Pyrolytic Use Of Laser Or Focused Light (e.g., Ir, Uv Lasers To Heat, Etc.) Patents (Class 427/586)
  • Patent number: 8133554
    Abstract: Methods for depositing material onto microfeature workpieces in reaction chambers and systems for depositing materials onto microfeature workpieces are disclosed herein. In one embodiment, a method includes depositing molecules of a gas onto a microfeature workpiece in the reaction chamber and selectively irradiating a first portion of the molecules on the microfeature workpiece in the reaction chamber with a selected radiation without irradiating a second portion of the molecules on the workpiece with the selected radiation. The first portion of the molecules can be irradiated to activate the portion of the molecules or desorb the portion of the molecules from the workpiece. The first portion of the molecules can be selectively irradiated by impinging the first portion of the molecules with a laser beam or other energy source.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: March 13, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Ross S. Dando, Dan Gealy
  • Patent number: 8114483
    Abstract: The preferred embodiments provide a method for forming at least one metal comprising elongated nanostructure on a substrate. The method comprises exposing a metal halide compound surface to a photon comprising ambient to initiate formation of the at least one metal comprising elongated nanostructure. The preferred embodiments also provide metal comprising elongated nanostructures obtained by the method according to preferred embodiments.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: February 14, 2012
    Assignees: IMEC, Katholieke Universiteit Leuven (KUL)
    Inventor: Dries Dictus
  • Publication number: 20120026574
    Abstract: A thermochromic smart window and a method of manufacturing the thermochromic smart window including a glass and a thermochromic layer including a vanadium dioxide material formed on the glass. A thermochromic smart window includes a substrate and a thermochromic layer disposed on the substrate, wherein a slope of a graph of a reflectance of the thermochromic layer is at or between 1 and 2%/° C. at a threshold temperature.
    Type: Application
    Filed: November 9, 2010
    Publication date: February 2, 2012
    Inventors: Tae-Hyun Bae, Myun-Gi Shim, Soo-Ho Park, Dong-Gun Moon, Mi-Hyun Lee
  • Patent number: 8088454
    Abstract: A method for making a field emission cathode includes the steps of: (a) providing a substrate having a first substrate surface and a second substrate surface opposite to the first substrate surface; (b) forming a conductive film on the first substrate surface; (c) forming a light absorption layer on the conductive film; (d) forming a catalyst film on the light absorption layer; (e) flowing a mixture of a carrier gas and a carbon source gas over the catalyst film; (f) focusing a laser beam on the catalyst film and/or on the second substrate surface to locally heat the catalyst to a predetermined reaction temperature; and (g) growing an array of the carbon nanotubes via the catalyst film to form a field emission cathode.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: January 3, 2012
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Zhuo Chen, Chun-Xiang Luo, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 8048397
    Abstract: A method for making a field emission cathode includes the steps of: (a) providing a substrate having a first substrate surface and a second substrate surface opposite to the first substrate surface; (b) forming a conductive film on the first substrate surface; (c) forming a catalyst film on the conductive film, the catalyst film including carbonaceous material; (d) flowing a mixture of a carrier gas and a carbon source gas over the catalyst film; (e) focusing a laser beam on the catalyst film and/or on the second substrate surface to locally heat the catalyst to a predetermined reaction temperature; and (f) growing an array of the carbon nanotubes via the catalyst film to form a field emission cathode.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: November 1, 2011
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Zhuo Chen, Chun-Xiang Luo, Kai-Li Jiang, Shou-Shan Fan
  • Publication number: 20110212268
    Abstract: Embodiments of the present invention relate to apparatuses and methods for fabricating electrochemical cells. One embodiment of the present invention comprises a single chamber configurable to deposit different materials on a substrate spooled between two reels. In one embodiment, the substrate is moved in the same direction around the reels, with conditions within the chamber periodically changed to result in the continuous build-up of deposited material over time. Another embodiment employs alternating a direction of movement of the substrate around the reels, with conditions in the chamber differing with each change in direction to result in the sequential build-up of deposited material over time. The chamber is equipped with different sources of energy and materials to allow the deposition of the different layers of the electrochemical cell.
    Type: Application
    Filed: May 6, 2011
    Publication date: September 1, 2011
    Applicant: Sakti3, Inc.
    Inventors: Fabio Albano, Chia-Wei Wang, Ann Marie Sastry
  • Publication number: 20110205643
    Abstract: This disclosure is directed to an optical element and method in which a UV-curable adhesive, used along the edge of the optic to keep it in a holder, has been stabilized against degradation by below 300 nm radiation. The technical solution to the degradation of the adhesive includes both 193 nm scatter light reduction and protective coatings of plasma modified AlF3 films on at least that part of the optical element that is in contact with the adhesive.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 25, 2011
    Inventors: Horst Schreiber, Jue Wang
  • Publication number: 20110194106
    Abstract: An device for Raman spectroscopy such as surface enhanced Raman spectroscopy (SERS) is disclosed herein. Various embodiments may be utilized to prepare a SERS substrate using several deposition techniques such as pulsed laser deposition. Some embodiments optimize coverage, volume, or elements of SERS active metals. The method is a single step inexpensive method for preparing a SERS active substrate. In some embodiments a coating layer underneath the SERS active metals is utilized for additional enhancements.
    Type: Application
    Filed: November 22, 2010
    Publication date: August 11, 2011
    Inventors: Makoto MURAKAMI, Yong Che, Bing Liu, Yuki Ichikawa
  • Publication number: 20110111323
    Abstract: An electrolyte membrane for electrochemical cells, that has oxide ion permeability properties, and methods for producing the same, is made of an oxide ion conductor having a component composition expressed by a general formula: La1-XSrXGa1-YMgYO3 (where X=0.05 to 0.3, and Y=0.025 to 0.3), and having a perovskite type crystal structure, wherein the electrolyte membrane has a thickness of 1 to 10 ?m and a columnar crystal structure grown to a membrane surface in a direction perpendicular to a membrane face, and wherein the perovskite type crystal structure of the electrolyte membrane having the columnar crystal structure grown to the membrane surface, has a crystal structure with [112] direction oriented perpendicularly to the membrane face.
    Type: Application
    Filed: January 19, 2011
    Publication date: May 12, 2011
    Inventors: Tatsumi ISHIHARA, Takashi YAMADA
  • Publication number: 20110014399
    Abstract: A stimulation electrode is provided having an electrically conducting electrode base member which is partially covered with an electrically insulating ceramic layer. The ceramic layer is formed of an oxide and/or an oxynitride of at least one metal of the group of titanium, niobium. tantalum, zirconium, aluminum and silicon. Various methods are provided for production of the stimulation electrode, including methods in which the ceramic layer is formed in situ by a thermal, chemical or electrochemical oxidation or oxynitridation process. The stimulation electrode may be used as a cardiac pacemaker electrode, a neuro-stimulation electrode, or another human implant.
    Type: Application
    Filed: September 28, 2010
    Publication date: January 20, 2011
    Applicant: W.C. HERAEUS GMBH
    Inventors: Matthias FRERICKS, Oliver KEITEL, Frank Krüger, Heiko SPECHT, Hans-Jürgen WACHTER, Christiane LEITOLD
  • Patent number: 7871663
    Abstract: A method for enhancing the flux pinning of a YBCO superconductor by substituting minute quantities of rare earth elements (La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) or other deleterious elements (Sc, etc.) for Y in YBCO thin films is described. The method of the present invention enables enhanced flux pinning of the material while not significantly increasing the cost of the HIS material and can be used in all HTS deposition methods since it is not process dependent.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: January 18, 2011
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Paul N. Barnes, Joseph W. Kell, Timothy J. Haugan
  • Publication number: 20100320171
    Abstract: Laser-assisted apparatus and methods for performing nanoscale material processing, including nanodeposition of materials, can be controlled very precisely to yield both simple and complex structures with sizes less than 100 nm. Optical or thermal energy in the near field of a photon (laser) pulse is used to fabricate submicron and nanometer structures on a substrate. A wide variety of laser material processing techniques can be adapted for use including, subtractive (e.g., ablation, machining or chemical etching), additive (e.g., chemical vapor deposition, selective self-assembly), and modification (e.g., phase transformation, doping) processes. Additionally, the apparatus can be integrated into imaging instruments, such as SEM and TEM, to allow for real-time imaging of the material processing.
    Type: Application
    Filed: December 16, 2008
    Publication date: December 23, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Samuel S. Mao, Costas P. Grigoropoulos, David Hwang, Andrew M. Minor
  • Publication number: 20100310788
    Abstract: The invention relates to a method for deposition of material by laser evaporation wherein the employed laser is a continuous or semi-continuous laser. Using such a laser, it is possible to evaporate the target material in a controlled manner from a local pool of liquid or fluidized target material at the target surface. The invention also provides a system for executing said method.
    Type: Application
    Filed: November 21, 2008
    Publication date: December 9, 2010
    Applicant: OTB GROUP B.V.
    Inventors: Franciscus Cornelius Dings, Woutherus Johannes Maria Brok
  • Publication number: 20100307553
    Abstract: The present disclosure concerns a means to use light manipulation in engineered or structured coatings for thermal or photothermal effects and/or refractive and reflective index management. Such metallic, nonmetallic, organic or inorganic metamaterials or nanostructures could be used to manipulate light or energy for thermal or photothermal effects and/or refractive and reflective index management on or in any material or substrate on or in any material or substrate. The light scattering properties of metallic particles and film can be used to tune such coatings, structures or films over a broad spectrum.
    Type: Application
    Filed: August 24, 2009
    Publication date: December 9, 2010
    Inventors: ANTHONY DEFRIES, MARK BRONGERSMA
  • Patent number: 7776406
    Abstract: Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
    Type: Grant
    Filed: October 19, 2007
    Date of Patent: August 17, 2010
    Assignee: NeoPhotonics Corporation
    Inventors: Craig R. Horne, Pierre J. DeMascarel, Christian C. Honeker, Benjamin Chaloner-Gill, Herman A. Lopez, Xiangxin Bi, Ronald J. Mosso, William E. McGovern, James T. Gardner, Sujeet Kumar, James A. Gilliam, Vince Pham, Eric Euvrard, Shivkumar Chiruvolu, Jesse Jur
  • Patent number: 7767271
    Abstract: A method for producing a metallized image on a sheet material includes impregnating the material with a metal salts-containing solution and exposing the specified material points to a pulse laser radiation. The interaction of the pulses with the solution within a laser spot irritates a photochemical reaction resulting in a metal ion reduction into the elementary state thereof by associating the required number of electrons and deposition of metallic film which is firmly fixed to the filler of the sheet material in the laser spot area on the material surface. In case of sufficient laser radiation power, a recess is formed on the sheet material surface, and the metallic film is deposited on the bottom of the recess.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: August 3, 2010
    Inventors: Sergei Nikolaevich Maximovsky, Grigory Avramovich Radutsky
  • Patent number: 7713588
    Abstract: A piezo-electric film forming method includes (1) a first moving step of moving a nozzle with respect to a substrate along a first direction to form a first piezo-electric band extending along the first direction, (2) a measuring step of measuring thickness distribution along the width of the first piezo-electric band, (3) a calculating step of calculating a shifting distance based on the thickness distribution, (4) a shifting step of moving the nozzle with respect to the substrate along a second direction by the calculated shifting distance, wherein the second direction intersects with the first direction, and (5) a second moving step of moving the nozzle with respect to the substrate along the first direction to form a second piezo-electric band extending along the first direction. The piezo-electric film is formed such that the first piezo-electric band and the second piezo-electric band are overlapped.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: May 11, 2010
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventor: Motohiro Yasui
  • Patent number: 7709045
    Abstract: A method of creating a porous carbon coating on a medical device by applying a precursor carbon material on the medical device and then pyrolysing the precursor carbon material by laser irradiation. The laser irradiation may be focused to carbonize only certain portions of the medical device and any uncarbonized areas can be removed by solvent washing. Also provided is a medical device having a carbonized coating created according to the method of the present invention.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: May 4, 2010
    Assignee: Boston Scientific Scimed, Inc.
    Inventor: Aiden Flanagan
  • Patent number: 7695774
    Abstract: The present invention provides a titanium oxide photocatalytic thin film having a surface layer containing silicon oxide and titanium oxide and a production method for producing a titanium oxide photocatalytic thin film having a surface layer containing silicon oxide and titanium oxide and comprising a step of radiating excimer beam to the titanium oxide thin film while heating substrate on which the titanium oxide thin film is disposed in vacuum or gas atmosphere in the presence of a silicon-including compound.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: April 13, 2010
    Assignees: Fuji Xerox Co., Ltd., Toudai TLO, Ltd.
    Inventors: Shigemi Ohtsu, Tatsuya Maruyama, Eiichi Akutsu, Kazuhito Hashimoto
  • Publication number: 20100055349
    Abstract: The present invention is a method for localized chemical vapor deposition (CVD) for localized growing for example for carbon nanotubes (CNT), nanowires, and oxidation using a heated tip or an array of heated tips to locally heat the area of interest. As the tips moved, material such as CNTs grows in the direction of movement. The Scanning Probe Growth (SPG) or nanoCVD technique has similarities to the CVD growth; however it allows for controlled synthesis and direction and eliminates the need for masks.
    Type: Application
    Filed: May 11, 2009
    Publication date: March 4, 2010
    Inventors: Angelo Gaitas, Bhaskar Mitra, Amar Basu, Weibin Zhu
  • Patent number: 7666522
    Abstract: A method is provided for depositing a hard wear resistant surface onto a porous or non-porous base material of a medical implant. The wear resistant surface of the medical implant device may be formed by a Laser Based Metal Deposition (LBMD) method such as Laser Engineered Net Shaping (LENS). The wear resistant surface may include a blend of multiple different biocompatible materials. Further, functionally graded layers of biocompatible materials may be used to form the wear resistant surface. Usage of a porous material for the base may promote bone ingrowth to allow the implant to fuse strongly with the bone of a host patient. The hard wear resistant surface provides device longevity, particularly when applied to bearing surfaces such as artificial joint bearing surfaces or a dental implant bearing surfaces.
    Type: Grant
    Filed: May 10, 2006
    Date of Patent: February 23, 2010
    Assignee: IMDS, Inc.
    Inventors: Daniel F. Justin, Brent E. Stucker, T. Wade Fallin, Durga Janaki Ram Gabbita
  • Patent number: 7632575
    Abstract: A method of depositing a hard wear resistant surface onto a porous or non-porous base material of a medical implant. The medical implant device formed by a Laser Based Metal Deposition (LBMD) method. The porous material of the base promotes bone ingrowth allowing the implant to fuse strongly with the bone of a host patient. The hard wear resistant surface provides device longevity when applied to bearing surfaces such as artificial joint bearing surface or a dental implant bearing surface.
    Type: Grant
    Filed: October 18, 2005
    Date of Patent: December 15, 2009
    Assignee: IMDS, Inc.
    Inventors: Daniel F. Justin, Brent E. Stucker
  • Patent number: 7618679
    Abstract: A thermally and electrically conductive structure comprises a carbon nanotube (110) having an outer surface (111) and a carbon coating (120) covering at least a portion of the outer surface of the carbon nanotube. The carbon coating may be applied to the carbon nanotube by providing a nitrile-containing polymer, coating the carbon nanotube with the nitrile-containing polymer, and pyrolyzing the nitrile-containing polymer in order to form the carbon coating on the carbon nanotube. The carbon nanotube may further be coated with a low contact resistance layer (130) exterior to the carbon coating and a metal layer (140) exterior to the low contact resistance layer.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: November 17, 2009
    Assignee: Intel Corporation
    Inventors: Linda Shekhawat, Nachiket R. Raravikar
  • Patent number: 7608307
    Abstract: A method of forming film on a substrate, in which in a preliminary step information on film thickness deposited on a test substrate prepared for use in collecting information over a fixed irradiation time is obtained in advance while shining a laser beam on a target, there being a fixed positional relationship between spatial positions of the test substrate and an incidence point of the laser beam on the target, or while shining the laser beam on the target while rotating the test substrate. In a main step, a deposition time at each relative positional relationship is adjusted based on film-thickness distribution information obtained in the preliminary step while spatially moving or rotating the substrate or substrate holder about a specific central axis of rotation relative to the incidence point of the laser beam to the target, or while performing both the relative rotation and relative movement.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: October 27, 2009
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventor: Shigeki Sakai
  • Patent number: 7608308
    Abstract: A p-type semiconductor zinc oxide (ZnO) film and a process for preparing the film are disclosed. The film is co-doped with phosphorous (P) and lithium (Li). A pulsed laser deposition scheme is described for use in growing the film. Further described is a process of pulsed laser deposition using transparent substrates which includes a pulsed laser source, a substrate that is transparent at the wavelength of the pulsed laser, and a multi-target system. The optical path of the pulsed laser is arranged in such a way that the pulsed laser is incident from the back of the substrate, passes through the substrate, and then focuses on the target. By translating the substrate towards the target, this geometric arrangement enables deposition of small features utilizing the root of the ablation plume, which can exist in a one-dimensional transition stage along the target surface normal, before the angular width of the plume is broadened by three-dimensional adiabatic expansion.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: October 27, 2009
    Assignee: Imra America, Inc.
    Inventors: Bing Liu, Zhendong Hu, Yong Che, Yuzuru Uehara
  • Publication number: 20090155493
    Abstract: Certain example embodiments of this invention relate to a method of forming a coating on a glass substrate using combustion deposition. A glass substrate having at least one surface to be coated is provided. A reagent is selected. A precursor to be combusted with the reagent is introduced. Using at least one infrared burner, at least a portion of the reagent and the precursor are combusted to form a combusted material, with the combusted material including non-vaporized material. The glass substrate is provided in an area so that the glass substrate is heated sufficiently to allow the combusted material to form the coating, directly or indirectly, on the glass substrate. The coating may be substantially uniform. In certain example embodiments, a silicon oxide coating may be deposited, which increases visible transmission of the glass substrate by at least about 1.7%.
    Type: Application
    Filed: December 17, 2007
    Publication date: June 18, 2009
    Inventors: Mark A. Lewis, David D. McLean, Maximo Frati
  • Publication number: 20090117403
    Abstract: The present invention relates to a process for fabricating a composite functional body/substrate, either by melting with an energy beam or by spin coating. The functional material is preferably a piezoelectric material (PVDF). The energy beam is preferably a laser beam.
    Type: Application
    Filed: June 5, 2006
    Publication date: May 7, 2009
    Applicant: The Universidty of Liverpool
    Inventors: Christopher Sutcliffe, Paul Raymond Chalker
  • Patent number: 7504136
    Abstract: A method for forming a film of material using chemical vapor deposition. The method includes providing a substrate comprising a pattern of at least one metallic nanostructure, which is made of a selected material. The method includes determining a plasmon resonant frequency of the selected material of the nanostructure and exciting a portion of the selected material using an electromagnetic source having a predetermined frequency at the plasmon resonant frequency to cause an increase in thermal energy of the selected material. The method includes applying one or more chemical precursors overlying the substrate including the selected material excited at the plasmon resonant frequency and causing selective deposition of a film overlying at least the portion of the selected material.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: March 17, 2009
    Assignee: California Institute of Technology
    Inventors: David A. Boyd, Mark Brongersma, Leslie Greengard
  • Publication number: 20090061208
    Abstract: A carbon nanotube composite preform includes a substrate and a plurality of carbon nanotubes formed thereon. Each carbon nanotube includes a first end adjacent to the substrate and a second end away from the substrate. Gaps between the second ends of the carbon nanotubes are bigger than gaps between the first ends thereof. The method for making the carbon nanotube composite preform includes the following steps: (a) providing a substrate; (b) forming a plurality of carbon nanotubes (e.g., a carbon nanotube array) on the substrate; (c) placing the carbon nanotubes and the substrate in a solvent for some time; (d) removing the carbon nanotubes and the substrate from the solvent; (e) drying the carbon nanotubes and the substrate to form a carbon nanotube composite preform.
    Type: Application
    Filed: December 14, 2007
    Publication date: March 5, 2009
    Applicants: Tsinghua University, HON HAI Precision Industry Co., LTD.
    Inventors: Hai-Zhou Guo, Feng-Wei Dai, Yuan Yao, Chang-Shen Chang, Chang-Hong Liu, Kai-Li Jiang
  • Patent number: 7491431
    Abstract: Methods for forming coated substrates can be based on depositing material from a flow onto a substrate in which the coating material is formed by a reaction within the flow. In some embodiments, the product materials are formed in a reaction driven by photon energy absorbed from a radiation beam. In additional or alternative embodiments, the flow with the product stream is directed at the substrate. The substrate may be moved relative to the flow. Coating materials can be formed with densities of 65 percent to 95 percent of the fully densified coating material with a very high level of coating uniformity.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: February 17, 2009
    Assignee: NanoGram Corporation
    Inventors: Shivkumar Chiruvolu, Michael Edward Chapin
  • Patent number: 7455884
    Abstract: A method for atomic layer deposition providing a dispenser unit used to prevent mixing of a precursor gas and an input gas. From the dispenser unit a flow of the input gas is provided over a surface of the workpiece wherein a beam of the electromagnetic radiation is directed into the input gas in close proximity to the surface of the workpiece, but spaced a finite distance therefrom. The input gas is dissociated by the beam producing a high flux point of use generated reactive gas species that reacts with a surface reactant formed on the surface of the workpiece by a direct flow of the precursor gas flown from the dispensing unit. The surface reactant and reactive gas species react to form a desired monolayer of a material on the surface of the workpiece.
    Type: Grant
    Filed: January 27, 2004
    Date of Patent: November 25, 2008
    Assignee: Micron Technology, Inc.
    Inventor: Gurtej S. Sandhu
  • Publication number: 20080206485
    Abstract: A device for measuring at least one property of a material sample is disclosed. The device includes at least one sensor element which is formed by a direct-write technique. The device can be an instrument for measuring strain in the sample, or for measuring other properties or attributes of a sample, such as temperature. A turbine engine disk on which components of property-measuring devices have been direct-written is also described. Methods of forming sensor elements for property-measuring devices are disclosed.
    Type: Application
    Filed: February 27, 2008
    Publication date: August 28, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Canan Uslu Hardwicke, Melvin Robert Jackson
  • Publication number: 20070287027
    Abstract: A method is provided for depositing a hard wear resistant surface onto a porous or non-porous base material of a medical implant. The wear resistant surface of the medical implant device may be formed by a Laser Based Metal Deposition (LBMD) method such as Laser Engineered Net Shaping (LENS). The wear resistant surface may include a blend of multiple different biocompatible materials. Further, functionally graded layers of biocompatible materials may be used to form the wear resistant surface. Usage of a porous material for the base may promote bone ingrowth to allow the implant to fuse strongly with the bone of a host patient. The hard wear resistant surface provides device longevity, particularly when applied to bearing surfaces such as artificial joint bearing surfaces or a dental implant bearing surfaces. An antimicrobial material such as silver may be deposited in combination with a metal to form an antimicrobial surface deposit.
    Type: Application
    Filed: January 17, 2007
    Publication date: December 13, 2007
    Applicant: MedicineLodge, Inc.
    Inventors: Daniel F. Justin, Brent E. Stucker, Durga Janaki Ram Gabbita, David William Britt
  • Patent number: 7157144
    Abstract: SrBi2Nb2O9 (SBN) thin films are deposited on Pt/TiO2/SiO2/Si substrates using off-axis pulsed laser deposition technique. Off-axis laser ablation avoids plasma damaging of the surface of SBN thin films and is favorable to grow films along the polarization axis (a–b plane). SBN thin films are grown at 350° C. substrate temperature, with 5 mm away from the plasma focus, and annealed at 750° C. for 1 hour in oxygen ambient. These SBN thin films exhibited giant remnant polarization (Pr) of 50 ?C/cm2 with coercive field of 190 kV/cm. The fatigue endurance of these SBN thin films was measured at 400 kV/cm and showed minimal (<20%) polarization degradation of up to 1010 switching cycles. The leakage current density of SBN thin films was found to be about 2×107 up to an applied field of 100 kV/cm. The above-mentioned properties of off-axis deposited SBN thin films, makes it a good material for NVRAM devices.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: January 2, 2007
    Assignee: University of Puerto Rico
    Inventors: Ram S. Katiyar, Pijush Battacharya, Rasmi R. Das
  • Patent number: 7109024
    Abstract: This invention features a biomolecule-bound substrate that includes a support made of an organic polymer and having an unmodified surface; and a plurality of unmodified biomolecules immobilized on the unmodified surface. The organic polymer is acrylic resin, polypropylene, polystyrene, polyethylene, polyvinyl chloride, polysulfone, polycarbonate, cellulose acetate, rubber, latex, polyethylene terephthalate, acrylonitrile butadiene styrene, acrylonitrile styrene, or a combination thereof. The substrate is formed by placing the unmodified biomolecules on the unmodified surface followed by ultraviolet irradiation.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: September 19, 2006
    Assignee: Dr. Chip Biotechnology Inc.
    Inventors: Kan-Hung Lee, Yu-Hau Shih, Chuan-Mei Tsai, Yih-Weng Wang, Hsiung Hsiao, Chi-Horng Bair, Shin-Hwan Wang
  • Patent number: 7041342
    Abstract: There are now provided thin-film solar cells and method of making. The devices comprise a low-cost, low thermal stability substrate with a semiconductor body deposited thereon by a deposition gas. The deposited body is treated with a conversion gas to provide a microcrystalline silicon body. The deposition gas and the conversion gas are subjected to a pulsed electromagnetic radiation to effectuate deposition and conversion.
    Type: Grant
    Filed: October 10, 2003
    Date of Patent: May 9, 2006
    Assignee: Schott Glas
    Inventors: Manfred Lohmeyer, Stefan Bauer, Burkhard Danielzik, Wolfgang Möhl, Nina Freitag
  • Patent number: 7001672
    Abstract: A method of depositing a hard wear resistant surface onto a porous or non-porous base material of a medical implant. The medical implant device formed by a Laser Based Metal Deposition (LBMD) method. The porous material of the base promotes bone ingrowth allowing the implant to fuse strongly with the bone of a host patient. The hard wear resistant surface provides device longevity when applied to bearing surfaces such as artificial joint bearing surface or a dental implant bearing surface.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: February 21, 2006
    Assignee: Medicine Lodge, Inc.
    Inventors: Daniel F. Justin, Brent E. Stucker
  • Patent number: 6994894
    Abstract: A method of depositing a solid film on a substrate in which a stream comprising particles suspended in a transport gas is moved through a heating zone. The particles are combined with the transport gas from a powder feeder operatively coupled to a gas flow tube. The particle stream is directed toward the heating zone by ejecting the powder stream from a nozzle connected to a distal end of the gas flow tube. A radiation source is directed at the suspended particles as they move through the heating zone so that the particles heated to a molten state. The droplets are undercooled in a cooling zone before impact with the substrate.
    Type: Grant
    Filed: April 20, 2001
    Date of Patent: February 7, 2006
    Assignee: Vanderbilt University
    Inventor: William Hofmeister
  • Patent number: 6926933
    Abstract: A water-repelling film is formed by using a vacuum ultraviolet rays chemical vapor deposition (CVD) system (100) comprising a vacuum ultraviolet rays generating section (102), a reaction room (106), and a window (104) for separating the reaction room (106) and the vacuum ultraviolet rays generating section (102). Plasma having an energy larger than 0 eV but smaller than 10 eV and organic material gas are supplied to the reaction room. A substrate (116) in the reaction room (106) is heated to maintain such a temperature as not causing damage on the substrate (116). Vacuum ultraviolet rays is applied from the vacuum ultraviolet rays generating section (102) to the inside of the reaction room (106) through the window (104).
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: August 9, 2005
    Assignee: Oki Electric Industry Co., Ltd.
    Inventors: Junichi Miyano, Kiyohiko Toshikawa, Yoshikazu Motoyama
  • Patent number: 6838125
    Abstract: A method for depositing a film on a substrate is provided. In one aspect, the method includes providing a metal-containing precursor to an activation zone, and activating the metal-containing precursor to form an activated precursor. The activated precursor gas is transported to a reaction chamber, and a film is deposited on the substrate using a cyclical deposition process, wherein the activated precursor gas and a reducing gas are alternately adsorbed on the substrate. Also provided is a method of depositing a film on a substrate using an activated reducing gas.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: January 4, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Hua Chung, Ling Chen, Vincent W. Ku
  • Patent number: 6803073
    Abstract: A submicron particle forming method includes feeding a first set of precursors to a first energy application zone. Energy is applied to the first set of precursors in the first energy application zone effective to react and form solid particles having maximum diameter of no greater than 100 nanometers from the first set of precursors. The application of any effective energy to the solid particles is ceased, and the solid particles and a second set of precursors are fed to a second energy application zone. Energy is applied to the second set of precursors in the second energy application zone effective to react and form solid material about the solid particles from the second set of precursors with the solid particles with solid material thereabout having maximum diameter of no greater than 100 nanometers. Other aspects are contemplated.
    Type: Grant
    Filed: March 11, 2003
    Date of Patent: October 12, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Trung Tri Doan
  • Patent number: 6797336
    Abstract: The present invention is a method and apparatus for the synthesis of multi-component substances, comprising entities of at least two elements, molecules, grains, crystals, structural units, or phases of matter, in which the scale of the distribution of the elements, molecules, or phases of matter may range from on the order of nanometers or less, to about one millimeter, depending upon the specific materials and process conditions that are chosen. The method and apparatus of the present invention further provides processes for preparing these compositions of matter as thin films or particles.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: September 28, 2004
    Assignee: AMBP Tech Corporation
    Inventors: James F. Garvey, Gary S. Tompa, Stuart G. MacDonald, Robert L. DeLeon
  • Patent number: 6797338
    Abstract: A process for forming a thin metal oxide film is disclosed that comprises molding an amorphous powder of organic metal chelate complexes to obtain a target. The process also includes subjecting the target to a PVD process that forms the thin metal oxide.
    Type: Grant
    Filed: July 8, 2003
    Date of Patent: September 28, 2004
    Assignees: Chubu Chelest Co., Ltd.
    Inventors: Hidetoshi Saitoh, Shigeo Ohshio, Ryo Satoh, Nobuyoshi Nambu, Atsushi Nakamura, Masanori Furukawa
  • Patent number: 6797341
    Abstract: Thin films of conducting and superconducting materials are formed by a process which combines physical vapor deposition with chemical vapor deposition. Embodiments include forming boride films, such as magnesium diboride, in high purity with superconducting properties on substrates typically used in the semiconductor industry by physically generating magnesium vapor in a deposition chamber and introducing a boron containing precursor into the chamber which combines with the magnesium vapor to form a thin boride film on the substrate.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: September 28, 2004
    Assignee: Penn State Research Foundation
    Inventors: Xianghui Zeng, Alexej Pogrebnyakov, Xiaoxing Xi, Joan M. Redwing, Zi-Kui Liu, Darrell G. Schlom
  • Publication number: 20040185184
    Abstract: A method for atomic layer deposition providing a dispenser unit used to prevent mixing of a precursor gas and an input gas. From the dispenser unit a flow of the input gas is provided over a surface of the workpiece wherein a beam of the electromagnetic radiation is directed into the input gas in close proximity to the surface of the workpiece, but spaced a finite distance therefrom. The input gas is dissociated by the beam producing a high flux point of use generated reactive gas species that reacts with a surface reactant formed on the surface of the workpiece by a direct flow of the precursor gas flown from the dispensing unit. The surface reactant and reactive gas species react to form a desired monolayer of a material on the surface of the workpiece.
    Type: Application
    Filed: January 27, 2004
    Publication date: September 23, 2004
    Inventor: Gurtej S. Sandhu
  • Patent number: 6793980
    Abstract: A method of forming a photo-catalytic film made of titanium oxide on a base material based on a simple process at low temperatures, particularly a method of forming a laminated material comprising photo-catalytic film of titanium oxide formed on a base material is provided. A method of forming a photo-catalytic film made of titanium oxide on a base material includes a treating process, in which photo-catalytic film of titanium oxide is formed on a base material and irradiated with UV light in vacuum or in an atmosphere of reducing gas at a temperature maintained between 25° C. and below 300° C.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: September 21, 2004
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Shigemi Ohtsu, Eiichi Akutsu
  • Patent number: 6783811
    Abstract: A method of reducing resistance for a conductive film based on simple process at low temperatures, particularly a method of reducing resistance for a conductive film formed on a base of plastic resins is provided. A method of reducing resistance for a conductive film formed on a base material includes a treating process, in which a conductive film made of metal oxide is formed on a base material and irradiated with UV light in vacuum or in an atmosphere of reducing gas maintaining the temperature between 25° C. and 300° C.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: August 31, 2004
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Shigemi Ohtsu, Eiichi Akutsu
  • Patent number: 6740368
    Abstract: When forming a beam shaped body by deposition using a focused ion beam device on the end of a sample, the present invention adopts a beam shaped film pattern formation method for irradiating the focused ion beam to a narrow strip shaped region from an open end of the sample to an outer space, and depositing a beam shaped film on the narrow strip shaped region, and sequentially shifting the irradiation region in a tip end direction to cause formation of a beam shaped body by growth of thin deposition layers, and causing formation of a deposition film of desired thickness on the thin deposition layers on the beam shaped body.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: May 25, 2004
    Assignee: SII NanoTechnology Inc.
    Inventor: Takashi Kaito
  • Patent number: 6733848
    Abstract: A thin film forming equipment and a method for forming thin films are provided which are capable of forming the thin film of high quality and of effectively preventing CVD material gas from leaking to surroundings at a low cost. The thin film equipment contains a substrate, a substrate holding device used to hold the substrate and a device used to provide an atmospheric gas to a surface of the substrate held by the substrate holding device, wherein an upper face of the substrate held by the substrate holding device and an upper face of the substrate holding device are almost on one plane.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: May 11, 2004
    Assignee: NEC Corporation
    Inventors: Yukio Morishige, Makoto Omiya
  • Patent number: 6641863
    Abstract: A method of producing a thin film of an inorganic solid electrolyte having a relatively high ionic conductance is provided. In the method, a thin film made of an inorganic solid electrolyte is formed, by a vapor deposition method, on a base member being heated. The thin film obtained through the heat treatment exhibits an ionic conductance higher than that of the thin film formed on the base member not being heated. The ionic conductance can also be increased through the steps of forming the thin film made of the inorganic solid electrolyte on the base member at room temperature or a temperature lower than 40° C. and then heating the thin film of the inorganic solid electrolyte.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: November 4, 2003
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hirokazu Kugai, Nobuhiro Ota