Nonmetal Particles In A Component Patents (Class 428/565)
  • Patent number: 6004683
    Abstract: A base metal repair tape includes a first layer formed braze alloy bonded together with fibrillated polytetrafluoroethylene, a second layer formed from powdered base metal comprising oxygen-sensitive superalloy bonded together by fibrillated polytetrafluoroethylene and a third layer comprising a brazing alloy bonded together by fibrillated polytetrafluoroethylene. This is used to repair base metal by placing the first layer on the base metal and brazing the base metal powder so that the brazing alloy melts and diffuses into the base metal powder bonding it to the surface of the article. This permits the braze powder to be bonded to the base metal surface with minimal distance between the base powder particles. The number of alternating layers of base metal and braze alloy can be increased to increase the thickness of the repair. This can also be used to form small intricate parts.
    Type: Grant
    Filed: May 27, 1997
    Date of Patent: December 21, 1999
    Assignee: C. A. Patents, L.L.C.
    Inventors: Kevin Rafferty, Bruce Rowe
  • Patent number: 5981081
    Abstract: A new family of transition metal boride coatings having excellent wear and corrosion resistance is disclosed. The coatings comprise hard, ultrafine, transition metal boride particles dispersed in a metal matrix, the particles constituting from about 30 to about 90 volume percent of the coating, the balance being metal matrix. The average size of the particles ranges from about 0.5 to about 3.0 microns. The metal matrix contains at least one metal selected from the group consisting of nickel, cobalt and iron. The coatings may be prepared by a process which comprises depositing a mechanically blended powder mixture of a transition metal and a boron-containing alloy onto a substrate and then heat treating the as-deposited coating. The heat treatment effects a diffusion reaction between the deposited elements resulting in the formation of ultrafine particles of a transition metal boride dispersed in the metal matrix. The coating can be deposited onto the substrate using any of the known deposition techniques.
    Type: Grant
    Filed: September 18, 1984
    Date of Patent: November 9, 1999
    Assignee: Union Carbide Coatings Service Corporation
    Inventor: Jiinjen Albert Sue
  • Patent number: 5955186
    Abstract: A cutting insert which comprises a rake face and a flank face wherein there is a cutting edge at the juncture of the rake face and the flank face. The cutting insert has a coating and a substrate wherein the coating is adherently bonded to the substrate. The substrate is a tungsten carbide-based cemented carbide wherein there is a zone of non-stratified cobalt enrichment beginning near and extending inwardly from a peripheral surface of the substrate. The bulk substrate has a porosity of greater than C00 and less than or equal to C02.
    Type: Grant
    Filed: October 15, 1996
    Date of Patent: September 21, 1999
    Assignee: Kennametal Inc.
    Inventor: George P. Grab
  • Patent number: 5943546
    Abstract: A disclosed gradient function material is produced by molding and thereafter firing a slurry which contains a plurality of groups of particles having different specific gravities. The plurality of groups of particles include at least a first group of particles and a second group of particles. The first group of particles comprises a group of non-metal particles having a specific gravity ranging from about 3 to 7 and a maximum particle diameter equal to or smaller than a deflocculation limit, said non-metal particles being made of one or more materials selected from the group consisting of an oxide, a carbide, a nitride, and an oxynitride. The second group of particles comprises a group of metal particles having a specific gravity which is about 1.5 times the specific gravity of said first group of particles, and particle diameters distributed across the deflocculation limit.
    Type: Grant
    Filed: November 29, 1995
    Date of Patent: August 24, 1999
    Assignee: Toto Ltd.
    Inventors: Hirotaka Ishibashi, Koichi Hayashi, Hiroyuki Nagayama
  • Patent number: 5932356
    Abstract: A composite ceramic coating having abrasive properties for application to a metallic substrate is provided which includes a ceramic matrix and a plurality of ceramic abrasive particles disposed within said ceramic matrix. The abrasive particles have a shear strength substantially greater than that of the ceramic matrix and possess an angular geometry. A method for providing an abrasive coating on a metallic article is also provided.
    Type: Grant
    Filed: March 21, 1996
    Date of Patent: August 3, 1999
    Assignee: United Technologies Corporation
    Inventors: Gerard A. Sileo, William J. Woodard, Frederick C. Walden, Harold W. Pettit, Jr., Timothy A. Twigg
  • Patent number: 5923944
    Abstract: A fluid containment article that exhibits a reduced tendency for thermal decomposition products to deposit and adhere to its surface in contact with a hydrocarbon fluid, such as a hydrocarbon fuel, at elevated temperatures. Deposition and adhesion of thermal decomposition products are avoided by tailoring both the composition and surface finish of the surface contacting the hydrocarbon fluid. Preferred characteristics are achieved by appropriately preparing the surface of the article to have a surface roughness characterized by an R.sub.max of up to about 0.4 micrometer, and then depositing an oxide coating on the surface using a deposition process that yields a coating consisting essentially of a metal oxide and the vapors of an organometallic compound used in the deposition process.
    Type: Grant
    Filed: October 16, 1996
    Date of Patent: July 13, 1999
    Assignee: General Electric Company
    Inventors: George A. Coffinberry, Kevin R. Leamy, Frederick J. Sellers, John F. Ackerman
  • Patent number: 5891584
    Abstract: Articles for hot hydrocarbon fluid wherein the surface for contacting the fluid is a diffusion barrier material or a catalytic material coated on a metal substrate. The material is either catalytically-inactive tantalum oxide which inhibits the formation of coke in the fluid or catalytically-active zirconium oxide which promotes the formation of a loosely adherent coke in the fluid while inhibiting the formation of gum in the fluid. The coating materials, i.e., the diffusion barrier coating material and the catalytic coating material, are deposited by chemical vapor deposition (CVD), e.g., by effusive chemical vapor deposition of an organometallic compound on the surface without the use of carrier gas, without pre-oxidation of the surface and without thermal decomposition of the diffusion barrier material or the catalytic coating material.
    Type: Grant
    Filed: March 17, 1997
    Date of Patent: April 6, 1999
    Assignee: General Electric Company
    Inventor: George A. Coffinberry
  • Patent number: 5874168
    Abstract: There is provided a fluorocarbon compound-hydrogen storage alloy composite which has a sufficient water-repellent property and can efficiently absorb a hydrogen gas. The composite comprises hydrogen storage alloy particles which have a plated metal film covering at least a part of the particles, the plated metal film containing at least one fine particle of a fluorocarbon compound. Examples of the metal used for plating include Ni, Cu, Co, Ni-P, Ni-W, Ni-W-P, Ni-B, Ni-W-B, Cu-Ni, Cu-P, Co-P, Co-B, and Co-W. Polytetrafluoroethylene is preferably used for the fluorocarbon compound. The fluorocarbon compound hydrogen storage alloy composite is prepared by electrolytically plating the hydrogen storage alloy particles in a pyrophosphate bath with fine particles of a fluorocarbon compound dispersed therein.
    Type: Grant
    Filed: August 1, 1996
    Date of Patent: February 23, 1999
    Assignee: Kiyokawa Plating Industries, Co., Ltd.
    Inventors: Hajime Kiyokawa, Masayuki Takashima, Susumu Yonezawa
  • Patent number: 5835841
    Abstract: A composite material is composed of a matrix and dispersed components which form a discontinuous three-dimensional network structure in the matrix. It permits the dispersed components to fully exhibit the characteristic properties without any loss of mechanical properties. A process for producing the above-mentioned composite material includes preparing a raw material powder such that granules of desired shape for the matrix are discontinuously covered with components of desired shape for the dispersed phase, molding the raw material powder into a desired shape, and heating the molded article.
    Type: Grant
    Filed: May 22, 1996
    Date of Patent: November 10, 1998
    Assignee: Kabushiki Kaisha Toyota Chuo Kenkyusho
    Inventors: Katsunori Yamada, Nobuo Kamiya
  • Patent number: 5835842
    Abstract: A material for use in the production of an alloy having excellent corrosion resistance and abrasion resistance is provided. The material includes a cored wire formed from at least a pipe of matrix metal, which is at least one member selected from an Fe-base alloy, a Co-base alloy, and a Ni-base alloy. A VC powder having a particle diameter of 10 .mu.m or less is filled into the pipe. Also provided is a material for use in the production of an alloy having excellent corrosion resistance and abrasion resistance. The material includes a powder mixture containing at least a matrix metal, which is at least one member selected from an Fe-base alloy, a Co-based alloy and a Ni-base alloy, and a VC powder having a particle diameter of 10 .mu.m or less.
    Type: Grant
    Filed: December 10, 1996
    Date of Patent: November 10, 1998
    Assignees: Toshiba Kikai Kabushiki Kaisha, Daido Stell Co., Ltd.
    Inventors: Kyoichi Sasaki, Yoshihisa Kato
  • Patent number: 5822674
    Abstract: A material for electric contacts based on silver-tin oxide is obtained by mixing a powder of silver or an alloy mainly containing silver with a powder consisting mainly of tin oxide and 0.01 to 10 wt. % (in relation to the quantity of tin oxide) of an additive consisting of one or more compounds containing silver, oxygen and a metal from sub-groups II to VI of the periodic system and/or antimony, bismuth, germanium, indium and gallium, compacting the mixture and sintering it. The tin oxide may be replaced by zinc oxide.
    Type: Grant
    Filed: May 18, 1995
    Date of Patent: October 13, 1998
    Assignee: Doduco GmbH + Co. Dr. Eugen Durrwachter
    Inventors: Volker Behrens, Thomas Honig
  • Patent number: 5805973
    Abstract: Articles for hot hydrocarbon fluid wherein the surface for contacting the fluid is a metal oxide, amorphous glass or metal fluoride diffusion barrier material coated on a metal substrate. The metal oxide, amorphous glass or metal fluoride is deposited by chemical vapor deposition (CVD), e.g., by effusive CVD of an organometallic compound on the surface without the use of carrier gas, without pre-oxidation of the surface and without thermal decomposition of the diffusion barrier coating material. Examples of coating materials deposited by effusive CVD are SiO.sub.2, TiO.sub.2, spinel and Al.sub.2 O.sub.3. The articles having the coated surfaces find utility in components subjected to high temperatures wherein the components are in contact with hydrocarbon fluids without additives, without special attention to quality control and without the need for special processing.
    Type: Grant
    Filed: March 12, 1997
    Date of Patent: September 8, 1998
    Assignee: General Electric Company
    Inventors: George A. Coffinberry, John F. Ackerman
  • Patent number: 5780170
    Abstract: A synchronizing ring including a bearing ring comprised of sintered steel; and a friction coating provided on thee bearing ring and composed of a friction material which is sintered and which includes a matrix which is iron-based, from 0.5 to 10 percent by weight molybdenum in relation to the weight of the matrix, and from 20 to 50 percent by volume of graphite as a solid lubricant.
    Type: Grant
    Filed: July 10, 1996
    Date of Patent: July 14, 1998
    Assignee: Sintermetallwerk Krebsoge GmbH
    Inventors: Detlev Gonia, Marion Eckhardt, Lothar Schneider
  • Patent number: 5769176
    Abstract: The present invention provides a diamond sintered compact having a higher strength as well as more excellent heat resistance, breakage resistance and corrosion resistance, as compared with those of the prior art, which thus can effectively be applied to tool materials for cutting or polishing of non-ferrous metals or ceramics, and edge materials of drill bits for excavating petroleum. The feature of the diamond sintered compact contains 0.1 to 30 volume % of at least one compound containing at least one element selected from the group consisting of silicon and titanium, and oxygen and the balance of diamond, for example, a titanate of a metal selected from the group consisting of iron, cobalt, nickel and manganese.
    Type: Grant
    Filed: July 5, 1996
    Date of Patent: June 23, 1998
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Hitoshi Sumiya, Shuichi Satoh
  • Patent number: 5741556
    Abstract: A thermal spray process for producing a MCrAlY-based coating wherein M is selected from the group consisting of iron, cobalt, nickel and mixtures thereof and wherein the oxygen in the fuel-oxidant mixture of the thermal spray process converts a substantial portion of the yttrium component to Y.sub.2 O.sub.3, a minor portion of the aluminum component to Al.sub.2 O.sub.3, and the Y.sub.2 O.sub.3 and Al.sub.2 O.sub.3 are present in an amount of less than 15 volume percent of the coating.
    Type: Grant
    Filed: April 5, 1996
    Date of Patent: April 21, 1998
    Assignee: Praxair S.T. Technology, Inc.
    Inventors: Thomas Alan Taylor, James Kent Knapp
  • Patent number: 5701578
    Abstract: A method of making a coated member comprising the steps of: providing a sintered substrate that includes hard grains bonded together by metallic binder; removing material from the sintered substrate to form an as-ground substrate; reducing the residual stresses in the substrate; resintering the substrate to form a resintered substrate; and adherently depositing a coating on the resintered substrate.
    Type: Grant
    Filed: November 20, 1996
    Date of Patent: December 23, 1997
    Assignee: Kennametal Inc.
    Inventor: Yixiong Liu
  • Patent number: 5697046
    Abstract: Methods for making, methods for using and articles comprising ferromagnetic cermets, preferably cemented carbides and more preferably tungsten carbide, having at least two regions exhibiting at least one property that differs are discussed. The multiple-region cermets are particularly useful in wear applications. The cermets are manufactured by juxtaposing and densifying at least two powder blends having different properties (e.g., differential carbide grain size or differential carbide chemistry or differential binder content or differential binder chemistry or differential magnetic saturation or any combination of the preceding). Preferably, a first region of the cermet comprises a first hard component having a prescribed binder content and a first magnetic saturation and a second region, juxtaposing or adjoining the first region, comprising a second binder content different than the binder content of the first region and a second magnetic saturation different than that of the first region.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: December 9, 1997
    Assignee: Kennametal Inc.
    Inventor: Edward V. Conley
  • Patent number: 5682595
    Abstract: The ceramic/metal composite material is comprised of a ceramic phase with particles of alumina or of a solid solution based on alumina and a refractory phase including titanium nitride and/or carbonitride and a metallic matrix based on Ni, Co, Fe. The interface between the particles of alumina or the solid solution of alumina and the metallic matrix is rich in nitrogen and in titanium or in compounds thereof.
    Type: Grant
    Filed: November 1, 1994
    Date of Patent: October 28, 1997
    Assignee: UFEC- Universal Fusion Energie Company SA
    Inventors: Denis Gonseth, Daniele Mari, Paul Bowen, Claude Paul Carry, Pascal Streit, Roberto Mulone
  • Patent number: 5679469
    Abstract: A metallized ceramic substrate having a smooth plating layer comprises a ceramic substrate containing aluminum nitride as a main component; a tungsten- and/or molybdenum-based metallized layer formed on at least one face of the ceramic substrate; and a nickel-based plating layer formed on the metallized layer wherein the plating layer has a thickness of not greater than 2 .mu.m and a surface roughness (Ra) of not greater than 2 .mu.m. Alternatively, the plating layer on the ceramic substrate may comprise a first nickel-based plating layer having a thickness of not greater than 2 .mu.m and a second gold-based plating layer having a thickness of not greater than 1 .mu.m wherein the gold-based plating layer has a surface roughness (Ra) of 2 .mu.m or less.
    Type: Grant
    Filed: July 26, 1995
    Date of Patent: October 21, 1997
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kouhei Shimoda, Hirohiko Nakata
  • Patent number: 5658678
    Abstract: A corrosion resistant cermet comprises a ceramic component (e.g., WC) and a binder alloy comprised of a major component (e.g., one or more of iron, nickel, cobalt, their mixtures, and their alloys) and at least one additive component (e.g., one or more of ruthenium, rhodium, palladium, osmium, iridium, and platinum). Plungers for hyper compressors used in the corrosive environments generated during the manufacture of low density polyethylene (LDPE) or ethylene copolymers are an example of the use of the corrosion resistant cermet.
    Type: Grant
    Filed: January 11, 1996
    Date of Patent: August 19, 1997
    Assignee: Kennametal Inc.
    Inventors: William M. Stoll, James P. Materkowski, Ted R. Massa
  • Patent number: 5613189
    Abstract: An improved metal matrix composite which, in a preferred embodiment disclosed herein, utilizes boron carbide as the ceramic additive to a base material metal. The metal matrix composite of the present invention begins with the preparation of the boron carbide powder by particle size selection in a jet mill. The resulting powder and metal powder are then mixed by blending of powder of all the various elements such as by means of a conventional blender to uniformly mix powdered substances and avoid stratification and settling. After the particles have been sufficiently mixed, they are degassed and then placed into a die and then into a cylindrical container where the particulates are subjected to extremely high pressures transforming the elements into a solid ingot.
    Type: Grant
    Filed: September 29, 1995
    Date of Patent: March 18, 1997
    Assignee: Alyn Corporation
    Inventor: Robin A. Carden
  • Patent number: 5603075
    Abstract: A corrosion resistant cermet comprises a ceramic component (e.g., WC) and a binder alloy comprised of a major component (e.g., one or more of iron, nickel, cobalt, their mixtures, and their alloys) and at least one additive component (e.g., one or more of ruthenium, rhodium, palladium, osmium, iridium, and platinum).Plungers for hyper compressors used in the corrosive environments generated during the manufacture of low density polyethylene (LDPE) or ethylene copolymers are an example of the use of the corrosion resistant cermet.
    Type: Grant
    Filed: March 3, 1995
    Date of Patent: February 11, 1997
    Assignee: Kennametal Inc.
    Inventors: William M. Stoll, James P. Materkowski, Ted R. Massa
  • Patent number: 5603076
    Abstract: A thermal spray powder for producing high hardness, low friction, wear resistant coatings on friction surfaces, comprising a blend of an agglomerated molybdenum/dimolybdenum carbide powder and a self-fluxing NiCrFeBSi alloy powder.
    Type: Grant
    Filed: April 4, 1996
    Date of Patent: February 11, 1997
    Assignee: Osram Sylvania Inc.
    Inventor: Sanjay Sampath
  • Patent number: 5584045
    Abstract: Polycrystalline diamond has non-uniform impurity concentration along the direction of thickness. The diamond near the rake surface has a lower impurity concentration. The diamond near the fixation surface has a higher impurity concentration. The diamond with the higher impurity concentration near the fixation surface alleviates strong stress or absorbs external shock. Owing to the higher impurity concentration of diamond near the fixation surface, the diamond tool excels in chip resistance or toughness. The diamond with a lower impurity concentration near the rake surface heightens abrasion resistance, adhesion resistance and strength.
    Type: Grant
    Filed: November 6, 1995
    Date of Patent: December 10, 1996
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiichiro Tanabe, Naoji Fujimori
  • Patent number: 5549951
    Abstract: Ultrafine whiskery or columnar ceramic particles, a method for producing the ultrafine particles, and a sintered article obtained by sintering the ultrafine ceramic particles are disclosed. The ultrafine ceramic particles are produced by thermally melting a matrix alloy of a composition of Al--M.sup.1, wherein M.sup.1 stands for at least one metallic element selected from the group consisting of Cr, Co, and Fe, or Al--M.sup.1 --M.sup.2, wherein M.sup.2 stands for at least one metallic element selected from the group consisting of Au, Cu, Dy, Er, Ga, Ge, Gd, Hf, Ho, Lu, Mn, Mo, Nb, Nd, Ni, Pr, Re, Sb, Sc, Si, Sn, Ta, Tb, Ti, Tm, V, W, Y, Zn, or Zr, in a nitriding atmosphere containing nitrogen and causing the vaporized raw material to react with the nitrogen in the atmosphere.
    Type: Grant
    Filed: September 7, 1994
    Date of Patent: August 27, 1996
    Assignees: YKK Corporation, Tsuyoshi Masumoto, Akihisa Inoue, Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Tadashi Yamaguchi, Katsutoshi Nosaki, Inoue Akihisa, Tsuyoshi Masumoto
  • Patent number: 5541005
    Abstract: A large ceramic substrate article for electronic applications including at least one layer of sintered ceramic material, the layer including a plurality of greensheet segments of ceramic material joined edge to edge. Also disclosed is a method of fabricating a large ceramic greensheet article as well as a large ceramic substrate article.
    Type: Grant
    Filed: May 11, 1995
    Date of Patent: July 30, 1996
    Assignee: International Business Machines Corporation
    Inventors: Raschid J. Bezama, Jon A. Casey, Mario E. Ecker, Shaji Farooq, Irene S. Frantz, Katherine G. Frase, David H. Gabriels, Lester W. Herron, John U. Knickerbocker, Sarah H. Knickerbocker, Govindarajan Natarajan, John Thomson, Yee-Ming Ting, Sharon L. Tracy, Robert M. Troncillito, Vivek M. Sura, Donald R. Wall, Giai V. Yen
  • Patent number: 5534353
    Abstract: A composite sintered material of a mixed-phase structure comprising fine particles of hard compound compactly and uniformly dispersed in grains of matrix of titanium or titanium alloy. The material is outstanding in abrasion resistance, strength, toughness, etc., and also has high resistance to corrosion by molten nonferrous metals and is therefore reduced in the likelihood of dissolving out into the melt.The sintered material is produced by uniformly mixing together a metal powder for forming the matrix of the desired sintered material and a powder for forming particles of hard compound to be dispersed, molding the powder mixture into a block under pressure, atomizing the block while melting the block and sintering the resulting powder.
    Type: Grant
    Filed: February 1, 1994
    Date of Patent: July 9, 1996
    Assignee: Kubota Corporation
    Inventors: Takahiro Kaba, Takashi Nishi, Tsuyoshi Mitsuhashi
  • Patent number: 5523169
    Abstract: A base metal repair tape includes a first layer formed from powdered base metal bonded together by fibrillated polytetrafluoroethylene and a second layer comprising a brazing alloy bonded together by fibrillated polytetrafluoroethylene. This is used to repair base metal by placing the first layer on the base metal and brazing the base metal so that the brazing alloy melts and diffuses into the base metal powder bonding it to the surface of the article. This permits the braze powder to be bonded to the base metal surface with minimal distance between the base powder particles.
    Type: Grant
    Filed: September 13, 1994
    Date of Patent: June 4, 1996
    Inventors: Kevin Rafferty, Bruce Rowe
  • Patent number: 5521015
    Abstract: A metal matrix composite component e.g. a brake disc, is provided with a protective coating to prevent displacement of the reinforcing filler in the matrix when the component is placed under load. Preferably the protective coating is metal, alloy, composite, refractory or ceramic applied e.g. by electro-plating.
    Type: Grant
    Filed: December 5, 1994
    Date of Patent: May 28, 1996
    Inventor: Martin J. M. Murphy
  • Patent number: 5521016
    Abstract: Subject boron carbide to a passivation treatment at a temperature within a range of 1350.degree. C. to less than 1800.degree. C. prior to infiltration with a molten metal such as aluminum. This method allows control of kinetics of metal infiltration and chemical reactions, size of reaction products and connectivity of B.sub.4 C grains and results in cermets having desired mechanical properties.
    Type: Grant
    Filed: January 24, 1995
    Date of Patent: May 28, 1996
    Assignee: The Dow Chemical Company
    Inventors: Aleksander J. Pyzik, Uday V. Deshmukh, Stephen D. Dunmead, Jack J. Ott, Timothy L. Allen, Harold E. Rossow
  • Patent number: 5516592
    Abstract: A method for preparing foamed aluminum alloy composites comprising the steps of: (a) placing a liquid hardness-reinforcement composition into a tank, the hardness-reinforcement composition containing about 54.about.64 wt. % of an inorganic powder, about 35.about.45 wt. % of a nonflammable curable resin, and about 1 wt. % of a curing agent; (b) placing a foamed aluminum alloy plate having an internal porous body into the tank containing the hardness-reinforcement composition, then applying a pressure of about 10.about.50 Kg/cm.sup.2 onto the foamed aluminum alloy plate for about one to two hours so as to allow the hardness-reinforcement composition to soak into the foamed aluminum alloy plate and form a coated layer on the surface of the porous body; (c) removing the foamed aluminum alloy plate that has been coated with a layer of the hardness-reinforcement composition from the tank; and (d) drying and curing the curable nonflammable resin so as to form the foamed aluminum alloy composite.
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: May 14, 1996
    Assignee: Industrial Technology Research Institute
    Inventors: Chin-Chan Yang, Kou-Chang Su, Wen-Chi Chen, Shan-Chang Chueh
  • Patent number: 5514480
    Abstract: A metal-based composite includes a metal matrix including aluminum as a major component, discontinuous alumina fibers buried in the metal matrix, mullite particles buried therein, and solid lubricant particles buried therein. The solid lubricant particles can be either graphite particles with a nickel layer formed on a surface thereof, or boron nitride cermet particles. By thus including the specific solid lubricant particles, the wear resistance of the metal-based composite can be improved, the wear of its mating parts can be reduced, and the friction coefficient between the metal-based composite and the mating parts can be inhibited from fluctuating. Hence, the metal-based composite can appropriately make aluminum-based internal combustion engines.
    Type: Grant
    Filed: August 5, 1994
    Date of Patent: May 7, 1996
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Katumi Takagi, Shuji Inoue
  • Patent number: 5500289
    Abstract: A sinterable powder mix for the production of a tungsten-based cemented carbide material, said powder mix comprising at least 70% by weight of WC, from about 2 to about 15% by weight of an iron group metal binder, and optionally up to about 15% by weight of one or more carbides, nitrides and carbonitrides of metals of the groups IVb, Vb and VIb of the periodic table; characterized in thatsaid powder mix comprises from about 1 to about 8% by weight of Ta(Nb) oxide and powdered elemental carbon in about the stoichiometric amount required for the reaction:Ta(Nb).sub.2 O.sub.5 +7C.fwdarw.
    Type: Grant
    Filed: June 20, 1995
    Date of Patent: March 19, 1996
    Assignee: ISCAR Ltd.
    Inventor: Ilan Gavish
  • Patent number: 5492770
    Abstract: A diamond film is formed on a surface of a substrate. The diamond film is attached securely to the substrate by forming a first layer on the surface comprising a mixture of a main component of the substrate and a sintering reinforcement agent for diamond, then forming a second layer comprising a mixture of said agent and diamond on said first layer, and finally forming the diamond film on the second layer.
    Type: Grant
    Filed: November 16, 1993
    Date of Patent: February 20, 1996
    Assignee: Fujitsu Limited
    Inventors: Motonobu Kawarada, Kazuaki Kurihara
  • Patent number: 5492771
    Abstract: An improved method of making a monolayer abrasive tool using a relatively low melting point, soft filler metal alloy braze which possesses sufficiently high yield strength combined with a relatively high ductility and low elastic modulus to produce an exceptional bond between a monolayer of superabrasive particles and the tool substrate. The steps of the brazing process include applying a layer of the filler metal alloy including a an active metal in either pre-alloyed or as a mixture with the metal alloy and a monolayer of superabrasive crystals over the filler metal layer. This assembly is heated in a mon-oxidizing atmosphere such as a vacuum to melt the alloy and braze bond the superabrasive particles to the tool substrate. The alloy bond formed possess the properties of a ductility of at least 20 percent elongation, an elastic modulus of less than 15.times.10.sup.6 or less, and a yield strength preferably at least about 45,000 to 50,000 psi.
    Type: Grant
    Filed: September 7, 1994
    Date of Patent: February 20, 1996
    Assignee: Abrasive Technology, Inc.
    Inventors: James T. Lowder, Roy F. Wielonski, Kosta L. George
  • Patent number: 5455738
    Abstract: A circuit card assembly thermal core includes a composite material that includes particles of diamond and a conductive metal such as aluminum, copper, nickel and beryllium and which may be made by pressure infiltration casting. The diamond particles are 110 to 160 microns in size and 10 to 80 percent by volume, and preferably 140 to 160 microns in size and 40 to 60 percent by volume. The composite material has both a high thermal conductivity and low density which may be matched with the coefficient of thermal expansion of other materials with which used.
    Type: Grant
    Filed: July 28, 1993
    Date of Patent: October 3, 1995
    Assignee: E-Systems, Inc.
    Inventors: Mark J. Montesano, John T. Wigand, Joseph C. Roesch
  • Patent number: 5453329
    Abstract: A method of applying abrasive materials to a substrate includes the steps of forming a relatively small pool of superheated molten metal at the surface of the metal substrate by creating an interaction area on the substrate with a localized high energy source. A powder system is injected into the pool. The powder system comprises metal matrix powder and abrasive powder. The abrasive powder includes abrasive particles having an encapsulating thermal insulating layer for preventing the abrasive particles from being melted by the molten metal in the pool. The substrate is then moved relative to the energy source, thereby allowing the pool to resolidify.
    Type: Grant
    Filed: April 30, 1993
    Date of Patent: September 26, 1995
    Assignee: Quantum Laser Corporation
    Inventors: Mark A. Everett, Alan R. Blankshain
  • Patent number: 5443916
    Abstract: A method for impregnating a metal product with a hard wear-resistant surface area comprises providing a wear-resistant layer in the form of a sintered sheet having at least one "pin" integrally attached onto a surface of the sheet. This wear-resistant layer is attached onto the sand core and a metal melt is cast so as to produce the final product. This method can be used to produce a variety of metal products although cast iron, and in particular, ductile iron are preferred. Moreover, this process can effectively employ any of the hard phases which can be sintered, e.g., tungsten carbide, chromium carbide, and the like. Preferably, both the sheet and the "pins" are made from the same mixture of a wear-resistant material, an organic binder, and at least one plasticizer.
    Type: Grant
    Filed: August 27, 1993
    Date of Patent: August 22, 1995
    Assignee: Deere & Company
    Inventor: Gopal S. Revankar
  • Patent number: 5441818
    Abstract: An electro-deposition coated member comprises a substrate having thereon an electro-deposition coating film. The electro-deposition film contains a powder comprising a ceramic powder having an average particle diameter of from 0.1 to 5 .mu.m, the particle surfaces of which are coated with a metal, in an amount of from 5 to 50 parts by weight based on 100 parts by weight of the electro-deposition coating film. The electro-deposition coated member can be produced by a process comprising the steps of; subjecting a substrate to electro-deposition coating in a coating composition containing a resin feasible for electro-deposition and a powder comprising a ceramic powder having an average particle diameter of from 0.1 to 5 m, the particle surfaces of which are coated with a metal, the powder being contained in an amount of from 0.2 to 30 parts by weight based on from 100 to 150 parts by weight of the resin feasible for electro-deposition; and subsequently carrying out low-temperature curing.
    Type: Grant
    Filed: January 10, 1995
    Date of Patent: August 15, 1995
    Assignee: Canon Kabushiki Kaisha
    Inventor: Susumu Kadokura
  • Patent number: 5439636
    Abstract: A large ceramic substrate article for electronic applications including at least one layer of sintered ceramic material, the layer including a plurality of greensheet segments of ceramic material joined edge to edge. Also disclosed is a method of fabricating a large ceramic greensheet article as well as a large ceramic substrate article.
    Type: Grant
    Filed: February 18, 1992
    Date of Patent: August 8, 1995
    Assignee: International Business Machines Corporation
    Inventors: Raschid J. Bezama, Jon A. Casey, Mario E. Ecker, Shaji Farooq, Irene S. Frantz, Katharine G. Frase, David H. Gabriels, Lester W. Herron, John U. Knickerbocker, Sara H. Knickerbocker, Govindarajan Natarajan, John Thomson, Yee-Ming Ting, Sharon L. Tracy, Robert M. Troncillito, Vivek M. Sura, Donald R. Wall, Giai V. Yen
  • Patent number: 5426000
    Abstract: Fiber-reinforced titanium alloy and intermetallic matrix composites having improved stability and tensile strength properties at elevated temperatures. The base reinforced fibers are pre-coated with a tailorable tri-layer coating, such as Ti--TiN--Ti. Preferably the TiN layer is graded so as to have metal-rich outer surfaces, such as titanium-rich TiN, providing excellent bonding affinity for the base titanium layer, bonded to the surface of the fibers, such as silicon carbide, and for the outer titanium layer, bonded to the titanium aluminum matrix, and a compound core, such as stoichiometric TiN, providing a stable interfacial barrier against chemical reactions, whereby the tensile strength and resistance to cracking of the composite is preserved even at elevated temperatures of 900.degree. C. or higher.
    Type: Grant
    Filed: August 5, 1992
    Date of Patent: June 20, 1995
    Assignee: AlliedSignal Inc.
    Inventors: Mohamed E. Labib, Bawa Singh
  • Patent number: 5419970
    Abstract: A method for making a composite aluminum article comprises the steps of electrochemically or chemically adsorbing fine particles of a polytetrafluoroethylene to the surface of a hard anodic oxide film of an aluminum material or an aluminum alloy material, and drying the aluminum material or the aluminum alloy material. Thereafter, the aluminum material or the aluminum alloy material and an opposite member which slides along the aluminum material or the aluminum alloy material are rubbed together, and a lubricating film is thereby formed.
    Type: Grant
    Filed: July 30, 1992
    Date of Patent: May 30, 1995
    Assignees: Mitsubishi Jukogyo Kabushiki Kaisha, Okuno Chemical Industries Co., Ltd.
    Inventors: Takeshi Hattori, Kazuhiko Inoguti, Yukio Ohyama, Yutaka Nakagishi, Masaaki Sakaguchi
  • Patent number: 5411571
    Abstract: Disclosed are a hard sintered alloy having fine pores which comprises a sintered alloy comprising 2 to 30% by volume of a dispersed phase of at least one of oxide, carbide and sulfide of Ca, Sr or Ba and mutual solid solutions of these, and the balance of a binder phase comprising at least one metal of Co, Ni and Fe or an alloy containing said metal as a main component and a hard phase of at least one of carbide, nitride and boride of the 4a (Ti, Zr, Hf), 5a (V, Nb, Ta) or 6a (Cr, Mo, W) group metal of the periodic table and mutual solid solutions of these, with a volume ratio of said binder phase to said hard phase being 2:98 to 95:5, wherein fine pores are formed by removing said dispersed phase from a surface portion of said sintered alloy, and a process for preparing the same.
    Type: Grant
    Filed: July 19, 1993
    Date of Patent: May 2, 1995
    Assignee: Toshiba Tungaloy Co., Ltd.
    Inventors: Masaki Kobayashi, Tatuya Sato
  • Patent number: 5405707
    Abstract: In order to form internal conductors of a multilayer ceramic electronic component such as a multilayer ceramic capacitor, copper paste containing copper powder having a mean particle size of 0.3 to 2 .mu.m in a particle size range of 0.1 to 4 .mu.m and ceramic powder having a main component which is common to that of a ceramic material contained in the multilayer ceramic electronic component and being in a particle size range of 0.5 to 8 .mu.m, as well as an organic vehicle and a solvent with the contents of the copper powder and the ceramic powder and the total content of the organic vehicle and the solvent in ranges of 40 to 70 percent by weight, 1 to 15 percent by weight and 25 to 60 percent by weight respectively is applied onto ceramic green sheets. The ceramic green sheets provided with such copper paste films are stacked and fired so that occurrence of voids in the laminate and deformation of the laminate are suppressed in the as-obtained multilayer ceramic electronic component.
    Type: Grant
    Filed: February 22, 1993
    Date of Patent: April 11, 1995
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hiroji Tani, Kazuhito Ohshita, Mitsuyoshi Nishide
  • Patent number: 5395700
    Abstract: In this invention, a cutting tool comprises two layers of hard sintered compact of cBN. The first sintered compact layer comprises about 75-98% by volume of cBN and a first binder material. The first binder material comprises from about 1 to out 40% by weight of Al. The second sintered compact layer comprises from about 40 to about 65% by volume of cBN and a second binder material. The second binder material comprises about 2 to about 30% by weight of Al. The first sintered compact layer is bonded to the second sintered compact layer. This composite material is bonded directly or indirectly to a tool holder to form a cutting tool. The first sintered compact layer constitutes a rake face of the cutting tool.
    Type: Grant
    Filed: June 25, 1992
    Date of Patent: March 7, 1995
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Tetsuo Nakai, Mitsuhiro Goto
  • Patent number: 5370944
    Abstract: This invention relates to a diamond-coated hard material and a process for the production of the same. The feature of the diamond-coated hard material consists in that in a diamond-coated hard material comprising a substrate of a tungsten carbide-based cemented carbide having a diamond-coated layer provided on the surface of the substrate, a surface-modified layer containing no binder phase or containing a binder phase in a proportion of less than in the interior part of the substrate is present on the outermost surface of the substrate. This hard material can be produced by converting the substrate material into a sintered or heat treated surface or skin and then coating with diamond. The diamond-coated hard material of the present invention has such a high wear resistance and excellent bonding strength to the substrate that it can favorably be applied to various tools, parts, grinding wheels, etc.
    Type: Grant
    Filed: April 27, 1993
    Date of Patent: December 6, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Naoya Omori, Mitsunori Kobayashi, Toshio Nomura
  • Patent number: 5368947
    Abstract: An article having a slip-resistant surface and method of producing the same includes metallurgically bonding raised bead-like configurations of a compatible material at select locations on the article surface. The method includes injecting, substantially simultaneously with projecting a high power radiant energy beam, powder particles into a portion of the beam lying a distance away from the point of impingement on the surface portion of the article. The particles interact with the beam for a time period sufficient to cause at least partial melting of a substantial number of particles which are then transported to a selected point on the surface portion. The partially melted particles, along with completely and/or any substantially unmelted particles, are allowed to bond with the surface material thereby forming a raised configuration thereon. The process is repeated for forming another raised configuration at another selected location on the surface portion for thereby forming a slip-resistant article.
    Type: Grant
    Filed: August 12, 1991
    Date of Patent: November 29, 1994
    Assignee: The Penn State Research Foundation
    Inventor: Paul E. Denney
  • Patent number: 5348808
    Abstract: In a hard sintered cutting tool, the tool life can be further increased. In this hard sintered body cutting tool, a rake face of an edge portion is formed by a major surface of a first sintered body layer containing at least 80 percent by volume and less than 98 percent by volume of diamond, while a flank of the edge portion is formed by a second sintered body layer containing at least 30 percent by volume and less than 75 percent by volume of cubic boron nitride (CBN). The first sintered body layer is formed to have a thickness of at least 0.02 mm and less than 0.1 mm, and to be in a thickness ratio of at least 1:5 to the second sintered body layer. Thus, chipping resistance of the rake face is improved by the first sintered body layer, while wear resistance of the flank is improved by the second sintered body layer. As a result, it is possible to suppress progress of local wear and chipping, whereby the life of the cutting tool is increased as compared with the prior art.
    Type: Grant
    Filed: May 25, 1993
    Date of Patent: September 20, 1994
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Mitsuhiro Goto, Tetsuo Nakai
  • Patent number: 5334460
    Abstract: A Cu-Pb system composite bearing has three layers including a backing metal, a bearing alloy layer formed on the backing metal, and an overlay formed on the bearing alloy layer. The Cu-Pb bearing alloy contains 2 to 10% Ni and 0.05 to 1.0% B. An example of the composition of the Cu-Pb system bearing alloy consists of 0.5 to 8% Sn, 15 to 30% Pb, 0.2% or less P, 2 to 10% Ni, 0.05 to 1.0% B and the balance of Cu and unavoidable impurities. The Cu-Pb bearing alloy must have a hardness over HV80. Ni and B contained in the bearing alloy decrease the affinity of the Cu-Pb bearing alloy for tin in the overlay of a tin-containing lead alloy. The corrosion resistance of the bearing is improved by plating the both surfaces of the composite bearing with Sn, Pb or an alloy thereof.
    Type: Grant
    Filed: December 2, 1992
    Date of Patent: August 2, 1994
    Assignee: Daido Metal Company
    Inventors: Tadashi Tanaka, Masaaki Sakamoto, Koichi Yamamoto, Kenji Sakai
  • Patent number: 5324592
    Abstract: A copper powder-free friction material which is made by sintering and intended for friction surfaces of couplings or brakes contains powdery and/or granular metallic and non-metallic components, at least 50% by weight of the non-ferrous heavy metal component being brass powder.
    Type: Grant
    Filed: March 20, 1992
    Date of Patent: June 28, 1994
    Assignee: Hoerbiger & Co.
    Inventors: Fred Blankenhagen, Hermann Putz