Composite Powder (e.g., Coated, Etc.) Patents (Class 428/570)
  • Publication number: 20140255716
    Abstract: Multi-metal particles, apparatuses and method of making same are provided. Specifically, the multi-metal particles are of nanometer dimensions and are prepared by spatially arranged electrodes configured to generate and maintain a plasma cloud.
    Type: Application
    Filed: March 8, 2013
    Publication date: September 11, 2014
    Inventors: Donald G. Faulkner, Darren R. Burgess, David John Fennimore
  • Patent number: 8808567
    Abstract: A nanoparticle composition comprises a ferromagnetic or superparamagnetic metal nanoparticle, and a functionalized carbonaceous coating on a surface of the ferromagnetic or superparamagnetic metal nanoparticle. A magnetorheological fluid comprises the nanoparticle composition.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: August 19, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Oleg A. Mazyar, Soma Chakraborty, Terry R. Bussear, Michael H. Johnson
  • Patent number: 8809678
    Abstract: CIGS absorber layers fabricated using coated semiconducting nanoparticles and/or quantum dots are disclosed. Core nanoparticles and/or quantum dots containing one or more elements from group 13 and/or IIIA and/or VIA may be coated with one or more layers containing elements group IB, IIIA or VIA. Using nanoparticles with a defined surface area, a layer thickness could be tuned to give the proper stoichiometric ratio, and/or crystal phase, and/or size, and/or shape. The coated nanoparticles could then be placed in a dispersant for use as an ink, paste, or paint. By appropriate coating of the core nanoparticles, the resulting coated nanoparticles can have the desired elements intermixed within the size scale of the nanoparticle, while the phase can be controlled by tuning the stoichiometry, and the stoichiometry of the coated nanoparticle may be tuned by controlling the thickness of the coating(s).
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: August 19, 2014
    Assignee: aeris CAPITAL Sustainable IP Ltd.
    Inventors: Brian M. Sager, Dong Yu, Matthew R. Robinson
  • Publication number: 20140227548
    Abstract: There are disclosed energetic nanoparticle compositions and materials containing silicon and other energetic elements, and methods of manufacturing the same, including reacting silicon nanoparticles and unsaturated alkene or alkyne to form covalently bonded surface coatings passivated against surface oxidation, for combination with a fuel, explosive or oxidizer.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 14, 2014
    Inventor: James J. Myrick
  • Patent number: 8784702
    Abstract: Copper-containing nanoparticles with excellent oxidation resistance is provided. The present invention relates to a method for manufacturing copper-containing nanoparticles including obtaining copper-containing nanoparticles that contain an organic component by heat treating an organic copper compound at a temperature equal to or higher than a decomposition initiation temperature of the compound and lower than a complete decomposition temperature of the compound in a non-oxidative atmosphere in the presence of an organic material containing a 1,2-alkanediol having 5 or more carbon atoms and/or a derivative thereof.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: July 22, 2014
    Assignees: Osaka Municipal Technical Research Institute, Daiken Chemical Co., Ltd.
    Inventors: Masami Nakamoto, Mari Yamamoto, Yukiyasu Kashiwagi, Yukio Yoshida, Hiroshi Kakiuchi, Shinsuke Matsumura
  • Patent number: 8764876
    Abstract: PCBN material consisting essentially of cubic boron nitride (cBN) grains and binder material, the content of the cBN grains being at least 80 weight percent of the PCBN material; the binder material comprising greater than 50 weight percent Al and a combined content of at least 5 weight percent of an iron group element and a refractory element, the iron group element selected from the group consisting of Co, Fe, Ni and Mn, and the refractory element selected from the group consisting of W, Cr, V, Mo, Ta, Ti, Hf and Zr.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: July 1, 2014
    Assignee: Element Six Limited
    Inventor: Stefan Magnus Olof Persson
  • Patent number: 8758900
    Abstract: The present invention provides nanometer-size spherical particles. Each of the particles is made of at least one selected from the group consisting of a metal, an alloy, and a metal compound. The particles include one or both of a polycrystalline region and a single-crystalline region. The particles have a particle size of less than 1 ?m; and a sphericity of ?10% to +10%.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: June 24, 2014
    Assignee: Napra Co., Ltd.
    Inventors: Shigenobu Sekine, Yurina Sekine
  • Patent number: 8748001
    Abstract: Modified zirconia fine particles which are stable in an acidic region as well as in an alkaline region, and which may be readily adjusted in refractive index in a predetermined range are disclosed. Also disclosed is a substrate with a hard coat film excellent in adhesiveness with the substrate, abrasion resistance, scratch strength, pencil hardness and the like without interference fringes and a coating solution which may form the hard coat film. The substrate with a hard coat film is composed of composite oxide particles formed on at least one surface of the substrate and a matrix component, wherein the composite oxide particles are composite oxide particles having a core-shell structure composed of a core formed from zirconium oxide and a shell formed from antimony pentoxide and/or silica.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: June 10, 2014
    Assignee: JGC Catalysts and Chemicals Ltd.
    Inventors: Ryo Muraguchi, Mitsuaki Kumazawa, Wataru Futagami, Yuji Tawarazako, Masayuki Matsuda, Toshiharu Hirai
  • Publication number: 20140120360
    Abstract: The present invention provides coated fibrous copper microparticles, wherein the coated fibrous copper microparticles are fibrous copper microparticles each at least partially coated with a metal other than copper, and the length and the aspect ratio of the fibrous copper microparticles are 1 ?m or more and 10 or more, respectively.
    Type: Application
    Filed: June 14, 2012
    Publication date: May 1, 2014
    Applicant: UNITIKA LTD.
    Inventors: Munenori Yamada, Akira Shigeta, Masahiro Hosoda, Yoshiaki Echigo
  • Patent number: 8702835
    Abstract: A water-atomized iron-based steel powder is provided which comprises by weight-%: 0.45-1.50 Ni, 0.30-0.55 Mo, less than 0.3 Mn, less than 0.2 Cu, less than 0.1 C, less than 0.25 O, less than 0.5 of unavoidable impurities, and the balance being iron, and where Ni and Mo have been alloyed by a diffusion alloying process.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: April 22, 2014
    Assignee: Hoganas AB (Publ)
    Inventors: Yang Yu, Norimitsu Hirose
  • Patent number: 8685878
    Abstract: A multimetallic nanoscale catalyst having a core portion enveloped by a shell portion and exhibiting high catalytic activity and improved catalytic durability. In various embodiments, the core/shell nanoparticles comprise a gold particle coated with a catalytically active platinum bimetallic material. The shape of the nanoparticles is substantially defined by the particle shape of the core portion. The nanoparticles may be dispersed on a high surface area substrate for use as a catalyst and is characterized by no significant loss in surface area and specific activity following extended potential cycling.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: April 1, 2014
    Assignee: UChicago Argonne, LLC
    Inventors: Vojislav Stamenkovic, Nenad M. Markovic, Chao Wang, Hideo Daimon, Shouheng Sun
  • Publication number: 20140072823
    Abstract: The invention relates to a generative production method for producing a component by selectively melting and/or sintering a powder several times consecutively by introducing an amount of heat by means of beam energy, such that the powder particles melt and/or sinter in layers, wherein the powder particles (1) are made of a first material (2) and the powder particles are surrounded by a second material (3) partially or over the entire surface thereof, wherein the second material has a lower melting point than the first material and/or lowers the melting point of the first material when mixed with the first material. The invention further relates to a corresponding powder and to a prototype produced from said powder.
    Type: Application
    Filed: September 12, 2011
    Publication date: March 13, 2014
    Inventors: Manuel Hertter, Erwin Bayer, Markus Waltemathe, Klaus Broichhausen, Wilhelm Meir, Bertram Kopperger, Josef Waermann, Andreas Jakimov
  • Publication number: 20140037978
    Abstract: Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.
    Type: Application
    Filed: October 17, 2013
    Publication date: February 6, 2014
    Applicant: Babcock & Wilcox Technical Services Y-12, LLC
    Inventors: Roland D. Seals, Paul A. Menchhofer, Jane Y. Howe, Wei Wang
  • Publication number: 20140024533
    Abstract: An MgB2 superconducting wire excellent in critical current density property is supplied by using a crystalline boron powder which is low in costs and easy to obtain. For the wire, a precursor of the MgB2 superconducting wire is used, the precursor having a linear structure including a core region containing a magnesium powder and a boron powder, and a sheath region formed of a metal covering an outer circumferential portion of the core region. The boron powder is crystalline, and has a volume-mean particle size of 2 ?m or less.
    Type: Application
    Filed: January 23, 2013
    Publication date: January 23, 2014
    Applicants: HITACHI, LTD., THE UNIVERSITY OF TOKYO
    Inventors: The University of Tokyo, Hitachi, Ltd.
  • Patent number: 8568898
    Abstract: The present invention is directed to a method of making metal oxide and mixed metal oxide particles. The method includes treating a mixture formed from a metal source, such as metal alkoxide, a surfactant, and a first alcohol in an aqueous media at a very high metal oxide yield. The mixture is reacted using a catalyst to form metal oxide particles having a desired particle size in said mixture. The method is particularly suitable for forming silica particles. The metal oxide particles can then be heat treated to form synthetic fused metal oxides such as, for example, synthetic fused silica.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: October 29, 2013
    Assignee: Momentive Performance Materials Inc.
    Inventor: Antonio L. DeVera
  • Patent number: 8524364
    Abstract: The present invention is directed to a composite particle that is microscopically two-dimensional with a third nanoscopic dimension, and to methods of making same. The particle may include a support and a metal layer. The metal layer may be catalytically active such that the particle is adapted to act as a catalyst.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: September 3, 2013
    Assignee: Southwest Research Institute
    Inventors: James H. Arps, Kent Edward Coulter
  • Publication number: 20130181804
    Abstract: Disclosed is an iron-based soft magnetic powder obtained by preparing an iron-oxide-based soft magnetic powder through water atomization, and thermally reducing the iron-oxide-based soft magnetic powder. The iron-based soft magnetic powder has an average particle size of 100 ?m or more and has an interface density of more than 0 ?m?1 and less than or equal to 2.6×10?2 ?m?1, where the interface density is determined from a cross-sectional area (?m2) and a cross-sectional circumference (?m) of the iron-based soft magnetic powder. The iron-based soft magnetic powder obtained by preparing an iron-oxide-based soft magnetic powder through water atomization and thermally reducing the iron-oxide-based soft magnetic powder, when used for the production of a dust core, can give a dust core having a low coercive force. Also disclosed is a duct core having a low coercive force and exhibiting superior magnetic properties.
    Type: Application
    Filed: December 10, 2012
    Publication date: July 18, 2013
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
  • Publication number: 20130164553
    Abstract: Disclosed herein are copper powder, a copper paste and a method for preparing a copper powder. The copper powder is provided with a cuprous oxide film having a loose structure on a surface of the copper powder, thereby preventing the copper particles from being naturally oxidized, making it possible to being subjected to a low temperature firing process and having improved conductivity.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 27, 2013
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventor: Samsung Electro-Mechanics Co., Ltd.
  • Patent number: 8449987
    Abstract: Provided is a rolled copper or copper alloy foil having a roughened surface formed of fine copper particles, obtained by subjecting a rolled copper or copper alloy foil to roughening plating with a plating bath containing copper sulfate (Cu equivalent of 1 to 50 g/L), 1 to 150 g/L of sulfuric acid, and one or more additives selected among sodium octyl sulfate, sodium decyl sulfate, and sodium dodecyl sulfate under the conditions of a temperature of 20 to 50° C. and a current density of 10 to 100 A/dm2. The provided rolled copper or copper alloy foil subject to roughening is reduced in craters which are obvious defects unique to rolled copper or copper alloy foils having a roughened surface, has high strength, adhesive strength with the resin layer, acid resistance and anti-tin plating solution properties, high peel strength, favorable etching properties and gloss level, and also suits for use in producing a flexible printed wiring board capable of bearing a fine wiring pattern.
    Type: Grant
    Filed: June 11, 2007
    Date of Patent: May 28, 2013
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yousuke Kobayashi, Atsushi Miki, Keisuke Yamanishi
  • Patent number: 8409707
    Abstract: The invention relates to an iron-based soft magnetic powder for a dust core, wherein a film comprising Fe and Co, a phosphoric acid-based chemical conversion film and a silicone resin film are formed in this order on the surface of an iron-based soft magnetic powder, and to a dust core obtained by molding the iron-based soft magnetic powder for a dust core. The invention also relates to an iron-based soft magnetic powder for a dust core formed by coating the surface of an iron-based soft magnetic powder with an insulating film, wherein the powder has a particle diameter of from 45 ?m to 180 ?m, the insulating film is composed of two layers in which a lower layer composed of a phosphoric acid-based chemical conversion film and an upper layer composed of a silicone resin film, and each of the films has a thickness of from 100 nm to 280 nm, and to a dust core obtained by molding the iron-based soft magnetic powder for a dust core.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: April 2, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroyuki Mitani, Nobuaki Akagi, Hirofumi Houjou
  • Patent number: 8404017
    Abstract: Hot briquette iron includes a plurality of reduced iron particles which are bonded to each other by hot forming, wherein the reduced iron particles each have a surface region having an average carbon content of 0.1 to 2.5% by mass and a central region positioned inside the surface region and having an average carbon content higher than that of the surface region.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: March 26, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Hidetoshi Tanaka, Takeshi Sugiyama
  • Patent number: 8388724
    Abstract: High-temperature solders having a higher melting point than solder alloys used for soldering of printed circuit boards are used for internal bonding of electronic parts, but high-temperature solders which are free from Pb have not been developed. There exist high-temperature solders which comprises Sn balls and Cu balls and which perform bonding through the formation of an intermetallic compound without melting to form a single-phase structure, but they have poor wettability to the lands of a printed circuit board or electrodes of electronic parts and have not been used. A solder paste according to the present invention is provided by mixing flux with a powder mixture of Sn powder or an Sn based lead-free solder powder with Cu or Ag powder which has Ni plating formed on its surface.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: March 5, 2013
    Assignee: Senju Metal Industry Co., Ltd.
    Inventors: Rikiya Kato, Sakie Yamagata
  • Publication number: 20130020377
    Abstract: In a Ni-based, Co-based, or Ni—Co-based braze alloy (1) for high-temperature brazing of components (7) of modular structure and for repairing damaged components (7) which are formed of single crystal or directionally solidified superalloys using said braze alloy (1), the braze alloy has a first metallic powder component (2) having particle sizes in the nanometer range and a second metallic powder component (3) having particle sizes in the micrometer range. The surface of the particles of the second powder component (3) is thinly coated with particles of the first powder component (2). The braze alloy (1) additionally includes grain boundary stabilizing elements as alloying elements. In addition, melting point depressants can be present in the braze alloy (1) in a commercially common quantity or with a considerably increased proportion. Both the melting temperature of the braze alloy (1) and the probability of recrystallization are advantageously reduced.
    Type: Application
    Filed: September 14, 2011
    Publication date: January 24, 2013
    Inventors: Alexander Stankowski, Daniel Beckel
  • Patent number: 8197729
    Abstract: A granulator, having a granulation unit having a bottom floor with a perforated plate as its bottom part; an upper air-supplying pipe for supplying a fluidizing air to the bottom floor of the granulation unit; a lower air-supplying pipe; air-spouting pipes, each of which is branched from the lower air-supplying pipe, and has an opening in the bottom floor of the perforated plate, for jetting the air into the granulation unit; and spray nozzles for spraying a granulation raw material liquid, which each are provided in the center of an air outlet of the air-spouting pipe, or a granulator, having: the bottom floor; the air-supplying pipe; and spray nozzles for spraying a granulation raw material liquid each of which are provided in an opening in the bottom floor of the perforated plate, and use a high-pressure atomizing air as an auxiliary gas, wherein, in each granulator, the spray nozzles are provided in a triangular arrangement.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: June 12, 2012
    Assignee: Toyo Engineering Corporation
    Inventors: Yasuhiko Kojima, Takahiro Yanagawa
  • Patent number: 8193442
    Abstract: CIGS absorber layers fabricated using coated semiconducting nanoparticles and/or quantum dots are disclosed. Core nanoparticles and/or quantum dots containing one or more elements from group IB and/or IIIA and/or VIA may be coated with one or more layers containing elements group IB, IIIA or VIA. Using nanoparticles with a defined surface area, a layer thickness could be tuned to give the proper stoichiometric ratio, and/or crystal phase, and/or size, and/or shape. The coated nanoparticles could then be placed in a dispersant for use as an ink, paste, or paint. By appropriate coating of the core nanoparticles, the resulting coated nanoparticles can have the desired elements intermixed within the size scale of the nanoparticle, while the phase can be controlled by tuning the stochiometry, and the stoichiometry of the coated nanoparticle may be tuned by controlling the thickness of the coating(s).
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: June 5, 2012
    Assignee: Nanosolar, Inc.
    Inventors: Brian M. Sager, Dong Yu, Matthew R. Robinson
  • Publication number: 20120135262
    Abstract: There are disclosed a method of manufacturing fine metal powder and fine metal powder manufactured by using the same. The method of manufacturing fine metal powder includes forming a pattern having a predetermined size and shape on a base substrate, forming a metal film on the pattern, and separating the metal film from the pattern to obtain individual metal particles having a predetermined size and shape. The fine metal powder manufactured by the method has a uniform shape and a uniform particle size distribution. The fine metal powder is in the form of flakes, having a large ratio of particle diameter to thickness.
    Type: Application
    Filed: May 20, 2011
    Publication date: May 31, 2012
    Inventors: Sung Kwon WI, Ji Hwan Shin, Jeong Min Cho, Young Woo Lee
  • Patent number: 8178463
    Abstract: A multimetallic nanoscale catalyst having a sore portion enveloped by a shell portion and exhibiting high catalytic activity and improved catalytic durability. In various embodiments, the core/shell nanoparticles comprise a gold particle coated with a catalytically active platinum bimetallic material. The shape of the nanoparticles is substantially defined by the particle shape of the core portion. The nanoparticles may be dispersed on a high surface area substrate for use as a catalyst and is characterized by no significant loss in surface area and specific activity following extended potential cycling.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 15, 2012
    Assignee: UChicago Argonne, LLC
    Inventors: Vojislav Stamenkovic, Nenad M. Markovic, Chao Wang, Hideo Daimon, Shouheng Sun
  • Patent number: 8178212
    Abstract: Method for chemical bonding of fiberglass fibers to steel surfaces to prepare the steel for bonding with carbon composite material. This fiber-bonding step greatly increases the strength of the subsequent metal-composite bond. The fiberglass fibers which are chemically bonded to the steel provide a high surface area interface to entangle with carbon fibers in the composite component, and thereby inhibit crack formation on the boundary surface between the steel and composite components when they are bonded together.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: May 15, 2012
    Assignees: Honeywell International Inc., The University of Notre Dame du Lac
    Inventors: Allen H. Simpson, Mark L. La Forest, Alexander Mukasyan
  • Publication number: 20120114961
    Abstract: A bulk nanocomposite thermoelectric material including: a plurality of grains of a thermoelectric material; and a metal nanolayer on a boundary of the plurality of grains, wherein the metal nanolayer is crystalline, and a glass transition temperature and a crystallization temperature of the nanometal are lower than a melting point of the thermoelectric material.
    Type: Application
    Filed: September 23, 2011
    Publication date: May 10, 2012
    Applicants: Chungju National University Industry-Academic Cooperation Foundation, SAMSUNG ELECTRONICS CO., LTD.,
    Inventors: Kyu-hyoung LEE, Hyun-sik KIM, Sang-mock LEE, Eun-sung LEE, Sang-soo JEE, Il-ho KIM
  • Publication number: 20120114962
    Abstract: A system and method to tailor the optical properties of nanomaterials using a core-alloy-shell nano-ultrastructure. Atomic diffusion is used at the nanoscale in order to process as-synthesized nanomaterials into core-alloy-shell architectures. The alloy formation is controlled by the deposition of the alloy solute atoms, and then by alloy interdiffusion of the solute into the core nanoparticle. By controlling temperature, it is possible to control how far the solute diffuses into the core, which in turn allows the tailoring of the optical response of the particle itself. The alloy formation and subsequent interdiffusion allows tailoring of the nanoparticle composition and ultrastructure, resulting in a dramatic tunability of the metal nanostructures surface plasmon response.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 10, 2012
    Applicant: SYRACUSE UNIVERSITY
    Inventors: Mathew Maye, Peter Njoki, Wenjie Wu, Hyunjoo Han
  • Publication number: 20120090882
    Abstract: To provide a conductive particle, containing: a core particle; and a conductive layer formed on a surface of the core particle, wherein the core particle is a nickel particle, and wherein the conductive layer is a nickel plating layer a surface of which has a phosphorous concentration of 10% by mass or lower, and the conductive layer has an average thickness of 1 nm to 10 nm.
    Type: Application
    Filed: December 21, 2011
    Publication date: April 19, 2012
    Applicant: SONY CHEMICAL & INFORMATION DEVICE CORPORATION
    Inventors: Tomoyuki ISHIMATSU, Yuta Araki
  • Publication number: 20120040202
    Abstract: The invention relates to the field of materials science and material physics and relates to a coated magnetic alloy material, which can be used, for example, as a magnetic cooling material for cooling purposes. The object of the present invention is to disclose a coated magnetic alloy material, which has improved mechanical and/or chemical properties. The object is attained with a magnetic alloy material with a NaZn13 type crystal structure and a composition according to the formula RaFe100-a-x-y-zTxMyLz and the surface of which is coated with a material composed of at least one element from the group Al, Si, C, Sn, Ti, V, Cd, Cr, Mn, W, Co, Ni, Cu, Zn, Pd, Ag, Pt, Au or combinations thereof The object is furthermore attained by a method in which the magnetic alloy material is coated by means of a method from the liquid phase.
    Type: Application
    Filed: December 10, 2009
    Publication date: February 16, 2012
    Inventors: Julia Lyubina, Mihaela Buschbeck, Oliver Gutfleisch
  • Publication number: 20120024845
    Abstract: The present invention relates to a heating vessel used in a microwave oven for cooking a food using a magnetron. In the heating vessel that is heated by absorbing some of a high frequency generated from the magnetron so that a food in the cooking room of the microwave oven can be cooked by a high frequency, the heating enamel glaze is fabricated, the fabricated heating enamel glaze is coated on the vessel made of metal material for enamel (a steel plate, aluminum, or stainless for low carbon enamel), dried, and then subjected to glassification plasticity and cooled, thus producing the heating enamel vessel for a microwave oven. Accordingly, the heating enamel vessel can withstand temperature higher than the existing heating vessel product (silicon rubber+ferrite) and can have high heating performance.
    Type: Application
    Filed: March 10, 2010
    Publication date: February 2, 2012
    Applicant: YOU&I TECH CO., LTD.
    Inventors: Young-Goo Lee, Suk-Shun Yoon, Weon-Hyeon Park, Hyun-Kyu Shin, Young-Min Son
  • Patent number: 8105414
    Abstract: A composition may have metal nanoparticles having a diameter of 20 nanometers or less and have a fusion temperature of less than about 220° C. A method of fabricating the metal nanoparticles may include preparing a solvent, adding a precursor with a metal to the solvent, adding a first surfactant, mixing in a reducing agent, and adding in a second surfactant to stop nanoparticle formation. Copper and/or aluminum nanoparticle compositions formed may be used for lead-free soldering of electronic components to circuit boards. A composition may include nanoparticles, which may have a copper nanocore, an amorphous aluminum shell and an organic surfactant coating. A composition may have copper or aluminum nanoparticles. About 30-50% of the copper or aluminum nanoparticles may have a diameter of 20 nanometers or less, and the remaining 70-50% of the copper or aluminum nanoparticles may have a diameter greater than 20 nanometers.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: January 31, 2012
    Assignee: Lockheed Martin Corporation
    Inventor: Alfred A. Zinn
  • Patent number: 8097559
    Abstract: The present invention provides a supported reactant for in situ remediation of soil and/or groundwater contaminated with a halogenated hydrocarbon consisting essentially of an adsorbent impregnated with zero valent iron, wherein the adsorbent is capable of adsorbing the halogenated hydrocarbon. In one embodiment, the adsorbent is activated carbon.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: January 17, 2012
    Assignee: Remediation Products, Inc.
    Inventors: Scott Noland, Bob Elliott
  • Patent number: 8063265
    Abstract: A hydrogel having a floatability where from 40% to 90% of a solution and/or suspension to be thickened are thickened starting from the surface of the liquid and the rest of the solution and/or suspension to be thickened is thickened starting from the bottom of the container, a process for preparing the hydrogel and also its use for absorbing blood and/or body fluids, especially in hygiene articles, or for thickening aqueous solutions and/or suspensions, especially for thickening medical wastes.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: November 22, 2011
    Assignee: BASF Aktiengesellschaft
    Inventors: Martin Beck, Volker Frenz, Anna Kowalski, Elisabeth Selzer, Ernst Jürgen Bauer, Harald Keller, Bernhard Steinmetz
  • Publication number: 20110252922
    Abstract: A method is provided for producing a diffusion alloyed powder consisting of an iron or iron-based core powder having particles of an alloying powder containing Cu and Ni bonded to the surface of the core particles, comprising providing a unitary alloying powder capable of forming particles of a Cu and Ni containing alloy, mixing the unitary alloying powder with the core powder, and heating the mixed powders in a non-oxidizing or reducing atmosphere to a temperature of 500-1000° C. during a period of 10-120 minutes to convert the alloying powder into a Cu and Ni containing alloy, so as to diffusion bond particles of the Cu and Ni alloy to the surface of the iron or iron-based core powder. The alloying powder may be a Cu and Ni alloy, oxide, carbonate or other suitable compound that on heating will form a Cu and Ni alloy.
    Type: Application
    Filed: December 16, 2009
    Publication date: October 20, 2011
    Inventor: Mats Larsson
  • Patent number: 8038760
    Abstract: A method for producing a metal article according to one embodiment may involve the steps of: Providing a composite metal powder including a substantially homogeneous dispersion of molybdenum and molybdenum disulfide sub-particles that are fused together to form individual particles of the composite metal powder; and compressing the molybdenum/molybdenum disulfide composite metal powder under sufficient pressure to cause the mixture to behave as a nearly solid mass.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: October 18, 2011
    Assignee: Climax Engineered Materials, LLC
    Inventors: Matthew C. Shaw, Carl V. Cox, Yakov Epshteyn
  • Patent number: 8039107
    Abstract: A silver-coated ball 10 according to the present invention includes: a spherical core 1; and a coating layer 2 including silver superfine particles, which is arranged so as to surround the core 1. The silver superfine particles included in the coating layer 2 have a mean particle size of 1 nm to 50 nm.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: October 18, 2011
    Assignee: Neomax Materials Co., Ltd.
    Inventors: Ken Asada, Fumiaki Kikui
  • Publication number: 20110250464
    Abstract: A Raman-active nanoparticle is provided that includes a dish-shape plasmonically active metal base, and a plasmonically active metal pillar disposed on the plasmonically active metal base, where the plasmonically active metal pillar is disposed within the dish-shape plasmonically active metal base and normal to a bottom of the dish-shape plasmonically active metal base, where a circular gap is disposed between the dish-shape plasmonically active metal pillar and inner walls of the dish-shape plasmonically active metal base. In one embodiment a Raman-active nanoparticle is provided that includes a dish-shape base having a dielectric material, an electrically conductive layer disposed on the inner surface of the dish-shape base, and an electrically conductive pillar disposed on the conductive layer, and within the dish-shape and perpendicular to a bottom of the dish-shape base, where a circular gap is disposed between the conductive pillar and inner walls of the dish-shape base.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 13, 2011
    Inventors: Robert J. Wilson, Jung-Sub Wi, Shan X. Wang, Edward S. Barnard, Mark L. Brongersma, Mary Tang
  • Patent number: 8034152
    Abstract: A novel solution route has been developed that after heat-treatment to 500-600° C. under inert atmosphere, yields highly porous composites of nano-sized metal (Ni) particle inclusions in ceramics (Al2O3). Metal loadings could be made from <1% to >95% Ni. The metal inclusion sizes in the Ni—Al2O3 system with the 10 atom % Ni sample were 4-7 nm, while for the 75 atom % Ni sample they were 5-8 nm. It was shown that the 10 atom % Ni sample could be used as a catalyst for the conversion of CO2 and CH4 in the temperature range 550-700° C., while higher temperatures led to growth of the Ni particles and carbon poisoning over time. The solution routes could also be deposited as thin dense films containing <10 nm Ni particles. Such films with high Ni-particle loadings deposited on aluminium substrates have shown very good solar heat absorber proficiency and provide good substrates for carbon tube growth.
    Type: Grant
    Filed: May 21, 2010
    Date of Patent: October 11, 2011
    Inventors: Gunnar Westin, Annika Pohl, Asa Ekstrand
  • Patent number: 8034195
    Abstract: A solder composition for forming a solder joint. The composition includes a powder material including a solid metal matrix material and a filler material. The solid metal matrix material includes one or more of tin-silver-copper (Sn—Ag—Cu), tin-copper (Sn—Cu), tin-copper-nickel (Sn—Cu—Ni), tin-silver (Sn—Ag), tin-silver-bismuth (Sn—Ag—Bi), tin-bismuth-indium (Sn—Bi—In), tin-gold (Au—Sn), tin-zinc (Sn—Zn), tin-zinc-bismuth (Sn—Zn—Bi), tin-bismuth-silver (Sn—Bi—Ag), tin (Sn), tin-indium (Sn—In), indium (In), indium-silver (In—Ag), and tin-lead (Sn—Pb). The filler material includes one or more of copper (Cu), gold (Au), nickel (Ni), nickel-gold (Ni—Au), carbon, silver (Ag), aluminum (Al), molybdenum (Mo), nickel (Ni) or nickel-gold (Ni—Au) coated carbon, the platinum group metals (PGM's), and their alloys.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: October 11, 2011
    Assignee: Sulzer Metco (US), Inc.
    Inventors: Richard K. Schmid, Jacobus C. Doesburg
  • Publication number: 20110243785
    Abstract: A precursor for the production of a sintered metallic component includes a core comprising one particle of a first metallic powder having a particle size d90 of at least 50 ?m. A shell layer is disposed on the core. The shell layer comprises a binder and a second powder having a particle size d90 of less than 25 ?m. The precursor is powdered.
    Type: Application
    Filed: November 13, 2009
    Publication date: October 6, 2011
    Applicant: H.C STARCK GMBH
    Inventors: Ulf Waag, Peter Leute
  • Patent number: 7998238
    Abstract: A sintered sliding member comprises a back metal (21a) and a ferrous sintered sliding body (20) which is sintering-bonded to the back metal (21a). The ferrous sintered sliding body (20) has martensite phase having a solid soluble carbon concentration of 0.15 to 0.5 wt % and contains carbide in a content of 5 to 50% by volume. The sintered sliding member is excellent in abrasion resistance, seizing resistance and heat crack resistance.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: August 16, 2011
    Assignee: Komatsu Ltd.
    Inventors: Takemori Takayama, Tetsuo Ohnishi, Kazuo Okamura
  • Patent number: 7998581
    Abstract: A solid particle erosion resistant surface treated coating has a solid particle erosion resistance that is largely enhanced and a rotating member having the coating gains oxidation resistance without deteriorating a fatigue strength. Also, a rotating machine can have this coating applied thereto. The solid particle erosion resistant surface treated coating has a nitrided hard layer formed on a surface of a base material and a PVD (physical vapor deposition) hard layer of at least one layer formed on the nitrided hard layer by a PVD method. Deformation of the base material by collisions by solid particles is prevented and cracking of the coating is prevented. Thereby, the solid particle erosion resistance is secured, life of the solid particle erosion resistant surface treated coating can be increased and oxidation resistance and fatigue strength are enhanced.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: August 16, 2011
    Assignee: Mitsubishi Heavy Industires, Ltd.
    Inventors: Toyoaki Yasui, Yoshikazu Yamada, Shugo Iwasaki, Katsuyasu Hananaka, Kyoichi Ikeno
  • Patent number: 7972540
    Abstract: A process to fabricate an electronic device comprising: (a) liquid depositing a composition comprising a liquid, silver-containing nanoparticles, a replacement stabilizer comprising a carboxylic acid on the surface of the silver-containing nanoparticles, and a residual amount of an initial stabilizer on the surface of the silver-containing nanoparticles, resulting in a deposited composition; and (b) heating the deposited composition to form an electrically conductive layer comprising silver.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: July 5, 2011
    Assignee: Xerox Corporation
    Inventors: Yuning Li, Beng S Ong
  • Patent number: 7968207
    Abstract: The invention relates to a method of producing and joining superalloy balls by means of brazing and to objects produced with such joints. According to one aspect of the invention, an alloy powder covered with a brazing solder is bonded to a spherical core and subsequently transformed into a continuous alloy layer by means of brazing.
    Type: Grant
    Filed: July 7, 2006
    Date of Patent: June 28, 2011
    Assignee: ONERA (Office National d'Etudes et de Recherches Aerospatiales)
    Inventors: Myriam Douin, Marie-Pierre Bacos, Alexandra Boyer, Aurélie Gregoire, Pierre Josso, Sébastien Mercier, Ariel Moriel, Jason Nadler, Serge Naveos, Catherine Rio
  • Patent number: 7968488
    Abstract: The present invention is directed to a composite particle that is microscopically two-dimensional with a third nanoscopic dimension, and to methods of making same. The particle may include a support and a metal layer. The metal layer may be catalytically active such that the particle is adapted to act as a catalyst.
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: June 28, 2011
    Assignee: Southwest Research Institute
    Inventors: James H. Arps, Kent Edward Coulter
  • Patent number: 7964013
    Abstract: Disclosed herein are methods and processes for making FeRh/FePt nanostructures and the use of these FeRh—FePt nanostructures as a magnetic recording media.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: June 21, 2011
    Assignee: University of Louisiana at Lafayette
    Inventor: Devesh Kumar Misra
  • Patent number: 7955411
    Abstract: A bonding material comprising metal particles coated with an organic substance having carbon atoms of 2 to 8, wherein the metal particles comprises first portion of 100 nm or less, and a second portion larger than 100 nm but not larger than 100 ?m, each of the portions having at least peak of a particle distribution, based on a volumetric base. The disclosure is further concerned with a bonding method using the bonding material.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: June 7, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Yusuke Yasuda, Toshiaki Morita, Eiichi Ide, Hiroshi Hozoji, Toshiaki Ishii