: Bruce H. Weiller, Jesse D. Fowler, Randy M. Villahermosa
  • Patent number: 9234284
    Abstract: An electrical discharge surface treatment method for forming a coating film by generating a pulsed electrical discharge between an electrode and a workpiece in working fluid or gas using a green compact obtained by molding metal powder or metal alloy powder or a molded body obtained by heating the green compact as the electrode, and by melting an electrode material by an energy of the pulsed electrical discharge, forming a coating of the electrode material or a coating of a material obtained by a reaction of the electrode material by the energy of the pulsed electrical discharge on a surface of the workpiece, the electrical discharge surface treatment method includes generating the pulsed electrical discharge by mixing together two or more types of pulsed electrical discharges having different energies.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: January 12, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventors: Akihiro Goto, Kazushi Nakamura, Masahiro Okane, Hiroyuki Teramoto
  • Patent number: 9224629
    Abstract: A compliant bipolar micro device transfer head array and method of forming a compliant bipolar micro device transfer array from an SOI substrate are described. In an embodiment, a compliant bipolar micro device transfer head array includes a base substrate and a patterned silicon layer over the base substrate. The patterned silicon layer may include first and second silicon interconnects, and first and second arrays of silicon electrodes electrically connected with the first and second silicon interconnects and deflectable into one or more cavities between the base substrate and the silicon electrodes.
    Type: Grant
    Filed: April 23, 2015
    Date of Patent: December 29, 2015
    Assignee: LuxVue Technology Corporation
    Inventors: Dariusz Golda, Andreas Bibl
  • Patent number: 9169548
    Abstract: A photovoltaic cell includes a p-type copper-indium-gallium-selenide absorber layer, where a content of Cu, In, and Ga in a first portion of the p-type copper-indium-gallium-selenide absorber layer satisfies the equation Cu/(In+Ga)?0.3, and where the content is measured in atomic percent.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: October 27, 2015
    Assignee: APOLLO PRECISION FUJIAN LIMITED
    Inventors: John Corson, Alex Austin, Ron Rulkens, Jochen Titus, Robert Tas, Paul Shufflebotham, Daniel R. Juliano, Neil Mackie
  • Patent number: 9121947
    Abstract: According to one embodiment, an apparatus for detecting neutrons includes an array of pillars, wherein each of the pillars comprises a rounded cross sectional shape where the cross section is taken perpendicular to a longitudinal axis of the respective pillar, a cavity region between each of the pillars, and a neutron sensitive material located in each cavity region.
    Type: Grant
    Filed: January 15, 2013
    Date of Patent: September 1, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Rebecca J. Nikolic, Adam Conway, Qinghui Shao, Lars Voss, Chin Li Cheung, Mushtaq A. Dar
  • Patent number: 9115020
    Abstract: Disclosed is a method for manufacturing a low melting point nano glass powder. The method includes the steps of: preparing a bismuth-based low melting point glass powder precursor of a micro size, having bismuth (Bi) as the main ingredient; injecting the glass powder precursor into a reaction chamber of a plasma treatment device; applying thermal plasma via a direct current power source to the glass powder precursor injected into the reaction chamber, to vaporize the glass powder precursor; and generating nano glass powder having a nano size by quenching the gas generated by vaporizing the glass powder precursor.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: August 25, 2015
    Assignee: INHA—INDUSTRY PARTNERSHIP INSTITUTE
    Inventors: Hyung Sun Kim, Dong Wha Park, Sung Hwan Cho, Sun Il Kim, Won Kyung Lee, Hyun Jin Shim
  • Publication number: 20150125630
    Abstract: A plug for hot tube-making having a sprayed coating resistant to peeling is provided. A method for producing a plug for hot tube-making according to the present embodiment includes a step of preparing a plug whose surface includes a sprayed coating formed thereon, the sprayed coating containing iron and an iron oxide; and a heat treatment step during which the plug is kept at 400° C. to 550° C. for 5 to 60 minutes.
    Type: Application
    Filed: March 6, 2013
    Publication date: May 7, 2015
    Inventors: Yasuyoshi Hidaka, Yasuto Higashida, Kazuhiro Shimoda
  • Publication number: 20150115635
    Abstract: An oil or gas tool block with an advanced textured coating produced by automated electro spark deposition equipment. A die insert includes a substrate onto which a gripping surface is formed. The gripping surface is a textured coating electro-deposited on the substrate. The textured coating includes a cobalt-based alloy supplied directly by the welding electrode, allowing the continuous build-up of material typically in the range of 0.001-0.040 inches. The cobalt-based alloy comprises a blend of chromium, cobalt, iron, manganese, molybdenum, nickel, and silicon. One or more die inserts, whether blank or textured, can be stacked to form a tool block. In a process for making the die insert, the substrate is texture-coated using electro-spark deposition in two passes, including a first coating pass and a second coating pass. Hard coating may follow to thereby form a gradient of layers.
    Type: Application
    Filed: October 29, 2014
    Publication date: April 30, 2015
    Inventors: Robert R. Freyvogel, Andrew Towns
  • Publication number: 20150111795
    Abstract: The present invention relates to a method for coating AI-Cr-0 coatings with the help of a PVD-coating process. The PVD-coating process is performed with the help of Al and Cr comprising targets which are doped with Si. The doping of Si prevents the forming of oxide islands on the target during the reactive coating process.
    Type: Application
    Filed: April 22, 2013
    Publication date: April 23, 2015
    Inventors: Richard Rachbauer, Jurgen Ramm, Joerg Paulitsch, Paul Heinz Mayrhofer
  • Publication number: 20150111793
    Abstract: A bearing surface of an oilfield component is treated by applying a surface treatment having a low coefficient of friction to the bearing surface of the oilfield component by weld fusing an overlay of a Cu—Ni—Sn alloy material to the bearing surface. Weld fusing the overlay of the Cu—Ni—Sn alloy material to the bearing surface can involve laser surface cladding the overlay of the Cu—Ni—Sn alloy material to the bearing surface, gas tungsten arc welding the overlay of the Cu—Ni—Sn alloy material to the bearing surface, or plasma tungsten arc welding the overlay of the Cu—Ni—Sn alloy material to the bearing surface.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 23, 2015
    Inventor: Robert P. Badrak
  • Publication number: 20150104585
    Abstract: A seal structure includes: first and second members defining a hollow internal area of a fluid device; and a seal member fixed to the first member for sealing a gap between the first and second members. The seal member includes a sliding contact member being in sliding contact with a surface of the second member and formed of a resin. The second member includes a resin layer and a resin layer holding structure. The resin layer is formed by sliding the second member on the sliding contact member to transfer the resin forming the sliding contact member onto a sliding contact portion of the surface of the second member at which the second member comes into contact with the sliding contact member. The resin layer holding structure is a porous film formed by electric discharge surface treatment and holds the resin layer in the sliding contact portion.
    Type: Application
    Filed: December 17, 2014
    Publication date: April 16, 2015
    Applicant: IHI Corporation
    Inventors: Hifumi TABATA, Nobuhiko Yunoki, Mitsutoshi Watanabe, Hiroyuki Ochiai, Eiji Hosoi
  • Patent number: 8993073
    Abstract: An embodiment of the invention relates to a perpendicular magnetic recording medium comprising (1) a substrate, (2) an interlayer comprising hexagonal columns and (3) a magnetic layer, wherein the magnetic layer is deposited applying a bias voltage to the substrate such that the magnetic layer comprises magnetic grains having substantially no sub-grains within the magnetic layer, and the magnetic layer has perpendicular magnetic anisotropy.
    Type: Grant
    Filed: July 14, 2008
    Date of Patent: March 31, 2015
    Assignee: Seagate Technology LLC
    Inventors: Weilu Xu, Miaogen Lu, Mariana R. Munteanu, Michael Z. Wu, Shanghsien Alex Rou, Steve Kuo-Hsing Hwang, Ed Yen
  • Publication number: 20150079271
    Abstract: According to the present disclosure, a substrate processing apparatus for processing a flexible substrate including a vacuum chamber configured for being evacuated and being configured for having a process gas provided therein, a processing module adapted to process the flexible substrate, wherein the processing module is provided within the vacuum chamber, and a discharging assembly configured to generate a flow of charged particles to discharge the flexible substrate is provided. The discharging assembly is configured to generate an electric field for ionizing a processing gas.
    Type: Application
    Filed: December 21, 2011
    Publication date: March 19, 2015
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Uwe Hermanns, Neil Morrison, Tobias Stolley, Volker Hacker
  • Publication number: 20150064364
    Abstract: A method of forming a metalloid-containing material comprises the step of preparing a hydrometalloid compound in a low volume on-demand reactor. The method further comprises the step of feeding the hydrometalloid compound prepared in the microreactor to a deposition apparatus. Additionally, the method comprises the step of forming the metalloid-containing material from the hydrometalloid compound via the deposition apparatus. A deposition system for forming the metalloid-containing material comprises at least one low volume on-demand reactor coupled to and in fluid communication with a deposition apparatus.
    Type: Application
    Filed: February 14, 2013
    Publication date: March 5, 2015
    Inventors: Binh Nguyen, Michael Telgenhoff
  • Publication number: 20150017044
    Abstract: A rotary piston engine comprises a stationary housing and a piston movably accommodated in the housing. The housing and the piston form at least one chamber with a chamber surface. At least one partial portion of the chamber surface has a thermal barrier coat for reducing a thermal conductivity of the partial portion of the chamber surface. At least one partial portion of the chamber surface has a metallic spray coat. A method for producing such a rotary piston engine can also be achieved.
    Type: Application
    Filed: February 6, 2013
    Publication date: January 15, 2015
    Inventors: Jurgen Steinwandel, Gerd Huber, Ernst Sigmund
  • Patent number: 8920937
    Abstract: A protective coating system includes a nickel-aluminum-zirconium alloy coating having beta phase nickel-aluminum and at least one phase selected from gamma phase nickel and the gamma prime phase nickel-aluminum. The nickel-aluminum-zirconium alloy coating comprises 10 vol % to 60 vol % of the beta phase nickel-aluminum or 25 vol % to 75 vol % of the beta phase nickel-aluminum.
    Type: Grant
    Filed: August 5, 2007
    Date of Patent: December 30, 2014
    Assignee: United Technologies Corporation
    Inventors: David A. Litton, Venkatarama K. Seetharaman, Michael J. Maloney, Benjamin J. Zimmerman, Brian S. Tryon
  • Publication number: 20140360788
    Abstract: In order to provide a nonmagnetic material for producing parts or coatings adapted for highly wear and corrosion intensive applications, said material comprising preformed particles made of tungsten carbide which are embedded in a metal phase made of a Ni-based alloy. It is suggested that the weight portion of said tungsten carbide particles is in the range between 30 wt. % and 65 wt. % and wherein the Ni-based alloy is a Nickel-Chromium-Molybdenum alloy comprising: (in wt. %): Cr 11.0,-30.0? Mo 5.0-25.0? Fe ?0-10.0 B 0-5.0 Co 0-2.
    Type: Application
    Filed: June 10, 2013
    Publication date: December 11, 2014
    Inventors: MICHEL JUNOD, Michael Gill, Alain Tremblay
  • Publication number: 20140349034
    Abstract: A device and system for dynamically applying liquid to a single thread for a thread consuming device as said thread moves relative to the device along a path of movement. The device is configured to apply liquid to said thread by means of an electrospraying unit. A method for applying liquid to a single thread for a thread consuming device as said thread moves relative to the device along a path of movement is also provided.
    Type: Application
    Filed: September 12, 2012
    Publication date: November 27, 2014
    Applicant: Inventech Europe AB
    Inventors: Joakim Staberg, Martin Eklind
  • Patent number: 8888966
    Abstract: A protective film is disclosed that is mainly composed of a tetrahedral amorphous carbon (ta-C film) that is denser than a DLC film formed by a plasma CVD method and containing aggregate particles so reduced as to a necessary and sufficient level, to provide a method of manufacturing such a protective film, and to provide a magnetic recording medium comprising such a protective film. The film is mainly composed of a ta-C film formed by a filtered cathodic arc method using a cathode target of glass state carbon. A magnetic recording medium is disclosed which includes a substrate, a magnetic recording layer, and the protective film mainly composed of a ta-C film.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: November 18, 2014
    Assignee: Fuji Electric Co., Ltd.
    Inventor: Naruhisa Nagata
  • Publication number: 20140332310
    Abstract: Disclosed herein is a waterproof sound-transmitting sheet, the thickness of which can easily be adjusted and which has a high sound transmitting efficiency and excellent waterproofness, and a method for producing same. The waterproof sound-transmitting sheet, which is attached to a sound hole of a case, includes: a support layer made of a film-shaped porous material and formed in the case; and a waterproofing layer formed on one side of the support layer in the shape of a porous nanoweb in which fine fiber strands are crosswisely layered and exposed to the outside of the case.
    Type: Application
    Filed: December 11, 2013
    Publication date: November 13, 2014
    Inventors: In-Yong Seo, Seung-Hoon Lee, Jun-Sik Hwang, Young-Sik Jung, Kyung-Su Kim
  • Patent number: 8871366
    Abstract: A protecting coating for a copper substrate is disclosed. The coating comprises seed layer comprising titanium ions that forms an “alloy-like” structure with the copper substrate. The coating further comprises a first layer of carbon disposed on the seed layer comprising titanium ions. A second layer comprising titanium is disposed on the first layer of carbon, and a second layer of carbon is disposed on the second layer comprising titanium.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: October 28, 2014
    Assignee: Seagate Technology LLC
    Inventors: Yongping Gong, Kristoffer Steven Scheponik
  • Patent number: 8871362
    Abstract: The present invention relates to a cutting tool having a base body and a multilayered coating applied thereto, wherein at least two layers of the multilayered coating arranged one on top of the other contain, or consist of, metal oxide of the same metal or of different metals. In order to create cutting tools which are better than those of the prior art, it is proposed according to the invention that the at least two metal oxide layers arranged one on top of the other be produced successively by different PVD-processes, selected from i) reactive magnetron sputtering (RMS), ii) arc vapour deposition (arc-PVD), iii) ion plating, iv) electron beam vapour deposition and v) laser deposition, wherein modifications of the respective processes i) to v) do not constitute different PVD-processes.
    Type: Grant
    Filed: May 16, 2008
    Date of Patent: October 28, 2014
    Assignee: Walter AG
    Inventor: Veit Schier
  • Patent number: 8859035
    Abstract: A method of enhancing the flowability of a powder. The powder is defined by a plurality of particles having an initial level of inter-particle forces between each particle. The method comprises: treating the powder, wherein the level of inter-particle forces between each particle is substantially decreased from the initial level; fluidizing the treated powder; flowing the treated powder into a plasma arc chamber; the plasma arc chamber generating a plasma arc; and the plasma arc chamber operating on the treated powder using the generated plasma arc. Preferably, the inter-particle forces are decreased by coating the particles with an organic surfactant.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: October 14, 2014
    Assignee: SDCmaterials, Inc.
    Inventor: David Leamon
  • Patent number: 8852460
    Abstract: Methods and compositions for the deposition of a film on a substrate. In general, the disclosed compositions and methods utilize a precursor containing calcium or strontium.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: October 7, 2014
    Assignees: Air Liquide Electronics U.S. LP, American Air Liquide, Inc.
    Inventors: Olivier Letessier, Christian Dussarrat, Benjamin J. Feist, Vincent M. Omarjee
  • Publication number: 20140293280
    Abstract: Provided herein are substrates useful for surface-enhanced Raman spectroscopy (SERS), as well as methods of making substrates. The substrates comprise a support element; a nanoparticulate layer; a SERS-active layer in contact with said nanoparticulate layer; and optionally, an immobilizing layer disposed between said nanoparticulate layer and said support element; wherein if the optional immobilizing layer is not present, the nanoparticulate layer is thermally bonded to the support element; and if said optional immobilizing layer is present, said nanoparticulate layer thermally bonded to said immobilizing layer, and optionally, further thermally bonded to said support element. In addition, methods of making the substrates, along with methods of detecting and increasing a Raman signal using the substrates, are described herein.
    Type: Application
    Filed: November 2, 2012
    Publication date: October 2, 2014
    Inventors: Glenn Eric Kohnke, Xinyuan Liu, Marcel Potuzak, Alranzo Boh Ruffin, Millicent Kaye Weldon Ruffin
  • Publication number: 20140272456
    Abstract: A coated article has: a metallic substrate (22); a bondcoat (30); and a thermal barrier coating (TBC) (28). The bondcoat has a first layer (32) and a second layer (34), the first layer having a lower Cr content than the second layer.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: United Technologies Corporation
    Inventors: Mladen F. Trubelja, Dinesh K. Gupta, Brian S. Tryon, Mark T. Ucasz, Benjamin J. Zimmerman
  • Patent number: 8828312
    Abstract: Forming a wear- and corrosion-resistant coating on an industrial component such as a chemical processing or nuclear power valve component by applying a cobalt-based dilution buffer layer to an iron-based substrate by slurry coating, and then applying by welding a cobalt-based build-up layer over the cobalt-based dilution buffer layer. An industrial component having a dilution buffer layer and a welding build-up layer thereover.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: September 9, 2014
    Assignee: Kennametal Inc.
    Inventors: Matthew Yao, Rachel Collier, Danie DeWet
  • Publication number: 20140227631
    Abstract: The present invention proposed manufacturing method of coating layers with good conductivity and corrosion resistance at high productivity comprising etching the oxide layer on the stainless steel substrate by plasma etching to activate the surface and prevent from decreasing it's conductivity, coating metal nitrides like CrN or TiN in nano size thickness on the etched surface and coating carbon layer at nano size thickness on top of it. According to the present invention, it is possible to produce manufacture fuel cell bipolar plate, electrode material and stainless steel with reinforced conductivity and corrosion resistance in mass.
    Type: Application
    Filed: February 9, 2013
    Publication date: August 14, 2014
    Inventors: Youngha Jun, Jaimoo Yoo, Kiho Yeo, Shin Eui Chul
  • Publication number: 20140216723
    Abstract: A slip component for a downhole tool has a bearing surface hard surface treated. The slip component, which can be a slip or other component of a slip mechanism used on a packer, bridge plug, or other downhole tool, is composed of a metallic base material such as magnesium, aluminum, an aluminum alloy, or a magnesium alloy. To hard surface treat the slip component, at least the bearing surface is positioned relative to an electro sparking apparatus. Using the electrosparking apparatus, an external layer is bonded at least on the bearing. In a further embodiment, an intermediate layer can be first bonded onto at least the bearing surface by ion sputtering an intermediate material onto the metallic base material of the slip component. Then, an external layer can be bonded at least on the intermediate layer by electrospark deposition.
    Type: Application
    Filed: February 7, 2013
    Publication date: August 7, 2014
    Inventor: Robert P. Badrak
  • Publication number: 20140186656
    Abstract: A coated article has: a metallic substrate; a bondcoat; and a thermal barrier coating (TBC). The bondcoat has an MCrAlY first layer and an MCrAlY second layer, the second layer having a lower Cr content than the first layer.
    Type: Application
    Filed: December 31, 2012
    Publication date: July 3, 2014
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Brian S. Tryon, Mario P. Bochiechio, Russell A. Beers
  • Publication number: 20140185732
    Abstract: A method and apparatus for a fret resistant fuel rod for a Boiling Water Reactor (BWR) nuclear fuel bundle. An applied material entrained with fret resistant particles is melted or otherwise fused to a melted, thin layer of the fuel rod cladding. The applied material is made of a material that is chemically compatible with the fuel rod cladding, allowing the fret resistant particles to be captured in the thin layer of re-solidified cladding material to produce an effective and resilient fret resistant layer on an outer layer of the cladding.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Kevin Ledford, Yang-Pi Lin, Paul Cantonwine
  • Patent number: 8765226
    Abstract: A patterned layer over a wafer is produced by depositing a print-patterned mask structure. Energized particles of a target material are deposited over the wafer and the print-patterned mask such that particles of said target material incident on the mask structure enter the mask structure body and minimally accumulate, if at all, on the surface of the mask structure, and otherwise the particles of target material accumulate as a generally uniform layer over the wafer. The print-patterned mask structure, including particles of target material therein, is removed leaving the generally uniform layer of target material as a patterned layer over the wafer.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: July 1, 2014
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Scott Limb, Uma Srinivasan
  • Publication number: 20140177988
    Abstract: A bearing lining has a bearing backing layer provided with a coating comprising a first overlay layer and a second overlay layer, the first overlay layer being provided between the bearing backing layer and the second overlay layer. The first and second overlay layers each comprise a matrix material and a soft-phase material that is substantially insoluble in the matrix and dispersed within the matrix as soft-phase particles. The first overlay layer comprises a higher proportion by weight of a grain size reduction additive than the second overlay layer.
    Type: Application
    Filed: January 20, 2012
    Publication date: June 26, 2014
    Applicants: MAHLE COMPOSANTS MOTEUR FRANCE SAS, MAHLE INTERNATIONAL GMBH
    Inventors: Cedric Marc Roger Fortune, Jose Valentim Lima Sarabanda
  • Patent number: 8758462
    Abstract: An abrasive wear-resistant material includes a matrix and sintered and cast tungsten carbide pellets. A device for use in drilling subterranean formations includes a first structure secured to a second structure with bonding material. An abrasive wear-resistant material covers the bonding material. The first structure may include a drill bit body and the second structure may include a cutting element. A method for applying an abrasive wear-resistant material to a drill bit includes providing a bit, mixing sintered and cast tungsten carbide pellets in a matrix material to provide a pre-application material, heating the pre-application material to melt the matrix material, applying the pre-application material to the bit, and solidifying the material. A method for securing a cutting element to a bit body includes providing an abrasive wear-resistant material to a surface of a drill bit that covers a brazing alloy disposed between the cutting element and the bit body.
    Type: Grant
    Filed: January 8, 2009
    Date of Patent: June 24, 2014
    Assignee: Baker Hughes Incorporated
    Inventor: James L. Overstreet
  • Publication number: 20140161984
    Abstract: A class of nickel based alloys having a fine grain structure resistant to stress corrosion cracking, and methods of alloy design to produce further alloys within the class are presented. The alloys act as suitable welding materials in similar applications to that of Alloy 622. The fine-grained structure of these novel alloys may also be advantageous for other reasons as well such as wear, impact, abrasion, corrosion, etc. These alloys have similar phases to Alloy 622 in that they are composed primarily of austenitic nickel, however the phase morphology is a much finer grained structure opposed to the long dendritic grains common to Alloy 622 when it is subject to cooling rates from a liquid state inherent to the welding process.
    Type: Application
    Filed: December 20, 2013
    Publication date: June 12, 2014
    Applicant: Scoperta, Inc.
    Inventor: Justin Lee Cheney
  • Patent number: 8742337
    Abstract: A mass spectrometer includes an Electron Impact (“EI”) or a Chemical Ionization (“CI”) ion source, and the ion source includes a first coating or surface. The first coating or surface is formed of a metallic carbide, a metallic boride, a ceramic or DLC, or an ion-implanted transition metal.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: June 3, 2014
    Assignee: Micromass UK Limited
    Inventors: Gordon A. Jones, David S. Douce, Amir Farooq
  • Publication number: 20140127416
    Abstract: The present disclosure relates to an improved low-cost metallic coating to be deposited on gas turbine engine components. The metallic coating consists of 1.0 to 18 wt % cobalt, 3.0 to 18 wt % chromium, 5.0 to 15 wt % aluminum, 0.01 to 1.0 wt % yttrium, 0.01 to 0.6 wt % hafnium, 0.0 to 0.3 wt % silicon, 0.0 to 1.0 wt % zirconium, 0.0 to 10 wt % tantalum, 0.0 to 9.0 wt % tungsten, 0.0 to 10 wt % molybdenum, 0.0 to 43.0 wt % platinum, and the balance nickel.
    Type: Application
    Filed: January 13, 2014
    Publication date: May 8, 2014
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Brian S. Tryon, David A. Litton, Russell A. Beers
  • Publication number: 20140120308
    Abstract: An article comprising a substrate; a bond layer disposed on the substrate, the bond layer comprising one or more bonding segments and at least one reinforcing segment; at least one protective layer disposed on the bond layer; and at least one cooling hole extending through the substrate, the at least one reinforcing segment and the at least one protective layer, wherein the at least one reinforcing segment reduces cracking and/or delamination at the interface between the substrate and the bond layer, and methods of making the same.
    Type: Application
    Filed: October 30, 2012
    Publication date: May 1, 2014
    Applicant: General Electric Company
    Inventors: Dechao Lin, Ganjiang Feng, Srikanth Chandrudu Kottilingam
  • Patent number: 8699655
    Abstract: The present invention relates to tubular elements, such as fuel assembly tubes, which are designed to be used in high pressure and high temperature water in nuclear reactors, such as pressurized water nuclear reactors. In particular, the present invention relates to a method of improving wear resistance and corrosion resistance by depositing a protective coating having a depth of from about 5 to about 25 ?m on the surface of the tubular elements. The coating is provided by nitriding the tubular element at a temperature of from about 400° C. to about 440° C. The nitridation of the tubular element can be carried out for a duration of from about 12 hours to about 40 hours.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: April 15, 2014
    Assignee: Westinghouse Electric Company, LLC
    Inventor: Nagwa Mahmoud Elshaik
  • Publication number: 20140065320
    Abstract: Hybrid coating systems include an electrospark deposition device having an electrode that deposits a coating on a substrate and a laser that produces a laser beam directed towards at least a portion of the coating as the coating is deposited on the substrate.
    Type: Application
    Filed: August 30, 2012
    Publication date: March 6, 2014
    Inventors: Dechao Lin, Ganjiang Feng, Skikanth Chandrudu Kottilingam, Yan Cui, Brian Lee Tollison
  • Patent number: 8658005
    Abstract: An electrode for an electrical-discharge surface-treatment method is molded with a metallic powder or a metallic compound powder having an average grain diameter of 6 micrometers to 10 micrometers. A coat on a surface of a workpiece is formed with a material constituting the electrode or a substance that is generated by a reaction of the material due to a pulse-like electrical discharge. The coat is built up with a material containing metal as a main constituent under conditions of a width of a current pulse for the pulse-like electrical discharge in a range of 50 microseconds to 500 microseconds and a peak of the current pulse equal to or less than 30 amperes.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: February 25, 2014
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventors: Akihiro Goto, Masao Akiyoshi, Katsuhiro Matsuo, Hiroyuki Ochiai, Mitsutoshi Watanabe, Takashi Furukawa
  • Publication number: 20140050938
    Abstract: A method of providing an oxidation resistant coating is disclosed. The method includes providing a substrate having a first surface and cooling holes. A portable coating device includes electro-spark deposition (ESD) equipment and an ESD torch connected with the ESD equipment. The ESD torch has an inert gas source and a rotary electrode conductive material. The rotary electrode is positioned within the ESD torch, and is shielded by an inert gas. The rotary electrode applies a compositionally controlled protective coating to the first surface of the substrate. Then the rotary electrode is inserted into the cooling hole and generates an electrospark between rotary ESD electrode and the substrate to form a rounded edge and deposit a coating of electrode material alloy at a cooling hole edge.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 20, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Dechao LIN, Ibrahim UCOK, Kivilcim ONAL
  • Patent number: 8652589
    Abstract: The method for manufacturing a hydrogen permeation barrier comprises the steps of a) depositing on a substrate (SUB) a layer system (LS) comprising at least one layer (L1,L2,L3); characterized in that step a) comprises the step of b) depositing at least one hydrogen barrier layer (HPBL) comprising an at least ternary oxide. The apparatus comprises a sealable volume and a wall forming at least a portion of a boundary limiting said volume, wherein said wall comprises a hydrogen permeation barrier comprising a layer system (LS) comprising at least one layer, wherein said layer system comprises at least one hydrogen barrier layer (HPBL) comprising an at least ternary oxide. Preferably, said at least ternary oxide is substantially composed of Al, Cr and O, and said depositing said at least one hydrogen barrier layer (HPBL) is carried out using a physical vapor deposition method, in particular a cathodic arc evaporation method.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: February 18, 2014
    Assignee: Oerlikon Trading AG, Truebbach
    Inventor: Jurgen Ramm
  • Patent number: 8642215
    Abstract: A negative active material for a rechargeable lithium battery includes a SiOx (0.5?x?1.5) compound including crystalline Si, and a SiCy, (0.5?y?1.5) compound including crystalline carbon. The negative active material may be used in a rechargeable lithium battery to achieve high capacity and good cycle-life characteristics.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: February 4, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jae-Myung Kim, Tae-Sik Kim, Kyu-Nam Joo, Deok-Hyun Kim
  • Publication number: 20140013914
    Abstract: A surface-coated cutting tool having excellent fracture resistance and wear resistance is provided. In the surface-coated cutting tool having at least a hard coating layer made of an (Al, Cr)N layer with a layer thickness of 0.5 ?m to 10 ?m formed to coat on the surface of a cutting tool body made of a WC cemented carbide, pores and droplets are dispersed and distributed in the (Al, Cr)N layer, the occupied area ratio of the pores and the occupied area ratio of the droplets in a cross-section of the (Al, Cr)N layer are 0.5 to 1 area % and 2 to 4 area % respectively, and, furthermore, out of the droplets, Al-rich droplets having a higher Al content ratio than the average Al content ratio of the (Al, Cr)N layer occupy 20 area % or more of the total droplet area.
    Type: Application
    Filed: January 27, 2012
    Publication date: January 16, 2014
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Kazuaki Senbokuya, Yusuke Tanaka
  • Publication number: 20140017415
    Abstract: An electrospark deposition electrode and an associated method for depositing coatings using the electrode are provided. The electrode includes a powder of a first metal and a powder of a second metal. The second metal is a braze alloy including nickel, the second metal having a lower melting point than the first metal. The powder of the first metal and the powder of the second metal are sintered together to form the electrode so that the powders are comingled but not combined within the electrode. The method includes depositing a layer of the first metal onto the substrate using an electrospark deposition process.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 16, 2014
    Applicant: General Electric Company
    Inventors: Dechao Lin, David Vincent Bucci, Srikanth Chandrudu Kottilingam, Yan Cui, Brian Iee Tollison, David Edward Schick
  • Patent number: 8628619
    Abstract: A plasma coating system includes at least one coating station with a first side and a second side defining a pathway with at least one bend. The coating station also includes a first plasma arc that provides a plasma jet directed towards a substrate. The first plasma arc is positioned on either the first side or the second side of the bend.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: January 14, 2014
    Assignee: Exatec LLC
    Inventor: Steven M. Gasworth
  • Publication number: 20130330540
    Abstract: The invention relates to a method for forming a protective coating against high-temperature oxidation on a surface of a refractory composite material based on silicon and niobium, wherein chromium present on the surface to be protected is reacted with a reactive gas which contains silicon and oxygen in order to produce a composite coating having two phases, a first phase of which is an oxide phase based on silica which has viscoplastic properties and a second phase of which is based on silicon, chromium and oxygen, and wherein the first phase and second phase are coalesced at high temperature, which allows a protective coating to be formed in which the second phase acts as a reservoir to reform, during operation, the first phase by means of reaction with an oxidising gas. The invention is preferably used in the field of aeronautical engines.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 12, 2013
    Inventors: Marie-Pierre BACOS, Pierre JOSSO