Condenser Or Capacitor Patents (Class 427/79)
  • Patent number: 11387044
    Abstract: A multilayer ceramic capacitor includes a ceramic body including a dielectric layer and first and second internal electrodes disposed to oppose each other with the dielectric layer interposed therebetween, and first and second external electrodes disposed outside of the ceramic body and connected to the first and second internal electrodes, respectively. The ceramic body includes an active portion including of the first and second internal electrodes disposed to oppose each other with the dielectric layer interposed therebetween to form capacitance, and a cover portion disposed in upper and lower portions of the active portion. The cover portion has a larger number of pores than the dielectric layer of the active portion, and the cover portion includes a ceramic-polymer composite filled with a polymer in the pores of the cover portion.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: July 12, 2022
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Ji Won Lee, Jun Ho Yun, Seung Ryeol Lee
  • Patent number: 11380488
    Abstract: A multilayer electronic component includes a silicon (Si) organic compound layer having a body cover portion disposed in a region in which an electrode layer and a conductive resin layer are not disposed, of external surfaces of a body, and an extending portion disposed to extend from the body cover portion between a conductive resin layer and a plating layer of an external electrode, and thus, may improve bending strength and moisture resistance reliability.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: July 5, 2022
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Dong Yeong Kim, Woo Chul Shin, Ji Hong Jo
  • Patent number: 11361904
    Abstract: A multilayer electronic component includes a body, a protrusion disposed on at least one surface of the body, and an external electrode having an electrode layer disposed on a side surface of the body and extending to be in contact with a side surface of the protrusion and a conductive resin layer disposed on the electrode layer and extending to cover a portion of the protrusion.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: June 14, 2022
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Je Jung Kim, Seung Ryeol Lee, Ji Won Lee
  • Patent number: 11304310
    Abstract: A method of fabricating a circuit board includes forming a conductive layer on a surface of a substrate, and patterning the conductive layer to define a plurality of plating regions and a plurality of plating lines. The plating regions have at least two different sizes, a first group of the plating regions are interconnected by a first plating line of the plating lines, and a second group of the plating regions are interconnected by a second plating line of the plating lines. A ratio of a total area of the first group of the plating regions to a total area of the second group of the plating regions is from about 1 to about 5. A solder mask is formed on the surface of the substrate to cover the plating lines and partially expose the plating regions. At least one metal layer is electroplated on the exposed plating regions.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: April 12, 2022
    Assignee: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Pei-Chi Hu, Jui-Chung Lee, Chi-Wen Lin
  • Patent number: 11237679
    Abstract: The present application discloses a touch panel including a base substrate, a first touch electrode layer on the base substrate, and a second touch electrode layer. The first touch electrode layer includes a plurality of first touch electrodes. Each of the plurality of first touch electrodes includes a plurality of first touch electrode patterns along a second direction, each of which extending substantially along a first direction. The second touch electrode layer includes a plurality of second touch electrodes along the second direction. Each of the plurality of second touch electrodes extends substantially along the first direction. The first touch electrode layer and the second touch electrode layer are insulated from each other.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: February 1, 2022
    Assignees: Hefei Xinsheng Optoelectronics Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Jun Li, Tsungchieh Kuo, Qicheng Chen, Jiawei Xu, Lei Zhang
  • Patent number: 11211203
    Abstract: A capacitor unit and a manufacturing method thereof are provided. The manufacturing method includes the following steps. An isolation layer is formed on a substrate. A first capacitor stacked structure and a second capacitor stacked structure are formed on the isolation layer. Electrode connectors are formed on the first capacitor stacked structure and the second capacitor stacked structure. The electrode connectors are exposed, so that the electrode connectors, the first capacitor stacked structure, the second capacitor stacked structure, the isolation layer, and the substrate are combined to form a capacitor integrated structure, wherein the isolation layer electrically isolates the substrate from the first capacitor stacked structure and the second capacitor stacked structure. The capacitor integrated structure is cut to form a first capacitor unit and a second capacitor unit separated from each other.
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: December 28, 2021
    Assignee: Powerchip Semiconductor Manufacturing Corporation
    Inventors: Wei-Yu Lin, Shih-Hao Cheng
  • Patent number: 11152158
    Abstract: An electrolytic capacitor includes an anode body, a dielectric layer disposed on the anode body, and a solid electrolyte layer disposed on the dielectric layer. The solid electrolyte layer includes a conductive polymer, a polyanion, and an alkali component. The alkali component includes two or more kinds of alkali compound.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: October 19, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hitoshi Fukui, Hiroshi Kojima
  • Patent number: 11139114
    Abstract: A multilayer capacitor includes a body including a stack structure of a plurality of dielectric layers, and a plurality of internal electrodes stacked with the dielectric layers interposed therebetween. A stress alleviation portion is disposed on at least one surface among surfaces of the body, and an external electrode is disposed on an external portion of the body and connected to the internal electrodes. The stress alleviation portion includes a first resin layer adjacent to the body, and a second resin layer covering the first resin layer and including a filler dispersed in a resin of the second resin layer.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: October 5, 2021
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jin Mo Ahn, Sang Roc Lee, Dong Hwi Shin
  • Patent number: 11094460
    Abstract: A capacitor component includes: a body including a dielectric layer and first and second internal electrodes alternately disposed with the dielectric layer interposed therebetween; first and second external electrodes including first and second connection portions, and first and second band portions extending onto portions of a surface from the first and second connection portions, respectively; first and second plating layers disposed on the first and second band portions, respectively; humidity resistant layers disposed between the first and second external electrodes, disposed on the first and second external electrodes, and having openings respectively exposing portions of the first and second band portions. The first and second plating layers are disposed in the openings of the humidity resistant layers, respectively, and are in contact with the first and second band portions, respectively.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: August 17, 2021
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Jeong Suong Yang, Bon Seok Koo, Sung Min Cho, Woong Do Jung, Hai Joon Lee
  • Patent number: 11081283
    Abstract: A multilayer ceramic electronic component and a mounting board thereof include a reinforcing member that is disposed on upper and lower surfaces of a ceramic body of the multilayer ceramic electronic component and that is bonded to the first and the second external electrodes. The reinforcing member provides reduced occurrence of cracking and reduced stress applied to the component. The reinforcing member may have a coefficient of thermal expansion (CTE) that is within a range of 1 to 4 times a coefficient of thermal expansion of a dielectric layer of the ceramic body, and/or may have a modulus that is 0.5 or more times a modulus of the dielectric layer.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: August 3, 2021
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Yun Tae Lee, Kyung Moon Jung, Han Kim
  • Patent number: 11011737
    Abstract: A solventless system for fabricating electrodes includes a mechanism for feeding a substrate through the system, a first application region comprised of a first device for applying a first layer to the substrate, wherein the first layer is comprised of an active material mixture and a binder, and the binder includes at least one of a thermoplastic material and a thermoset material, and the system includes a first heater positioned to heat the first layer.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 18, 2021
    Assignee: Eskra Technical Products, Inc.
    Inventors: Michael David Eskra, Paula Margaret Ralston, Rodney Mortensen LaFollette, James Bernard Nowakowski
  • Patent number: 10707027
    Abstract: An energy storage device can include a cathode, an anode, and a separator between the cathode and the anode, where the anode comprises a first lithium ion intercalating carbon component and a second lithium ion intercalating carbon component. The first lithium ion intercalating carbon component can include hard carbon, and the second lithium ion intercalating component can include graphite or soft carbon. A ratio of the hard carbon to the graphite or of the hard carbon to the soft carbon can be between 1:19 to 19:1. The anode may comprise a first lithium ion intercalating carbon component, a second lithium ion intercalating carbon component and a third lithium ion intercalating carbon component. The first lithium ion intercalating carbon component can include hard carbon, the second lithium ion intercalating carbon component can include soft carbon, and the third lithium ion intercalating carbon component can include graphite.
    Type: Grant
    Filed: November 27, 2018
    Date of Patent: July 7, 2020
    Assignee: Maxwell Technologies, Inc.
    Inventors: Xiaomei Xi, Santhanam Raman
  • Patent number: 10607764
    Abstract: An electronic component includes: a body having electrical insulating properties; an external electrode disposed on an external surface of the body; and a reinforcing layer disposed on a surface of the body and including a metal oxide layer and a graphene oxide layer.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: March 31, 2020
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Soo Young Ji, Hwan Soo Yoo, Nam Soon Moon, Jeong Suong Yang, Tae Ho Kim, Dae Chul Choi
  • Patent number: 10593932
    Abstract: Provided is a process for producing a sulfur cathode for a metal-sulfur battery. The process comprises: (a) Preparing a humic acid-derived foam or combined humic acid/graphene-derived foam composed of multiple pores and pore walls, wherein the pore walls contain one or a plurality of hexagonal carbon atomic planes; and (b) Impregnating the foam with sulfur or sulfide in a form of thin particles or coating, having a diameter or thickness less than 500 nm, which are lodged in the pores or deposited on the pore walls of the foam.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: March 17, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 10595411
    Abstract: A method for manufacturing chip signal elements includes steps as follows. A substrate is provided. A plurality of through holes is drilled, and a plurality of side holes is formed along the through holes. A first cooper-plating process is performed to form a plurality of conductive layers electrically connected to the upper and the lower metal layer. A second cooper-plating process is performed to increase thickness of the conductive layers. A first and a second pattern layers are formed on the substrate by an etching. The first pattern layer is electrically connected to the second pattern layer to form a spiral radiator. An ink is printed on the substrate to cover the spiral radiator and form a solder mask layer. An organic metal process and a plating process are performed to form terminal electrodes. Finally, a single chip signal element having a spiral radiator is formed.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: March 17, 2020
    Assignee: POWER WAVE ELECTRONICS CO., LTD.
    Inventors: Wen-Jiao Liao, Wei-Hong Tsai
  • Patent number: 10584216
    Abstract: A process for producing a humic acid (HA)-derived foam, comprising: (a) preparing a HA dispersion having multiple HA molecules and an optional blowing agent dispersed in a liquid medium having a blowing agent-to-HA weight ratio from 0/1.0 to 1.0/1.0; (b) dispensing and depositing the HA dispersion onto a surface of a supporting substrate to form a wet HA layer; (c) partially or completely removing liquid medium from the wet HA layer to form a dried HA layer; and (d) heat treating the dried HA layer at a first heat treatment temperature from 80° C. to 3,200° C. at a desired heating rate sufficient to induce volatile gas molecules from the non-carbon elements or to activate the blowing agent for producing the HA-derived foam.
    Type: Grant
    Filed: August 30, 2016
    Date of Patent: March 10, 2020
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 10586653
    Abstract: A multilayer ceramic electronic component includes a first organic layer located on both principal surfaces and both side surfaces in contact with a first external electrode, and a second organic layer located on the both principal surfaces and the both side surfaces in contact with a second external electrode. The first organic layer includes an organic silicon compound and covers an end of a first base electrode layer of the first external electrode, and the second organic layer includes an organic silicon compound and covers an end of a second base electrode layer of the second external electrode. A first plating layer of the first external electrode includes an end in contact with the surface of the first organic layer, and a second plating layer of the second external electrode includes an end in contact with the surface of the second organic layer.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: March 10, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Hiroshi Asano, Nobuyasu Hamamori, Koji Matsushita
  • Patent number: 10569296
    Abstract: The invention relates to a method for performing a coating process of a workpiece (4), comprising the steps of: providing the workpiece (4) in a coating unit (2); prefilling (S2) the coating unit (2) with a coating medium using a pump (6); filling (S3) the coating unit (2) with the coating medium by a dosing unit (5), wherein a predetermined amount of coating medium is applied to the coating unit (2) by the dosing unit (5) as soon the coating medium level has reached a given reference level (R).
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: February 25, 2020
    Assignee: UMICORE AG & CO. KG
    Inventor: Stéphane Masson
  • Patent number: 10156213
    Abstract: A diagnostic method for a capacitive humidity sensor comprising a heater, and a capacitance-sensing element that individually identifies heater, temperature-sensing element, or capacitance-sensing element degradation. By this method, individual elements of the sensor may be replaced or compensated for to allow for further operation.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: December 18, 2018
    Assignee: Ford Global Technologies, LLC
    Inventors: Ross Dykstra Pursifull, Imad Hassan Makki, Timothy Joseph Clark, Michael James Uhrich, Pankaj Kumar, Yong-Wha Kim
  • Patent number: 9941522
    Abstract: A supercapacitor to be submerged in a medium containing a biological material and an oxidant, wherein the anode comprises a first enzyme that can catalyse the oxidation of the biological material and the cathode comprises a second enzyme that can catalyse the reduction of the oxidant, and wherein each of the anode and cathode electrodes consists of a solid agglomerate of a conductive material mixed with the first or the second enzyme, said agglomerate having a specific surface that is larger than or equal to 20 m2/g and an average pore size varying between 0.7 nm and 10 pm.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: April 10, 2018
    Assignee: Universite Joseph Fourier
    Inventors: Serge Cosnier, Michael Holzinger, Alan Le Goff, Charles Agnes
  • Patent number: 9845522
    Abstract: In an aspect, a negative electrode for a lithium secondary battery and a method of manufacturing the same is provided. The negative electrode for the lithium secondary battery includes a negative active material layer.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: December 19, 2017
    Assignees: Samsung SDI Co., Ltd., Industry-University Cooperation Foundation Hanyang University (IUCF-HYU)
    Inventors: Un-Gyu Paik, Tae-Seup Song, Ki-Chun Kil, Byung-Joo Chung, Woo-Cheol Shin
  • Patent number: 9738806
    Abstract: An inkjet ink that contains a functional particle having a BET-equivalent particle diameter of 50 to 1000 nm, a rheology-controlling particle having a BET-equivalent particle diameter of 4 to 40 nm, and an organic vehicle. The ink has a viscosity of 1 to 50 mPa·s at a shear rate of 1000 s?1. At a shear rate of 0.1 s?1, the ink has a viscosity equal to or higher than a viscosity ? calculated using the following equation: ?=(D)2×?/104/2+80 [where ? is the viscosity (mPa·s) at a shear rate of 0.1 s?1, D is the BET-equivalent particle diameter (nm) of the functional particle, and ? is the specific gravity of the functional particle].
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: August 22, 2017
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Akihiro Tsuru, Taketsugu Ogura, Naoaki Ogata
  • Patent number: 9455259
    Abstract: A semiconductor device includes a capacitor with reduced oxygen defects at an interface between a dielectric layer and an electrode of the capacitor. The semiconductor device includes a lower metal layer; a dielectric layer on the lower metal layer and containing a first metal; a sacrificial layer on the dielectric layer and containing a second metal; and an upper metal layer on the sacrificial layer. An electronegativity of the second metal in the sacrificial layer is greater than an electronegativity of the first metal in the dielectric layer.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: September 27, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Han-Jin Lim, Youn-Soo Kim, Hyun Park, Soon-Gun Lee, Eun-Ae Cho, Chin-Moo Cho, Sung-Jin Kim, Seok-Woo Nam
  • Patent number: 9400580
    Abstract: A touch panel can include a substrate; driving lines on the substrate along a first direction, each of the driving lines including first driving electrodes, second driving electrodes and first connecting patterns; and sensing lines on the substrate along a second direction, each of the sensing lines including first sensing electrodes, second sensing electrodes and second connecting patterns, wherein each of the first connecting patterns connects the first driving electrodes adjacent thereto, and the second driving electrodes overlap and contact the first driving electrodes, and wherein each of the second connecting patterns connects the first sensing electrodes adjacent thereto, and the second sensing electrodes overlap and contact the first sensing electrodes.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: July 26, 2016
    Assignee: LG Display Co., Ltd.
    Inventor: Kwang-Su Lim
  • Patent number: 9343207
    Abstract: To provide a resistance change device that can be protected from an excess current without enlarging a device size. A resistance change device 1 according to the present embodiment includes a lower electrode layer 3, an upper electrode layer 6, a first metal oxide layer 51, a second metal oxide layer 52, and a current limiting layer 4. The first metal oxide layer 51 is disposed between the lower electrode layer 3 and the upper electrode layer 6, and has a first resistivity. The second metal oxide layer 52 is disposed between the first metal oxide layer 51 and the upper electrode layer 6, and has a second resistivity higher than the first resistivity. The current limiting layer 4 is disposed between the lower electrode layer 3 and the first metal oxide layer 51, and has a third resistivity higher than the first resistivity and lower than the second resistivity.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: May 17, 2016
    Assignee: Ulvac, Inc.
    Inventors: Natsuki Fukuda, Kazunori Fukuju, Yutaka Nishioka, Koukou Suu
  • Patent number: 9172089
    Abstract: An anode active material including: a core having a molybdenum-based material; and a coating layer formed on at least a portion of a surface of the core, wherein the coating layer comprises at least one material selected from the group consisting of molybdenum oxynitride and molybdenum nitride, a method of preparing the same, and an anode and a lithium battery.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: October 27, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae-man Choi, Han-su Kim, Moon-seok Kwon, Seung-sik Hwang, Min-sang Song
  • Patent number: 9136545
    Abstract: Fuel cell bipolar plates are made by depositing a pinhole free corrosion resistant and/or a conductive layer on a metal plate using an atomic layer deposition method. In one embodiment, a conductive layer is deposited on an anodized metal plate using atomic layer deposition method. In another embodiment, at least one corrosion resistant metal oxide layer and at least one conductive layer are deposited on a metal plate individually using atomic layer deposition method. In yet another embodiment, a corrosion resistant and conductive metal oxynitride layer is deposited on a metal plate using an atomic layer deposition method.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: September 15, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Gayatri Vyas Dadheech, Thomas A. Trabold, Mahmoud H. Abd Elhamid
  • Patent number: 9126189
    Abstract: Disclosed is a method of making a pyrochlore comprising, obtaining a solution comprising a solvent and a metal precursor or salt thereof capable of forming a pyrochlore, wherein the metal precursor or salt thereof is dissolved in the solvent, subjecting the solution to a drying step to obtain a non-gelled or non-polymerized pyrochlore precursor material in powdered form, and subjecting the pyrochlore precursor material to a calcination step to obtain a pyrochlore.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: September 8, 2015
    Assignee: SABIC Global Technologies B.V.
    Inventors: Lawrence D'Souza, Vinu Viswanath
  • Patent number: 9120088
    Abstract: A method of making a doped metal oxide includes heating a first doped metal oxide by rapid thermal annealing, to form a second doped metal oxide. The crystal structure of the second doped metal oxide is different from the crystal structure of the first doped metal oxide. The method may provide a doped titanium oxide, where the atomic ratio of dopant nonmetal to titanium is from 2% to 20%, and at least 10% of the doped titanium oxide is in the rutile phase. The method also can provide a doped tin oxide, where the atomic ratio of dopant nonmetal to tin is from 2% to 20%, and at least 50% of 900 the doped tin oxide is in the rutile phase.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: September 1, 2015
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Qi Li, Jian-Ku Shang
  • Publication number: 20150146340
    Abstract: An apparatus includes a two-terminal MLCC. The two-terminal MLCC includes a conductive layer, where the conductive layer includes at least one slot. The apparatus may also include a second conductive layer that includes at least one slot and an insulating layer that separates the two conductive layers. In one example, a first (e.g., positive) terminal of the two-terminal MLCC is formed by a first set of plates, where each plate in the first set includes at least one slot. A second (e.g., negative) terminal of the two-terminal MLCC is formed by a second set of plates, where each plate in the second set also includes at least one slot. The first set of plates and the second set of plates are interleaved, and each pair of plates is separated by an insulating layer.
    Type: Application
    Filed: November 26, 2013
    Publication date: May 28, 2015
    Applicant: QUALCOMM Incorporated
    Inventors: Changhan Hobie Yun, Kyu-Pyung Hwang, Young Kyu Song, Dong Wook Kim
  • Publication number: 20150146341
    Abstract: A thin sub-layer (<15 ?) of an impurity is formed under, over, or inside a thicker layer (˜30-100 ?) of a high-k (k>12) host material. The sub-layer may be formed by atomic layer deposition (ALD). The layer and sub-layer are annealed to form a composite dielectric layer. The host material crystallizes, but the crystalline lattice and grain boundaries are disrupted near the impurity sub-layer, impeding the migration of electrons. The impurity may be a material with a lower dielectric constant than the high-k material, added in such a small relative amount that the composite dielectric is still high-k. Metal-insulator-metal capacitors may be fabricated by forming the composite dielectric layer between two electrodes.
    Type: Application
    Filed: November 27, 2013
    Publication date: May 28, 2015
    Applicants: Intermolecular Inc.
    Inventors: Nobumichi Fuchigami, David Paul Brunco, Karthik Ramani, Dina Triyoso
  • Publication number: 20150138694
    Abstract: A method for manufacturing an electrode for use in an electrical storage device includes bringing a porous material into contact with an oxidizing agent, then bringing the porous material into contact with a polymerizable monomer, so that the porous material is modified with an electrically-conductive polymer formed by a polymerization reaction of the polymerizable monomer and the oxidizing agent, and forming, on a surface of a collector, an active material layer containing the porous material modified with the electrically-conductive polymer.
    Type: Application
    Filed: October 24, 2014
    Publication date: May 21, 2015
    Inventors: Takeshi SHIMOMURA, Touru SUMIYA, Masao SUZUKI, Masatoshi ONO
  • Publication number: 20150141784
    Abstract: Systems, articles, and methods for improved capacitive electromyography (“EMG”) sensors are described. The improved capacitive EMG sensors include one or more sensor electrode(s) that is/are coated with a protective barrier formed of a material that has a relative permittivity ?r of about 10 or more. The protective barrier shields the sensor electrode(s) from moisture, sweat, skin oils, etc. while advantageously contributing to a large capacitance between the sensor electrode(s) and the user's body. In this way, the improved capacitive EMG sensors provide enhanced robustness against variations in skin and/or environmental conditions. Such improved capacitive EMG sensors are particularly well-suited for use in wearable EMG devices that may be worn by a user for an extended period of time and/or under a variety of skin and/or environmental conditions. A wearable EMG device that provides a component of a human-electronics interface and incorporates such improved capacitive EMG sensors is described.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 21, 2015
    Inventors: Cezar Morun, Stephen Lake
  • Publication number: 20150131204
    Abstract: A capacitor structure includes at least two capacitors. A first electrode includes a bottom conductive plane and first vertical conductive structures. The bottom conductive plane is disposed over a substrate. The bottom conductive plane has a first area and a first shape. At least two second electrodes include top conductive planes and second vertical conductive structures. A combined area of the top conductive planes and a gap area between adjacent top conductive planes has a second area and a second shape. The first area and the second area are about the same and the first shape and the second shape are about the same. An insulating structure is disposed between the first electrode and the second electrodes. The first vertical conductive structures and the second vertical conductive structures are interlaced with each other. The capacitors share the bottom conductive plane and have separate top conductive planes.
    Type: Application
    Filed: January 20, 2015
    Publication date: May 14, 2015
    Inventors: Lan-Chou CHO, Chewn-Pu JOU
  • Publication number: 20150132659
    Abstract: An electricity-storing device includes a first electrode, a second electrode of opposite polarity as the first electrode, and a separator.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 14, 2015
    Inventors: Kenji TANAKA, Kazuaki MATSUO, Kazuhide TOZUKA, Kazuya OKABE
  • Publication number: 20150125593
    Abstract: A method of patterning an elastomeric polymer material includes: (a) dissolving a precursor of the elastomeric polymer material in a solvent to give an elastomeric polymer precursor solution; and (b) forming a pattern from the elastomeric polymer precursor solution on a base by using a printer, wherein a temperature of the base is maintained to be about 10° C.-30° C. higher than a boiling point of the solvent.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 7, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung-kyun IM, Jong-jin PARK
  • Publication number: 20150116255
    Abstract: Compact touch sensors for touch sensitive devices and processes for forming the touch sensors are disclosed. The touch sensor structure can include a substrate, one or more underlying layers disposed on the substrate, one or more blocking layers disposed on the substrate or on one or more underlying layers, and one or more patterned layers disposed on the underlying layers or blocking layers. The one or more blocking layers can be configured to block underlying layers from exposure to certain wavelengths of light or from penetration of a laser beam that can cause damage. Additionally, the one or more underlying layers can be multi-functional, including the ability to block one or more light sources.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 30, 2015
    Applicant: Apple Inc.
    Inventors: John Z. ZHONG, Sunggu KANG, James Edward Alexander PEDDER, Chun-Hao TUNG
  • Patent number: 9017756
    Abstract: A specific embodiment of the present invention is a process for continuously producing a porous solid film of spacer-modified nano graphene platelets for supercapacitor electrode applications. This process comprises: (a) dissolving a precursor material in a solvent to form a precursor solution and dispersing multiple nano graphene platelets into the solution to form a suspension; (b) continuously delivering and forming the suspension into a layer of solid film composed of precursor material-coated graphene platelets overlapping one another, and removing the solvent from the solid film (e.g., analogous to a paper-making, mat-making, or web-making procedure); (c) continuously converting the precursor material into nodules bonded to surfaces of graphene platelets to form a porous solid film composed of spacer-modified graphene platelets; and (d) continuously collecting the porous solid film on a collector (e.g., a winding roller).
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: April 28, 2015
    Assignee: Nanotek Instruments, Inc.
    Inventors: Aruna Zhamu, Zenning Yu, Chen-guang Liu, Bor Z. Jang
  • Publication number: 20150108083
    Abstract: Systems and methods are provided for fabricating a thin film capacitor involving depositing an electrode layer of conductive material on top of a substrate material, depositing a first layer of ferroelectric material on top of the substrate material using a metal organic deposition or chemical solution deposition process, depositing a second layer of ferroelectric material on top of the first layer using a high temperature sputter process and depositing a metal interconnect layer to provide electric connections to layers of the capacitor.
    Type: Application
    Filed: September 24, 2014
    Publication date: April 23, 2015
    Inventors: Marina Zelner, Mircea Capanu, Susan C. Nagy
  • Publication number: 20150109264
    Abstract: Capacitive touch device styluses, comprising tips coated with an electrically conductive coating.
    Type: Application
    Filed: April 16, 2013
    Publication date: April 23, 2015
    Inventors: John Lettow, Kate Redmond, Dan Scheffer, George Tunis
  • Publication number: 20150093497
    Abstract: In accordance with the teachings described herein, a multi-level thin film capacitor on a ceramic substrate and method of manufacturing the same are provided. The multi-level thin film capacitor (MLC) may include at least one high permittivity dielectric layer between at least two electrode layers, the electrode layers being formed from a conductive thin film material. A buffer layer may be included between the ceramic substrate and the thin film MLC. The buffer layer may have a smooth surface with a surface roughness (Ra) less than or equal to 0.08 micrometers (um).
    Type: Application
    Filed: October 6, 2014
    Publication date: April 2, 2015
    Inventors: Ivoyl Koutsaroff, Mark Vandermeulen, Andrew Cervin-Lawry, Atin J. Patel
  • Publication number: 20150092316
    Abstract: A multilayer ceramic electronic component includes a ceramic body including internal electrodes and dielectric layers, and an electrode layer disposed on at least one surface of the ceramic body and electrically connected to the internal electrodes. A conductive resin layer containing metal particles and a base resin is disposed on the electrode layer. When a weight ratio of metal to carbon in a surface portion of the conductive resin layer is defined as A, and a weight ratio of metal to carbon in an internal portion of the conductive resin layer is defined as B, A is greater than B.
    Type: Application
    Filed: June 30, 2014
    Publication date: April 2, 2015
    Inventors: Byoung Jin CHUN, Je Ik MOON, Jae Hwan HAN, Seung Hee YOO
  • Patent number: 8993044
    Abstract: Capacitors and methods of forming capacitors are disclosed, and which include an inner conductive metal capacitor electrode and an outer conductive metal capacitor electrode. A capacitor dielectric region is received between the inner and the outer conductive metal capacitor electrodes and has a thickness no greater than 150 Angstroms. Various combinations of materials of thicknesses and relationships relative one another are disclosed which enables and results in the dielectric region having a dielectric constant k of at least 35 yet leakage current no greater than 1×10?7 amps/cm2 at from ?1.1V to +1.1V.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: March 31, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Rishikesh Krishnan, John Smythe, Vishwanath Bhat, Noel Rocklein, Bhaskar Srinivasan, Jeff Hull, Chris Carlson
  • Publication number: 20150077898
    Abstract: There is provided a multilayer ceramic capacitor including a ceramic body including a plurality of dielectric layers, a plurality of first and second internal electrodes disposed in the ceramic body to be alternately exposed to first and second end surfaces of the ceramic body, having the dielectric layer therebetween, first and second electrode layers electrically connected to the first and second internal electrodes, respectively, a conductive resin layer formed on the first and second electrode layers and in regions of the ceramic body adjacent to the first and second electrode layers, and a coating layer formed between a portion of an outer surface of the ceramic body on which the conductive resin layer is to be formed and the conductive resin layer.
    Type: Application
    Filed: March 13, 2014
    Publication date: March 19, 2015
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Hae Sock Chung, Doo Young Kim, Na Rim Ha, Chang Hoon Kim, Kyung Pyo Hong, Sang Hyun Park
  • Publication number: 20150062780
    Abstract: A carbon-based electrode includes activated carbon, carbon black, and a binder. The binder is fluoropolymer having a molecular weight of at least 500,000 and a fluorine content of 40 to 70 wt. %. A method of forming the carbon-based electrode includes providing a binder-less conductive carbon-coated current collector, pre-treating the carbon coating with a sodium napthalenide-based solution, and depositing onto the treated carbon coating a slurry containing activated carbon, carbon black and binder.
    Type: Application
    Filed: January 28, 2014
    Publication date: March 5, 2015
    Applicant: Corning Incorporated
    Inventors: Kishor Purushottam Gadkaree, Rahul Suryakant Kadam, Atul Kumar
  • Patent number: 8956689
    Abstract: A method for producing a ferroelectric thin film comprising: coating a composition for forming a ferroelectric thin film on a base electrode of a substrate having a substrate body and the base electrode that has crystal faces oriented in the (111) direction, calcining the coated composition, and subsequently performing firing the coated composition to crystallize the coated composition, and thereby forming a ferroelectric thin film on the base electrode, wherein the method includes formation of an orientation controlling layer by coating the composition on the base electrode, calcining the coated composition, and firing the coated composition, where an amount of the composition coated on the base electrode is controlled such that a thickness of the orientation controlling layer after crystallization is in a range of 35 nm to 150 nm, and thereby controlling the preferential crystal orientation of the orientation controlling layer in the (100) plane.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: February 17, 2015
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshiaki Watanabe, Hideaki Sakurai, Nobuyuki Soyama, Toshihiro Doi
  • Publication number: 20150041189
    Abstract: This disclosure provides systems, methods, and apparatus for metal-insulator-metal capacitors on glass substrates. In one aspect, an apparatus may include a glass substrate, with the glass substrate defining at least one via in the glass substrate. A first electrode layer may be disposed over surfaces of the glass substrate, including surfaces of the at least one via. A dielectric layer may be disposed on the first electrode layer. A second electrode layer may be disposed on the dielectric layer, with the dielectric layer electrically isolating the first electrode layer from the second electrode layer.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Inventors: Jon Bradley Lasiter, Ravindra V. Shenoy, Donald William Kidwell, Victor Louis Arockiaraj Pushparaj, Kwan-yu Lai, Ana Rangelova Londergan
  • Patent number: 8951603
    Abstract: A method for producing a ferroelectric thin film comprising: coating a composition for forming a ferroelectric thin film on a base electrode of a substrate having a substrate body and the base electrode that has crystal daces oriented in the (111) direction, calcining the coated composition, and subsequently performing firing the coated composition to crystallize the coated composition, and thereby forming a ferroelectric thin film on the base electrode, wherein the method includes formation of an orientation controlling layer by coating the composition on the base electrode, calcining the coated composition, and firing the coated composition, where an amount of the composition coated on the base electrode is controlled such that a thickness of the orientation controlling layer after crystallization is in a range of 5 nm to 30 nm, and thereby controlling the preferential crystal orientation of the orientation controlling layer to be in the (110) plane.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: February 10, 2015
    Assignee: Mitsubishi Materials Corporation
    Inventors: Toshiaki Watanabe, Hideaki Sakurai, Nobuyuki Soyama, Toshihiro Doi
  • Publication number: 20150029638
    Abstract: Polyimides derived from a primary aromatic diamine and aromatic dianhydride mono-mer moieties, wherein one or more of said moieties contain at least one substituent on the aromatic ring selected from propyl and butyl, especially from isopropyl, isobutyl, tert.butyl, show good solubility and are well suitable as dielectric material in electronic devices such as capacitors and organic field effect transistors.
    Type: Application
    Filed: March 27, 2013
    Publication date: January 29, 2015
    Applicant: BASF SE
    Inventors: Hans Juerg Kirner, Stephanie Leuenberger, Emmanuel Martin
  • Publication number: 20150029142
    Abstract: A touch screen panel includes a substrate, first sensing patterns, second sensing patterns, and an insulating layer. The first sensing patterns may be configured to include a plurality of first sensing cells separated from one another as independent patterns. The second sensing patterns may be configured to include a plurality of second sensing cells formed on the substrate. The insulating layer may be interposed between the first and second connecting patterns at intersection portions of the first connecting patterns and the second connecting patterns. The insulating layer may be an island-shaped independent pattern at each intersection portion. End portions of each first connecting pattern may electrically connect adjacent first sensing cells. A width of a first region of each first connecting pattern may be wider than that of a second region.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 29, 2015
    Inventors: Hyung-Chul KIM, Jung-Mok PARK, Jae-Hyung JO