Composite; I.e., Plural, Adjacent, Spatially Distinct Metal Components (e.g., Layers, Etc.) Patents (Class 428/548)
  • Patent number: 10940532
    Abstract: The present disclosure provides a metal-ceramic composite structure and a fabrication method thereof. The metal-ceramic composite structure includes a ceramic substrate having a groove on a surface thereof; a metal member filled in the groove, including a main body made of zirconium base alloy, and a reinforcing material dispersed in the main body and selected from at least one of W, Mo, Ni, Cr, stainless steel, WC, TiC, SiC, ZrC, ZrO2, BN, Si3N4, TiN and Al2O3; a luminance value L of the metal member surface is in a range of 36.92-44.07 under a LAB Chroma system.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: March 9, 2021
    Assignee: BYD COMPANY LIMITED
    Inventors: Qing Gong, Xinping Lin, Yongzhao Lin, Faliang Zhang, Bo Wu
  • Patent number: 10888928
    Abstract: A method of sinter fitting a powder metal compact around a core forms a composite component. By exploiting the shrinkage associated with the sintering of a powder metal compact, a sintered powder metal section may be dimensionally shrunk onto a core to create a mechanical interference fit between a core section and a sintered powder metal section. This method may be used to join materials such as aluminum and steel together, which traditionally have been difficult to join to one another.
    Type: Grant
    Filed: January 12, 2016
    Date of Patent: January 12, 2021
    Assignee: GKN Sinter Metals, LLC
    Inventor: Alan C. Taylor
  • Patent number: 10815748
    Abstract: A unitary body includes magnesium and aluminum and at least one of iron, tungsten, nickel, or titanium and has a dissolution rate of at least 5 mg/(cm2·hr). The magnesium and aluminum and/or the iron, tungsten, nickel, and/or titanium can be present in discrete solid regions. The unitary body can include multiple sections having different compositions and different dissolution rates. The unitary body can be formed using solid-state powder metallurgy processes.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: October 27, 2020
    Inventors: Jonathan Meeks, Henry S. Meeks
  • Patent number: 10618109
    Abstract: A process includes agitating at least one core of a core alloy together with a braze binder to form at least one coated core comprising the at least one core coated with a first layer of the braze binder. The process also includes agitating the at least one coated core together with a powder composition comprising a first metal powder of a first alloy and a second metal powder of a second alloy to form a green preform having a first powder composition layer of the first alloy and the second alloy. The process further includes sintering the green preform to form at least one hybrid pre-sintered preform. A green preform includes a core, a first layer of a braze binder coated on the core, and a powder composition coated on the first layer. A hybrid pre-sintered preform includes a core and a first layer sintered to the core.
    Type: Grant
    Filed: August 7, 2017
    Date of Patent: April 14, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Yan Cui, Srikanth Chandrudu Kottilingam, Brian Lee Tollison, Brian Leslie Henderson
  • Patent number: 10597761
    Abstract: Disclosed herein is a composite comprising a metal alloy matrix; where the metal alloy matrix comprises aluminum in an amount greater than 50 atomic percent; a first metal and a second metal; where the first metal is different from the second metal; and where the metal alloy matrix comprises a low temperature melting phase and a high temperature melting phase; where the low temperature melting phase melts at a temperature that is lower than the high temperature melting phase; and a contracting constituent; where the contracting constituent exerts a compressive force on the metal alloy matrix at a temperature between a melting point of the low temperature melting phase and a melting point of the high temperature melting phase or below the melting points of the high and low temperature melting phases.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: March 24, 2020
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Michele Viola Manuel, Charles Robert Fisher, Maria Clara Wright
  • Patent number: 10576586
    Abstract: The invention relates to a method for producing a sintered part having a highly precise molded part height, the sintered part being produced from a first sintered joining part that has a first joining surface and a second sintered joining part that has at least a second joining surface. The method comprises at least the following steps: joining the first sintered joining part and the second sintered joining part, the first joining surface being oriented such that it faces the second joining surface; pressing the first sintered joining part and the second sintered joining part against each other under axial compression pressure exerted by a pressing tool, the highly precise molded part height being brought about by pressing the parts against each other; removing the sintered part from the pressing tool as a sintered part having a highly precise molded part height. The invention also relates to a parts set of sintered joining parts.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: March 3, 2020
    Assignee: GKN Sinter Metals Engineering GmbH
    Inventors: Sascha Frey, Alexander Tausend, Kerstin Ziegler
  • Patent number: 10197178
    Abstract: A vibration-resistant, flexible metallic seal for use in an electrohydraulic servo valve (EHSV), the EHSV comprising an armature, an armature support comprising a base, and a flapper, the seal surrounding a portion of the flapper, the seal having a first end, a second end, a thickness along a length of the seal between the first end and the second end, the thickness being defined between first and second outer surfaces of the seal, and one or a plurality of convolutions between the first end and the second end, the first end disposed between and hermetically connected to the flapper and the armature, the second end disposed within the first opening and hermetically connected to the base, wherein the seal comprises: a non-porous metal that comprises a first fraction of the thickness; a porous metal comprising a plurality of pores that comprises a second fraction of the thickness; and an elastomeric material encompassed by the pores of the second fraction of the thickness, wherein the second fraction comprises
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: February 5, 2019
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Richard Rateick, Donna Laboda
  • Patent number: 10190227
    Abstract: An article comprising an electrodeposited aluminum alloy is described herein. The electrodeposited aluminum alloy comprises an average grain size less than approximately 1 micrometer. The electrodeposited aluminum alloy thickness is greater than approximately 40 micrometers. A ductility of the electrodeposited aluminum alloy is greater than approximately 2%.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 29, 2019
    Assignee: Xtalic Corporation
    Inventors: Shiyun Ruan, Witold Paw, John Hunter Martin, Alan C. Lund
  • Patent number: 10174438
    Abstract: An apparatus for processing material at elevated pressure, the apparatus comprising: (a) two or more radial restraint structures defining an interior region configured to receive a processing chamber, the radial restraint structures being configured to resist an outward radial force from the interior region; (b) upper and lower crown members being disposed axially on either end of the interior region and configured to resist an outward axial force from the interior region; (c) a first axial restraint structure coupling the upper crown member and the lower crown member to provide axial restraint of the upper crown member and the lower crown; and (d) a second axial restraint structure compressing the two or more radial restraint structures to provide an axial restraint of the two or more radial restraint structures.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: January 8, 2019
    Assignee: SLT TECHNOLOGIES, INC.
    Inventors: Rajeev Tirumala Pakalapati, Mark P. D'Evelyn
  • Patent number: 9982356
    Abstract: Methods, structures, devices and systems are disclosed for fabrication of microtube engines using membrane template electrodeposition. Such nanomotors operate based on bubble-induced propulsion in biological fluids and salt-rich environments. In one aspect, fabricating microengines includes depositing a polymer layer on a membrane template, depositing a conductive metal layer on the polymer layer, and dissolving the membrane template to release the multilayer microtubes.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: May 29, 2018
    Assignee: The Regents of the University of California
    Inventors: Joseph Wang, Wei Gao, Sirilak Sattayasamitsathit
  • Patent number: 9972597
    Abstract: A method for bonding with a silver paste includes coating a semiconductor device or a substrate with the silver paste. The silver paste contains a plurality of silver particles and a plurality of bismuth particles. The method further includes disposing the semiconductor on the substrate and forming a bonding layer by heating the silver paste, wherein the semiconductor and the substrate are bonded to each other by the bonding layer.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: May 15, 2018
    Assignee: HYUNDAI MOTOR COMPANY
    Inventors: Kyoung-Kook Hong, Hyun Woo Noh, Youngkyun Jung, Dae Hwan Chun, Jong Seok Lee, Su Bin Kang
  • Patent number: 9931814
    Abstract: An article and a method for making shaped cooling holes in an article are provided. The method includes the steps of providing a metal alloy powder; forming an initial layer with the metal alloy powder, the initial layer having a preselected thickness and a preselected shape, the preselected shape including at least one aperture; sequentially forming an additional layer over the initial layer with the metal alloy powder, the additional layer having a second preselected thickness and a second preselected shape, the second preselected shape including at least one aperture corresponding to the at least one aperture in the initial layer; and joining the additional layer to the initial layer, forming a structure having a predetermined thickness, a predetermined shape, and at least one aperture having a predetermined profile. The structure is attached to a substrate to make the article.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: April 3, 2018
    Assignee: General Electric Company
    Inventors: Benjamin Paul Lacy, David Edward Schick, Srikanth Chandrudu Kottilingam
  • Patent number: 9931695
    Abstract: An article and a method for making shaped cooling holes in an article are provided. The method includes the steps of depositing a metal alloy powder to form an initial layer including at least one aperture, melting the metal alloy powder with a focused energy source to transform the powder layer to a sheet of metal alloy, sequentially depositing an additional layer of the metal alloy powder to form a layer including at least one aperture corresponding to the at least one aperture in the initial layer, melting the additional layer of the metal alloy powder with the focused energy source to increase the sheet thickness, and repeating the steps of sequentially depositing and melting the additional layers of metal alloy powder until a structure including at least one aperture having a predetermined profile is obtained. The structure is attached to a substrate to make the article.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: April 3, 2018
    Assignee: General Electric Company
    Inventors: Benjamin Paul Lacy, David Edward Schick, Srikanth Chandrudu Kottilingam
  • Patent number: 9689556
    Abstract: The present invention relates inter alia to an array comprising i times j array elements, wherein the array elements may comprise at least one quantum dot and/or at least one photoluminescent compound. Further the present invention relates to devices comprising these arrays. The arrays and devices can be used to generate white light with high color purity.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: June 27, 2017
    Assignee: Merck Patent GmbH
    Inventors: Junyou Pan, Niels Schulte, Thomas Eberle
  • Patent number: 9643252
    Abstract: A population of nanowires can be prepared by a method involving electric field catalyzed growth and alteration based on surface charge density.
    Type: Grant
    Filed: December 1, 2009
    Date of Patent: May 9, 2017
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: August Dorn, Cliff R. Wong, Moungi G. Bawendi
  • Patent number: 9598774
    Abstract: Briefly, in one embodiment, a method is disclosed. The method includes introducing a powder feedstock into a cold-spray apparatus, and operating the cold-spray apparatus to deposit the feedstock. The feedstock includes particles including nickel-base alloy having a thermally altered microstructure.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: March 21, 2017
    Assignee: General Electric Corporation
    Inventors: Leonardo Ajdelsztajn, Timothy Hanlon
  • Patent number: 9525092
    Abstract: A solar concentrator module (80) employs a luminescent concentrator material (82) between photovoltaic cells (86) having their charge-carrier separation junctions (90) parallel to front surfaces (88) of photovoltaic material 84 of the photovoltaic cells (86). Intercell areas (78) covered by the luminescent concentrator material (82) occupy from 2 to 50% of the total surface area of the solar concentrator modules (80). The luminescent concentrator material (82) preferably employs quantum dot heterostructures, and the photovoltaic cells (86) preferably employ low-cost high-efficiency photovoltaic materials (84), such as silicon-based photovoltaic materials.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 20, 2016
    Assignee: Pacific Light Technologies Corp.
    Inventors: Alex C. Mayer, Shawn R. Scully, Juanita N. Kurtin, Alex R. Guichard, Steven M. Hughes, Oun Ho Park, Paul-Emile B. Trudeau, Colin C. Reese, Manav Sheoran, Georgeta Masson
  • Patent number: 9478332
    Abstract: A method for producing a sintered R-T-B based magnet includes providing a sintered R-T-B based magnet body, of which the rare-earth-element mole fraction falls within the range of 31 mass % to 37 mass %; providing an RH diffusion source including a heavy rare-earth element RH (which is at least one of Dy and Tb) and 30 mass % to 80 mass % of Fe; loading the sintered magnet body and the RH diffusion source into a processing chamber so that the magnet body and the diffusion source are movable relative to each other and readily brought close to, or in contact with, each other; and performing an RH diffusion process by conducting a heat treatment on the sintered magnet body and the RH diffusion source at a process temperature of 700° C. to 1000° C. while moving the sintered magnet body and the RH diffusion source either continuously or discontinuously.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: October 25, 2016
    Assignee: HITACHI METALS, LTD.
    Inventors: Futoshi Kuniyoshi, Rintaro Ishii, Ryouichi Yamagata
  • Patent number: 9412505
    Abstract: A NdFeB system sintered magnet produced by the grain boundary diffusion method and has a high coercive force and squareness ratio with only a small decrease in the maximum energy product. A NdFeB system sintered magnet having a base material produced by orienting powder of a NdFeB system alloy and sintering the powder, with Dy and/or Tb (the “Dy and/or Tb” is hereinafter called RH) attached to and diffused from a surface of the base material through the grain boundary inside the base material by a grain boundary diffusion treatment, wherein the difference Cgx-Cx between the RH content Cgx (wt %) in the grain boundary and the RH content Cx (wt %) in main-phase grains which are grains constituting the base material at the same depth within a range from the surface to which RH is attached to a depth of 3 mm is equal to or larger than 3 wt %.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: August 9, 2016
    Assignee: INTERMETALLICS CO., LTD.
    Inventors: Masato Sagawa, Tetsuhiko Mizoguchi
  • Patent number: 9396851
    Abstract: A NdFeB system sintered magnet according to the present invention is a NdFeB system sintered magnet having a base material produced by orienting powder of a NdFeB system alloy and sintering the powder, with Dy and/or Tb (the “Dy and/or Tb” is hereinafter called RH) attached to and diffused from a surface of the base material through the grain boundary inside the base material by a grain boundary diffusion treatment, wherein the number of grain-boundary triple points at which the difference Ct?Cw between the RH content Ct (wt %) at the grain-boundary triple point and the RH content Cw (wt %) at a two-grain boundary portion leading to that grain-boundary triple point is equal to or smaller than 4 wt % is equal to or larger than 60% of the total number of grain-boundary triple points.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: July 19, 2016
    Assignee: INTERMETALLICS CO., LTD.
    Inventors: Masato Sagawa, Tetsuhiko Mizoguchi
  • Patent number: 9362035
    Abstract: A NdFeB system sintered magnet according to the present invention is a NdFeB system sintered magnet having a base material produced by orienting powder of a NdFeB system alloy and sintering the powder, with Dy and/or Tb (the “Dy and/or Tb” is hereinafter called RH) attached to and diffused from a surface of the base material through the grain boundary inside the base material by a grain boundary diffusion treatment, wherein the number of grain-boundary triple points at which the difference Ct?Cw between the RH content Ct (wt %) at the grain-boundary triple point and the RH content Cw (wt %) at a two-grain boundary portion leading to that grain-boundary triple point is equal to or smaller than 4 wt % is equal to or larger than 60% of the total number of grain-boundary triple points.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: June 7, 2016
    Assignee: INTERMETALLICS CO., LTD.
    Inventors: Masato Sagawa, Tetsuhiko Mizoguchi
  • Patent number: 9242296
    Abstract: A method for producing a rare earth magnet material which allows efficient Dy or the like diffusion into an inside thereof. This method includes a preparation step of preparing a powder mixture of magnet powder including one or more rare earth elements including neodymium, boron, and the remainder being iron; and neodymium fluoride powder; a heating step of heating a compact of the powder mixture and causing oxygen around magnet powder particles to react with the fluoride powder, thereby obtaining a lump rare earth magnet material in which neodymium oxyfluoride is wholly distributed. The fluoride powder traps oxygen enclosed in the powder mixture and fixes the oxygen as stable NdOF. When Dy is diffused into this rare earth magnet material, Dy smoothly enters into its inside without being oxidized at grain boundaries. Consequently, coercivity of the entire rare earth magnet material can be efficiently increased without wasting scarce Dy.
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: January 26, 2016
    Assignee: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Yuji Kaneko, Yukio Takada
  • Patent number: 9186726
    Abstract: There is disclosed a method of making a metallic or ceramic component, such as a cutting or forming tool, from at least two distinct powder precursors. In one embodiment, the method comprising forming a first mixture comprised of a plurality of coated particles, such as Tough-Coated Hard Powder (TCHP) composite particles created by encapsulating extremely hard core particles with very tough binder and structural materials, and at least one support powder, such as a carbide, typically WC—Co. The mixture is formed into a green body and sintered to form a functionally graded or multicomponent article. Non-limiting examples of the articles made from the disclosed methods are also disclosed and include drills, mills, cutting tools, forming tools, wires dies and mechanical components.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: November 17, 2015
    Assignee: Allomet Corporation
    Inventors: John M. Keane, Richard E. Toth
  • Patent number: 9070487
    Abstract: A conductive member disposed as a power supply line and the like includes: a first conductive material and a second conductive material, at least one of which includes a conductive material having electrical resistance lower than that of aluminum; and a metal film formed by depositing powder including a metal, which is accelerated together with a gas and sprayed, in a sold state, onto a surface of a butting part, where the first conductive material and the second conductive material are butted against each other.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: June 30, 2015
    Assignee: NHK Spring Co., Ltd.
    Inventors: Takashi Kayamoto, Shinji Saito, Yuichiro Yamauchi
  • Publication number: 20150118511
    Abstract: A first die is sequentially filled with a first-layer mixed powder that is a mixture of a basic metal powder having a small particle size and a low-melting-point lubricant powder, a second-layer mixed powder that is a mixture of the basic metal powder having a large particle size and the low-melting-point lubricant powder, and a third-layer mixed powder that is a mixture of the basic metal powder having a small particle size and the low-melting-point lubricant powder. A first pressure is applied to each mixed powder to form an intermediate green compact. The intermediate green compact is heated, and placed in a second die. A second pressure is applied to the intermediate green compact to form a high-density three-layer green compact.
    Type: Application
    Filed: April 22, 2013
    Publication date: April 30, 2015
    Inventors: Kazuhiro Hasegawa, Yoshiki Hirai
  • Publication number: 20150104665
    Abstract: A method of manufacturing an article (such as a dental restoration) comprising taking an article, comprising at least one product (such as a dental restoration), in an initial state, formed from a powdered material, layer-by-layer and electrochemically processing at least a select region of the at least one product (such as a dental restoration) so as to smoothen at least said select region.
    Type: Application
    Filed: May 10, 2013
    Publication date: April 16, 2015
    Inventor: David Beeby
  • Patent number: 8999514
    Abstract: Provided is bond coating powder and method of making. The method includes providing a powder including a plurality of parent particles. The method includes providing a plurality of dispersoids. The method includes mechanically alloying the powder and the plurality of dispersoids at ambient temperature. The mechanical alloying operable to provide a selective occupation of the plurality of dispersoids in a grain boundary area of the plurality of parent particles providing the bond coating powder. The plurality of dispersoids occupy about 18 percent to about 30 percent of the grain boundary area of the bond coating powder.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: April 7, 2015
    Assignee: General Electric Company
    Inventors: Arunkumar Shamrao Watwe, Yuk-Chiu Lau
  • Publication number: 20150079414
    Abstract: Disclosed herein is a method for preparing a multilayer metal complex having excellent surface properties. Specifically, the present invention relates to a method for preparing a multilayer metal complex having a low cost metal-core/noble metal-shell structure, which has a high mass fraction of noble metals and exhibits excellent surface properties and dispersity.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 19, 2015
    Inventors: Ki-Hoon KIM, Sung-Koo KANG, Min-Kyung OH, Hyung-Rak KIM
  • Patent number: 8980420
    Abstract: Proposed are a composite material, wherein non-penetrating pores that are formed in a silicon surface layer are filled up with a metal or the like without leaving any voids by using the plating technique, and a method of producing the composite material. A composite material, which has been packed at a high accuracy, or in other words, in which little voids are left, can be obtained by filling up non-penetrating pores that are formed from a silicon surface (100) substantially with a second metal or an alloy of the second metal (106) with the use of the autocatalytic electroless plating technique wherein a first metal located at the bottom of the non-penetrating pores as described above serves as the starting point.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: March 17, 2015
    Assignee: Japan Science and Technology Agency
    Inventors: Shinji Yae, Tatsuya Hirano, Hitoshi Matsuda
  • Publication number: 20150056463
    Abstract: A method for manufacturing a cemented carbide body includes the steps of forming a first part of a first powder composition comprising a first carbide and a first binder phase, sintering the first part to full density in a first sintering operation, forming a second part of a second powder composition comprising a second carbide and a second binder phase, sintering the second part to full density in a second sintering operation, bringing a first surface of the first part and a second surface of the second part in contact, and joining the first and second surface in a heat treatment operation.
    Type: Application
    Filed: March 26, 2013
    Publication date: February 26, 2015
    Inventors: Bo Jansson, Per Jonsson, Tomas Persson
  • Publication number: 20150037599
    Abstract: An additive layer manufacture (ALM) machine generates a first electron beam for selectively melting a layer of metal powder, and a second electron beam for detecting defects in the selectively melted layer once it has solidified. The second electron beam has a lower power than the first electron beam so as to be used to identify any defects without performing further melting. If any defects are detected, they can be removed, for example by re-melting, before the next layer of powder is supplied. The process may be repeated to generate a finished component with good mechanical properties.
    Type: Application
    Filed: July 22, 2014
    Publication date: February 5, 2015
    Inventor: Michael Lewis BLACKMORE
  • Patent number: 8947516
    Abstract: A method of imaging microscopic objects includes determining the relative depths of two or more semiconductor nanocrystals by analyzing images of the semiconductor nanocrystals at varying z-displacements.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: February 3, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Hao Huang, Yu Yao, C. Forbes Dewey, Moungi G. Bawendi
  • Patent number: 8926896
    Abstract: One embodiment includes providing a first layer including a first powder material and a second layer including a second powder material over the first layer, and compacting the first powder material and the second powder material using at least a first magnetic field.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: January 6, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Shekhar G. Wakade, Mark A. Osborne, William L. Miller
  • Publication number: 20140370323
    Abstract: A method for increasing the resolution when forming a three-dimensional article through successive fusion of parts of a powder bed, said method comprising providing a vacuum chamber, providing an electron gun, providing a first powder layer on a work table inside said vacuum chamber, directing an electron beam from said electron gun over said work table causing the powder layer to fuse in selected locations to form a first cross section of said three-dimensional article, providing a second powder layer on said work table, directing the electron beam over said work table causing said second powder layer to fuse in selected locations to form a second cross section of said three-dimensional article, reducing the pressure in the vacuum chamber from a first pressure level to a second pressure level between the providing of said first powder layer and said second powder layer.
    Type: Application
    Filed: December 4, 2012
    Publication date: December 18, 2014
    Applicant: ARCAM AB
    Inventor: Ulf Ackelid
  • Publication number: 20140336680
    Abstract: Compositions and methods for making a three dimensional structure comprising: designing a three-dimensional structure; melting the three-dimensional structure from two or more layers of a metal powder with a high energy electron or laser beam is described herein. The position where the metal is melted into the structure is formed along a layer of metal powder, wherein the location and intensity of the beam that strikes the metal layer is based on the three-dimensional structure and is controlled and directed by a processor. The instant invention comprises a novel dry state sonication step for removing metal powder that is not melted from the three dimensional structure.
    Type: Application
    Filed: July 28, 2014
    Publication date: November 13, 2014
    Inventors: Frank Medina, Lawrence Murr, Ryan Wicker, Sara Gaytan
  • Patent number: 8882934
    Abstract: In solder powder having an average particle size of 5 ?m or less and constituted by a center core and a covering layer covering the center core, wherein the center core consists of an intermetallic compound of silver and tin, or silver and the intermetallic compound of silver and tin, the covering layer consists of tin, and an intermediate layer which consists of an intermetallic compound of copper and tin is interposed between the center core and the covering layer so that at least a part of the center core is covered thereby.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: November 11, 2014
    Assignee: Mitsubishi Materials Corporation
    Inventors: Sho Nakagawa, Hiroki Muraoka, Kanji Kuba, Yousuke Kawamura
  • Publication number: 20140295028
    Abstract: A container (22) includes an oxygen-sensitive beverage, for example a vitamin C-containing beverage. A closure (40) seals the mouth (28) of container (22). The closure includes an oxygen scavenging structure, for example a closure, which comprises a hydrogen generating means and a catalyst for catalysing a reaction between hydrogen and oxygen.
    Type: Application
    Filed: August 21, 2012
    Publication date: October 2, 2014
    Applicant: COLORMATRIX HOLDINGS, INC.
    Inventors: Adrian John Carmichael, Andrew Elkin, Mark Frost, Steven John Moloney, Andrew Stuart Overend, Steven Burgess Tattum
  • Patent number: 8841005
    Abstract: An article includes a working portion including cemented carbide, and a heat sink portion in thermal communication with the working portion. The heat sink portion includes a heat sink material having a thermal conductivity greater than a thermal conductivity of the cemented carbide. Also disclosed are methods of making an article including a working portion comprising cemented carbide, and a heat sink portion in thermal communication with the working portion and including a heat sink material having a thermal conductivity that is greater than a thermal conductivity of the cemented carbide. The heat sink portion conducts heat from the working portion.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: September 23, 2014
    Assignee: Kennametal Inc.
    Inventors: Prakash K. Mirchandani, Alfred J. Mosco, Eric W. Olsen, Steven G. Caldwell
  • Patent number: 8834595
    Abstract: An ultrasonic welding tool fabricated of powder metal material includes a body and a welding tip extending axially from the body to a working end. The powder metal material can be ferrous-based and admixed with additives, such as alumina, carbide, ferro-molybdenum, ferro-nickel, chrome or tribaloy. An exposed surface of the welding tip can comprise Fe3O4 oxides. The tool is compacted to the desired shape and sintered. The body can include a different second material compacted separately from the welding tip and then joined to the tip and sintered.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: September 16, 2014
    Assignee: Federal-Mogul Corporation
    Inventor: Denis Christopherson, Jr.
  • Patent number: 8828555
    Abstract: The present invention is directed to a method for forming a patterned conductive film, which comprises the step of bringing a substrate having a layer made of platinum microcrystal particles formed thereon in a pattern and a complex of an amine compound and an aluminum hydride into contact with each other at a temperature of 50 to 120° C. According to the present invention, there is provided a method for forming a patterned conductive layer, which can ensure electrical bonding with a substrate and also can be suitably applied to various electronic devices, simply without requiring a massive and heavy apparatus.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: September 9, 2014
    Assignees: Japan Science and Technology Agency, JSR Corporation
    Inventors: Tatsuya Shimoda, Yasuo Matsuki, Zhongrong Shen
  • Publication number: 20140234650
    Abstract: According to the invention, there are disclosed a power metallurgy composite cam sheet and a fabrication method thereof. The power metallurgy composite cam sheet is constructed by combining a power metallurgy cam be composited on a surface of a matrix. The fabrication method of the power metallurgy composite cam sheet includes sinter welding, braze welding, argon arc welding, laser welding, hot pressing and other methods. The powder metallurgy composite cam sheet fabricated by the invention has merits of stable size, good impact toughness, good abrasion resistance, low cost and so on, so that it can replace an integral cam sheet that is currently fabricated by forging, drawing, power metallurgy or other process. It is suitable for the case where a hollow camshaft is prepared by mechanical assembly, hydraulic forming, welding or other process, so that the usage requirements of an assembled camshaft can be met.
    Type: Application
    Filed: September 28, 2012
    Publication date: August 21, 2014
    Inventors: Linshan Wang, Limin Wang, Xuebing Liang, Xiaojiang Dong, Lei Wang
  • Patent number: 8808870
    Abstract: In one aspect, composite articles are described comprising multifunctional coatings. A composite article described herein, in some embodiments, comprises a substrate and a coating adhered to the substrate, the coating comprising an inner layer and an outer layer, the inner layer comprising a presintered metal or alloy and the outer layer comprising particles disposed in a metal or alloy matrix.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: August 19, 2014
    Assignee: Kennametal Inc.
    Inventors: Qingjun Zheng, Piyamanee Komolwit, Yixiong Liu, Jim Faust, Jonathan Bitler, Srinivasarao Boddapati
  • Publication number: 20140212681
    Abstract: A joining process and a joined article are disclosed. The joining process includes positioning an article having a base material, and friction welding a pre-sintered preform to the base material. The pre-sintered preform forms a feature on the article. The joined article includes a feature joined to a base material by friction welding of a pre-sintered preform.
    Type: Application
    Filed: January 29, 2013
    Publication date: July 31, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Yan CUI, Srikanth Chandrudu KOTTILINGAM, Brian Lee TOLLISON, Dechao LIN, David Edward SCHICK
  • Patent number: 8790789
    Abstract: Disclosed herein is an erosion and corrosion resistant coating comprising a metallic binder, a plurality of hard particles, and a plurality of sacrificial particles. Also disclosed is a method of improving erosion and corrosion resistance of a metal component comprising disposing on a surface of the metal component the foregoing erosion and corrosion resistant coating comprising, and a metal component comprising a metal component surface and the foregoing erosion and corrosion resistant coating comprising a first surface and a second surface opposite the first surface, wherein the first surface is disposed on the metal component surface.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: July 29, 2014
    Assignee: General Electric Company
    Inventors: Thodla Ramgopal, Krishnamurthy Anand, David Vincent Bucci, Nitin Jayaprakash, Jane Marie Lipkin, Tamara Jean Muth, Surinder Singh Pabla, Vinod Kumar Pareek, Guru Prasad Sundararajan
  • Publication number: 20140205851
    Abstract: An interconnect structure for electrically joining two surfaces includes magnetic attachment structures and an anisotropic conductive adhesive (ACA). Magnetic attachment structures on a first surface are magnetically attracted to magnetic attachment structures on a second surface. Opposing magnetic attachment structures are joined via an ACA, which conducts electricity when compressed, and is electrically insulating when not compressed. The magnetic attraction between opposing magnetic attachment structures generates a sufficient force to maintain compression of the intervening ACA in order to sustain a desired level of electrical conductivity between the first surface and second surface. A method for joining two surfaces using the interconnect structure is disclosed. Additionally, a magnetic anisotropic conductive adhesive having magnetic conductive particles dispersed therein is disclosed.
    Type: Application
    Filed: January 23, 2013
    Publication date: July 24, 2014
    Inventors: Ravindranath V. MAHAJAN, Aleksandar ALEKSOV, Debendra MALLIK, Ian A. YOUNG, Rajasekaran SWAMINATHAN, Sairam AGRAHARAM, John S. GUZEK
  • Patent number: 8785623
    Abstract: The present invention relates to ferromagnetic materials based on nano-sized bacterial cellulose templates. More specifically, the present invention provides an agglomerate free magnetic nanoparticle cellulose material and a method of forming such magnetic nanoparticle cellulose material. Further, the magnetic nonoparticles are physically attached on the cellulose material and evenly distribute.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: July 22, 2014
    Assignee: Cellutech AB
    Inventors: Richard T. Olsson, My Ahmed Said Samir Azizi, Lars Berglund, Ulf W. Gedde
  • Publication number: 20140193656
    Abstract: There are disclosed a method of manufacturing fine metal powder and fine metal powder manufactured by using the same. The method of manufacturing fine metal powder includes forming a pattern having a predetermined size and shape on a base substrate, forming a metal film on the pattern, and separating the metal film from the pattern to obtain individual metal particles having a predetermined size and shape. The fine metal powder manufactured by the method has a uniform shape and a uniform particle size distribution. The fine metal powder is in the form of flakes, having a large ratio of particle diameter to thickness.
    Type: Application
    Filed: April 10, 2013
    Publication date: July 10, 2014
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: SAMSUNG ELECTRO-MECHANICS CO., LTD.
  • Patent number: 8771389
    Abstract: A method of forming one or more TSP compacts is provided. The method includes placing one or more TSP material layers in an enclosure and surrounding each TSP material layer with at least one of a pre-sintered tungsten carbide powder, pre-cemented tungsten carbide powder, tungsten carbide powder, or partially sintered tungsten carbide substrates. The method also includes exposing the enclosure to a high temperature high pressure process wherein the at least one of a pre-sintered tungsten carbide powder, pre-cemented tungsten carbide powder, tungsten carbide powder, or partially sintered tungsten carbide substrates bond to the TSP material layers forming a stack of TSP material layers including the TSP material layers one over the other with tungsten carbide bonded to each of the TSP material layers and encapsulating each of the TSP material layers.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: July 8, 2014
    Assignee: Smith International, Inc.
    Inventors: Madapusi K. Keshavan, Monte Russell
  • Publication number: 20140174605
    Abstract: In solder powder having an average particle size of 5 ?m or less and constituted by a center core and a covering layer covering the center core, wherein the center core consists of an intermetallic compound of silver and tin, or silver and the intermetallic compound of silver and tin, the covering layer consists of tin, and an intermediate layer which consists of an intermetallic compound of copper and tin is interposed between the center core and the covering layer so that at least a part of the center core is covered thereby.
    Type: Application
    Filed: August 22, 2012
    Publication date: June 26, 2014
    Applicant: MITSUBISHI MATERIALS CORPORATION
    Inventors: Sho Nakagawa, Hiroki Muraoka, Kanji Kuba, Yousuke Kawamura
  • Publication number: 20140170433
    Abstract: Methods for providing a near-surface cooling microchannel in a component include forming a near-surface cooling microchannel in a first surface of a pre-sintered preform, disposing the first surface of the pre-sintered preform onto an outer surface of the base article such that an opening of the outer surface of the base article is aligned with the near-surface cooling microchannel in the first surface of the pre-sintered preform, and, heating the pre-sintered preform to bond it to the base article, wherein the opening of the outer surface of the base article remains aligned with the near-surface cooling microchannel in the first surface of the pre-sintered preform.
    Type: Application
    Filed: December 19, 2012
    Publication date: June 19, 2014
    Applicant: General Electric Company
    Inventors: David Edward Schick, Srikanth Chandrudu Kottilingam, Benjamin Paul Lacy, John Wesley Harris, JR.