Composite Powder (e.g., Coated, Etc.) Patents (Class 428/570)
  • Patent number: 7951463
    Abstract: In an Al composite material collapsible in the presence of moisture, the external surface of small pieces or powder constructed from a single or a plurality of crystalline grains of Al or an Al alloy is covered with a film of a low melting point metal or alloy selected from the group consisting of In, Sn, combinations of In and Sn, and alloys thereof. The content of the foregoing low melting point metal or alloy ranges from 0.1 to 20% by mass on the basis of the total mass of the composite material. A component member for a film-forming chamber is also provided, which is provided with a water-collapsible Al film on the surface thereof. Film-forming operations are continued over a long period of time using the component member for a film-forming chamber provided with the water-collapsible Al film and then film-forming materials can be recovered from the component member on which the film-forming materials are deposited in a substantial thickness.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: May 31, 2011
    Assignee: Ulvac, Inc.
    Inventors: Akisuke Hirata, Shinji Isoda, Yutaka Kadowaki, Katsuhiko Mushiake
  • Patent number: 7946467
    Abstract: A braze material and processes for making and using the material, such as for use in the manufacturing, coating, repair, and build-up of superalloy components. The braze material is composed of particles with melt-modifying constituents that are limited to the surfaces of the particles, yet are capable of sufficiently promoting the heating of the particles by conventional means and microwave radiation to achieve at least partial melting of the particles. The melt-modifying constituents are in the form of particulates embedded in the outer surface region of each particle. The particulates are formed of melting point depressant(s) and/or microwave coupling enhancer(s), are much smaller than the particle in which they are embedded.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: May 24, 2011
    Assignee: General Electric Company
    Inventor: Laurent Cretegny
  • Patent number: 7935419
    Abstract: Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: May 3, 2011
    Assignee: Los Alamos National Security, LLC
    Inventors: Jennifer A. Hollingsworth, Yongfen Chen, Victor I. Klimov, Han Htoon, Javier Vela
  • Publication number: 20110091389
    Abstract: Techniques are generally described for particles with a surface including an adhesion material. The adhesion material may be selectively activated in response to radiation. The particles may be distributed proximate to a target through a fluid system. Radiation may be emitted toward the target causing the adhesion material to activate. The activated adhesive material on the surface of the particles may adhere to the target providing a fiducial mark or reference point. The fiducial mark may be visible through a medical imaging technique. In some examples, the particles may be nanoparticles. In some examples, the radiation may be infrared radiation.
    Type: Application
    Filed: October 16, 2009
    Publication date: April 21, 2011
    Inventor: EZEKIEL KRUGLICK
  • Patent number: 7918915
    Abstract: The present invention relates to a wear resistant iron-based powder, suitable for the production of pressed and sintered components, comprising 10-20% by weight of Cr, 0.5-5% by weight of Mo and 1-2% by weight of C. The powder is characterised in that it includes pre-alloyed water atomized iron-based powder particles and chromium carbide particles diffusion bonded onto said pre-alloyed powder particles. The invention also relates to a method of producing this powder.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: April 5, 2011
    Assignee: Höganäs AB
    Inventors: Ola Bergman, Paul Nurthen
  • Publication number: 20110031001
    Abstract: A composite metal fine particle material is provided, in which spherical silver nanoparticles synthesized from a silver compound, a solvent, a reducing agent, and a dispersant, and conductive fillers compose of non-spherical metal fine particles, are mixed. For example, the conductive fillers composed of the non-spherical metal fine particles are formed into slender columnar shapes, plate shapes, or ellipsoidal shapes.
    Type: Application
    Filed: February 8, 2010
    Publication date: February 10, 2011
    Applicant: HITACHI CABLE LTD.
    Inventors: Dai ISHIKAWA, Tomiya ABE, Masanobu ITO
  • Publication number: 20110020663
    Abstract: The disclosure relates to metal reduction processes, which comprise adding a mixture comprising at least one metal-containing material, at least one reducing agent, and at least one additive into a reactor, heating the reactor to a selected reduction temperature, moving the mixture through the reactor while stirring the mixture, allowing a reduction period to occur, and obtaining a resulting composition comprising at least one zero-valent metal and a residue. The disclosure also relates to metallurgical processes comprising the metal reduction process, and products made by the metal reduction process. The disclosure further relates to metal reduction apparatuses, as well as metal reduction systems and metallurgical systems comprising the metal reduction apparatuses.
    Type: Application
    Filed: June 28, 2010
    Publication date: January 27, 2011
    Inventor: Bairong LI
  • Publication number: 20100304173
    Abstract: A nanoprism having a prismatic silver shell formed about a gold core and a process of forming the same are disclosed. The process includes irradiating a mixture of gold and silver nanoparticles with a narrow band of wavelengths capable of exciting the surface plasmon resonance of the gold.
    Type: Application
    Filed: July 28, 2008
    Publication date: December 2, 2010
    Applicant: NORTHWESTERN UNIVERSITY
    Inventors: Chad A. Mirkin, Can Xue, Jill E. Millstone
  • Publication number: 20100266861
    Abstract: A method for producing a powder for a magnetic core, in which an alkoxide film formation step and a silicone resin film formation step are carried out to form an insulation film composed of an alkoxide film and a silicone resin film on the surface of a pure iron powder, wherein the alkoxide film formation step comprises immersing a pure iron powder in an alkoxide-containing solution which is prepared by mixing a Si alkoxide having at least one organic group having a polar group comprising at least one of N, P, S and O atoms and an Al alkoxide with a dehydrated organic solvent, and drying to remove the dehydrated organic solvent, thereby forming an alkoxide film comprising an Al—Si—O type composite oxide on the surface of the pure iron powder; and the silicone resin film formation step comprises immersing the pure iron powder having the alkoxide film formed thereon in a silicone resin-containing solution which is prepared by mixing a silicone resin with an organic solvent, and drying to remove the organic solv
    Type: Application
    Filed: October 30, 2008
    Publication date: October 21, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shin Tajima, Masaaki Tani, Daisuke Okamoto, Eisuke Hoshina, Hidefumi Kishimoto, Daisuke Ichigozaki
  • Patent number: 7811355
    Abstract: The present invention relates to niobium powder for a capacitor, comprising a niobium layer and a mixed layer of silicon nitride and niobium, the mixed layer being present in the vicinity of the powder particle surface; granulated niobium powder thereof; a niobium sintered body using the niobium powder and the granulated powder; and a capacitor using the sintered body as one electrode. The niobium powder for a capacitor of the present invention enables to produce a niobium capacitor having a high capacitance, a low leakage current, a low ESR and good tan ? characteristics and being excellent particularly in the properties of the breakdown voltage and soldering heat resistance.
    Type: Grant
    Filed: November 9, 2004
    Date of Patent: October 12, 2010
    Assignee: Showa Denko K.K.
    Inventors: Kazuhiro Omori, Hitoshi Amita
  • Publication number: 20100255332
    Abstract: Flowability-improving particles are adhered to surfaces of iron powder through a binder to provide an iron-based powder for powder metallurgy which has excellent flowability and which is capable of uniformly filling a thin-walled cavity and compaction with high performance of ejection force.
    Type: Application
    Filed: December 13, 2007
    Publication date: October 7, 2010
    Applicant: JFE Steel Corporation
    Inventors: Tomoshige Ono, Shigeru Unami, Takashi Kawano, Yukiko Ozaki
  • Publication number: 20100247944
    Abstract: The invention relates to a metal matrix material made of a hydrogen-permeable metal 1 and a chemically stable metal 2 that is also hydrogen permeable, said matrix material having a structure comprised of a plurality of centers made of the metal 2 surrounded by the metal 1. The invention further relates to a method for the production of said matrix material, having the following steps: a. optionally pretreating the metal 1 and/or 2 b. coating metal 1 with a metal 2 to form a composite metal powder c. pressing the composite metal powder into the metal matrix material according to the invention in the form of a pressed body d. optionally deforming the pressed body thus obtained to form a molded body. The metal matrix material has a greater mechanical stability as compared to a conventionally coated metal film by virtue of a more homogeneous stress distribution during the change in volume of the metal phases as a result of hydrogen absorption and thermal expansion.
    Type: Application
    Filed: September 9, 2008
    Publication date: September 30, 2010
    Applicant: BAYER TECHNOLOGY SERVICES GMBH
    Inventors: Leslaw Mleczko, Juergen Kintrup, Ralph Weber, Andre Dammann, Rafael Warsitz, Aurel Wolf
  • Publication number: 20100248297
    Abstract: Particles and manufacturing methods thereof are provided. The manufacturing method of the particle includes providing a precursor solution containing a precursor dissolved in a solution, and irradiating the precursor solution with a high energy and high flux radiation beam to convert the precursor to nano-particles. Particles with desired dispersion, shape, and size are manufactured without adding a stabilizer or surfactant to the precursor solution.
    Type: Application
    Filed: August 22, 2009
    Publication date: September 30, 2010
    Inventors: Yeu-Kuang Hwu, Chang-Hai Wang, Chi-Jen Liu, Cheng-Liang Wang, Chi-Hsiung Chen, Chung-Shi Yang, Hong-Ming Lin, Jung-Ho Je, Giorgio Margartondo
  • Publication number: 20100243579
    Abstract: This invention describes a process for producing a nanoscale zero-valent metal, including reduction of a metal ion solution with a dithionite compound, wherein the reduction is carried out under alkaline conditions under substantially an inert atmosphere. A nanoscale zero-valent metal obtainable by this process, and having a new crystalline form, is also described. The nanoscale zero-valent metal produced by the process of the invention is preferably iron, and is advantageously used for the remediation of contaminated water.
    Type: Application
    Filed: February 26, 2010
    Publication date: September 30, 2010
    Applicant: CRC for Waste Management and Pollution Control Limited
    Inventors: Andrew FEITZ, Jing GUAN, David WAITE
  • Publication number: 20100239879
    Abstract: Since a surface of an iron powder is covered with an oxide film composed of a Si-based oxide in which the ratio of Si to Fe satisfies Si/Fe?0.8 on an atomic number basis, an iron powder for dust cores is provided which can be formed into a dust core having a high resistivity and hence having a low iron loss without degrading the mechanical strength.
    Type: Application
    Filed: December 11, 2008
    Publication date: September 23, 2010
    Applicants: JFE STEEL CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takashi Kawano, Noriko Makiishi, Tatsuhiko Hiratani, Naomichi Nakamura, Yusuke Oishi, Eisuke Hoshina, Toshiya Yamaguchi, Daisuke Okamoto, Takeshi Hattori
  • Publication number: 20100233011
    Abstract: There are provided are a method wherein a surface treating agent, which is essential for making copper particles antioxidative and dispersing the copper particles in the prior art, is hardly used but copper particles, which cause little electromigration and are small in the price rate of material itself, are used to form a low-resistance copper wiring pattern while the generation of cracks therein is restrained; and a copper oxide particle dispersed slurry used therein. The method is a method for forming a copper wiring pattern including the step of using a dispersion slurry wherein copper based particles having a copper oxide surface are dispersed to form any pattern over a substrate, and the step of reducing the copper oxide surface of the copper based particles in the pattern with atomic form hydrogen to return the oxide to copper, and sintering particles of the copper metal generated by the reduction and bonding the particles to each other.
    Type: Application
    Filed: October 20, 2008
    Publication date: September 16, 2010
    Inventors: Hideo Nakako, Kazunori Yamamoto, Youichi Machii, Yasushi Kumashiro, Shunya Yokozawa, Yoshinori Ejiri, Katsuyuki Masuda
  • Publication number: 20100233014
    Abstract: A powder metallurgical combination is provided comprising an iron-based powder A comprising core particles of iron to which core particles nickel is diffusion alloyed and wherein said nickel diffusion alloyed to said core particles comprises 4-7% (preferably 4.5-6%) by weight of said iron-based powder A, and a powder B substantially consisting of particles of pure iron. Further a method is provided for preparing a powder metallurgical combination.
    Type: Application
    Filed: July 10, 2008
    Publication date: September 16, 2010
    Applicant: HOGANAS AB (PUBL)
    Inventor: Mats Larsson
  • Publication number: 20100227189
    Abstract: A method of synthesizing ligand-capped metal nanoparticles is disclosed and described. A method of synthesizing ligand-capped metal nanoparticles can comprise reacting a metal salt with 9-borabicyclo [3.3.1] nonane as a reducing agent in the presence of a capping ligand to form the ligand-capped metal nanoparticles. The method can be a single step approach which also significantly broadens choices for capping agents which can be readily incorporated during formation of the metal nanoparticles.
    Type: Application
    Filed: March 9, 2010
    Publication date: September 9, 2010
    Inventors: Jennifer S. Shumaker-Parry, Rajesh Sardar, Patrick M. Shem
  • Publication number: 20100221608
    Abstract: An electrode alloy powder includes a hydrogen storage alloy and magnetic material clusters. The hydrogen storage alloy contains 20 to 70 wt % of Ni. The magnetic material clusters contain metal nickel, and have an average cluster size of 8 to 10 nm. A method for producing the electrode alloy powder includes an activation step of allowing a raw material powder including a hydrogen storage alloy to be in contact with an aqueous solution containing A wt % of sodium hydroxide and held at 100° C. or greater for B minutes. A and B satisfy 2410?A×B?2800.
    Type: Application
    Filed: September 14, 2006
    Publication date: September 2, 2010
    Inventors: Hideaki Ohyama, Kyoko Nakatsuji, Yoshitaka Dansui, Shinichi Orimo, Yuko Nakamori, Hai-Wen Li, Kazutaka Ikeda
  • Publication number: 20100212455
    Abstract: An iron-based soft magnetic powder for dust core having a high magnetic flux density, maintaining high electric insulation even after annealing, and more excellent in the mechanical strength in which a coating film having a phosphate conversion coating film is formed on the surface thereof and the peak height for the absorption of hydroxyl groups formed at 3700 cm?1 to 2500 cm?1 is 0.04 or more being indicated by absorbance when the coating film is analyzed by infrared diffuse reflectance spectroscopy.
    Type: Application
    Filed: December 29, 2009
    Publication date: August 26, 2010
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel Ltd)
    Inventors: Takeshi OHWAKI, Hiroyuki Mitani, Hirofumi Hojo, Kasumi Yanagisawa, Nobuaki Akagi
  • Patent number: 7776450
    Abstract: A thermal spraying powder contains 30 to 50% by mass of chromium carbide with the remainder being an alloy containing chromium, aluminum, yttrium, and at least one of cobalt and nickel. The thermal spraying powder has an average particle size of 20 to 60 ?m. The thermal spraying powder may contain 20% by mass or less of yttrium oxide in place of a part of the alloy. A thermal spray coating obtained by thermal spraying of the thermal spraying powder, particularly, a thermal spray coating obtained by high-velocity flame spraying of the thermal spraying powder is suitable for the purpose of a hearth roll.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: August 17, 2010
    Assignee: Fujimi Incorporated
    Inventors: Hiroaki Mizuno, Satoshi Tawada, Isao Aoki, Noriyuki Yasuo, Tatsuo Suidzu, Sho Hashimoto
  • Publication number: 20100188179
    Abstract: The invention relates to an iron-based soft magnetic powder for a dust core, wherein a film comprising Fe and Co, a phosphoric acid-based chemical conversion film and a silicone resin film are formed in this order on the surface of an iron-based soft magnetic powder, and to a dust core obtained by molding the iron-based soft magnetic powder for a dust core. The invention also relates to an iron-based soft magnetic powder for a dust core formed by coating the surface of an iron-based soft magnetic powder with an insulating film, wherein the powder has a particle diameter of from 45 ?m to 180 ?m, the insulating film is composed of two layers in which a lower layer composed of a phosphoric acid-based chemical conversion film and an upper layer composed of a silicone resin film, and each of the films has a thickness of from 100 nm to 280 nm, and to a dust core obtained by molding the iron-based soft magnetic powder for a dust core.
    Type: Application
    Filed: July 2, 2008
    Publication date: July 29, 2010
    Applicant: KABUSHIKI KAISHA KOBE SEIKO SHO (KOBE STEEL, LTD.)
    Inventors: Hiroyuki Mitani, Nobuaki Akagi, Hirofumi Houjou
  • Publication number: 20100173170
    Abstract: A method of producing titanium metal from a titanium-containing material includes the steps of producing a solution of M?TiF6 from the titanium-containing material, selectively precipitating M?2TiF6 from the solution by the addition of (M?)aXb and using the selectively precipitated M?2TiF6 to produce titanium. M? is a cation of the type which forms a hexafluorotitanate, M? is selected from ammonium and the alkali metal cations, X is an anion selected from halide, sulphate, nitrite, acetate and nitrate and a and b are 1 or 2.
    Type: Application
    Filed: December 8, 2009
    Publication date: July 8, 2010
    Applicant: Peruke Investment Holdings (Proprietary) Limited
    Inventor: Gerard Pretorius
  • Patent number: 7745013
    Abstract: A foamed solder or a nano-porous solder is formed on a substrate of an integrated circuit package. The foamed solder exhibits a low modulus that resists cracking during shock and dynamic loading. The foamed solder is used as a solder bump for communication between an integrated circuit device and external structures.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: June 29, 2010
    Assignee: Intel Corporation
    Inventors: Heeman Choe, Daewoong Suh
  • Publication number: 20100154588
    Abstract: A water-atomized iron-based powder is provided that is pre-alloyed with 0.75-1.1% by weight of Ni, 0.75-1.1% by weight of Mo and up to 0.45% by weight of Mn, and further including 0.5-3.0%, preferably 0.5-2.5% and most preferably 0.5-2.0% by weight of Cu, and inevitable impurities, the balance being Fe.
    Type: Application
    Filed: June 12, 2008
    Publication date: June 24, 2010
    Inventors: Sigurd Berg, Ulf Engström, Caroline Larsson
  • Patent number: 7740939
    Abstract: An insulating magnetic metal particle includes a magnetic metal particle containing at least one metal selected from the group consisting of Co, Fe, and Ni and having a diameter of 5 to 500 nm, a first inorganic insulating layer made of an oxide that covers the surface of the magnetic metal particle, and a second inorganic insulating layer made of an oxide that produces a eutectic crystal by reacting together with the first inorganic insulating layer at the time of heating them, the second inorganic insulating layer being coated on the first inorganic insulating layer. A thickness ratio of the second inorganic insulating layer with respect to the first inorganic insulating layer is set so that the first inorganic insulating layer remains on the surface of the magnetic metal particle after producing the eutectic crystal.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: June 22, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kouichi Harada, Tomohiro Suetsuna, Seiichi Suenaga, Maki Yonetsu
  • Publication number: 20100151267
    Abstract: A powder batch is described comprising single crystal metal-containing particles having a crystal size of less than 50 nm as measured by X-ray diffraction and having a weight average particle size of from about 10 nanometers to less than 100 nanometers as measured by transmission electron microscopy and including a continuous or non-continuous coating of a ceramic material. The powder batch is preferably produced by flame spraying.
    Type: Application
    Filed: June 19, 2007
    Publication date: June 17, 2010
    Applicant: Cabot Corporation
    Inventors: Toivo T. Kodas, Miodrag Oljaca, Mark J. Hampden-Smith, George P. Fotou, Ralph E. Kornbrekke, Jian-Ping Shen
  • Patent number: 7726023
    Abstract: In order to create titanium components with a titanium composite insert, a method is provided whereby an initial pre form 1 has a groove 2 formed in it. An encapsulating member 4 is then provided about the groove 2 in order to create a cavity 5 which is filled with titanium alloy powder 6. This titanium alloy powder 6 is densified and then accurately machined in order to create a groove insert form 7 which can accommodate a titanium composite material pre form insert 8 and further titanium alloy powder 9 such that through a high temperature isostatic pressing (HIP) process, the insert 8 is embedded. The original component form 1 can then be machined in order to create the final component elements such as aerofoils 13.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: June 1, 2010
    Assignee: Rolls-Royce PLC
    Inventor: John Gareth Pursell
  • Patent number: 7727630
    Abstract: Nickel powder batches and methods for producing nickel powder batches. The powder batches include particles having a small particle size, narrow size distribution and a spherical morphology. The present invention is also directed to devices incorporating the nickel metal powders.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: June 1, 2010
    Assignee: Cabot Corporation
    Inventors: Toivo T. Kodas, Mark J. Hampden-Smith, James Caruso, Quint H. Powell, Daniel J. Skamser, Clive D. Chandler
  • Patent number: 7700194
    Abstract: A high-frequency magnetic material is provided and includes: an oxide phase including: a first oxide of a first element being at least one selected from the group consisting of Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, a rare-earth element, Ba, and Sr, and a second oxide of a second element being at least one selected from the group consisting of Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Ba, and Zn, the first oxide and at least a part of the second oxide being formed into a solid solution; and magnetic metal particles including at least one of Fe and Co and having a particle size of 1 to 100 nm, the magnetic metal particles being deposited on a surface and inside of the oxide phase, the magnetic metal particles occupying 50% of a volume of the high-frequency magnetic material exclusive of a void.
    Type: Grant
    Filed: March 11, 2008
    Date of Patent: April 20, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomohiro Suetsuna, Seiichi Suenaga, Kouichi Harada
  • Patent number: 7700193
    Abstract: A core-shell structure with magnetic, thermal, and optical characteristics. The optical absorption band is tailorable by choice of the mixing ratio of the core/shell component to give the desired shell thickness. The core-shell structure is particularly suitable for biomedical applications such as MRI (magnetic resonance imaging) developer, specific tissue identification developer, and magnetic thermal therapy.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: April 20, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Yao Chen, Wen-Hsiang Chang, Chin-I Lin, Shian-Jy Jassy Wang, Yuh-Jiuan Lin
  • Publication number: 20100072434
    Abstract: It provides a method for preparing metal nanoparticles using a metal seed and metal nanoparticles including the metal seed, the method including: preparing a solution by adding a polymer surfactant in an alcohol solvent; heating the solution; forming a metal seed by adding a first metal salt of at least one metal salt selected from the group consisting of platinum, palladium and iridium in the heated solution; and adding a second metal salt into the solution including the metal seed. This method allows the production of uniform-sized nanoparticles under high concentration conditions in high yield and mass production in which the metal nanoparticles have high dispersion stability so that they are suitable for various application.
    Type: Application
    Filed: May 8, 2009
    Publication date: March 25, 2010
    Inventors: Kwi-Jong Lee, Hyun-Joo Song, Dae-Ha Seo, Jong-Wook Jung, Dong-Hoon Kim
  • Patent number: 7670406
    Abstract: A composite powder for a deposition of a composite coating comprises a nonmetallic component and a metallic component, the metallic component having an amorphous structure or a nanocrystalline structure. The metallic component may include an amorphous metallic alloy. The metallic alloy may include constituents having the amorphous structure. The metallic component may include a combination of the metallic alloy existing in the amorphous state and constituents of the amorphous metallic alloy in the amorphous state. The composite metal-ceramic powders are used for depositing composite coatings on a selected surface. Disclosed are several methods and systems for producing such composite powders. Disclosed are also several methods and systems for depositing composite coatings. Advantageously, the deposited coatings exhibit high corrosion resistance, high wear resistance, and excellent structural properties.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: March 2, 2010
    Inventor: Vladimir E. Belashchenko
  • Patent number: 7641970
    Abstract: A low temperature sinterable dielectric ceramic composition is obtained by bending 2.5-20 parts by weight of a glass component per 100 parts by weight of an aggregate of dielectric particles which are composed of Ti-containing dielectric material and contain an oxide including Ti and Zn in the surface portions. A low temperature sintered dielectric ceramic is produced by sintering this low temperature sinterable dielectric ceramic composition at 880 to 1000° C. With this low temperature sinterable dielectric ceramic composition, there can be obtained a multiplayer electronic component having an internal conductor composed of Ag, Cu or an alloy containing at least one of them.
    Type: Grant
    Filed: March 3, 2005
    Date of Patent: January 5, 2010
    Assignee: UBE Industries, Ltd.
    Inventors: Takafumi Kawano, Masataka Yamanaga, Koichi Fukuda
  • Patent number: 7641983
    Abstract: Medical devices, such as endoprostheses, and methods of making the devices are disclosed. In some embodiments, a medical device includes a composite having a metallic matrix and a plurality of particles in the matrix, the particles and the matrix having different compositions.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: January 5, 2010
    Assignee: Boston Scientific SciMed, Inc.
    Inventor: Jonathan S. Stinson
  • Patent number: 7635518
    Abstract: Magnetic nanostructures comprised of an assembly of magnetic nanorods held together by dipole forces in a dendritic pattern and their method of manufacture. The dendritic magnetic nanostructures are prepared at room temperature by applying a magnetic field to a reverse micelle system wherein at least one salt of a magnetic metal is being precipitated within the core of the reverse micelle.
    Type: Grant
    Filed: February 24, 2006
    Date of Patent: December 22, 2009
    Assignee: University of Louisiana at Lafayette
    Inventor: Devesh Kumar Misra
  • Patent number: 7628840
    Abstract: Each of the metal nano-particles present in a dispersion, which comprises at least one metal selected from the group consisting of precious metals and transition metals or an alloy of at least two metals selected from the foregoing metals, comprises a metal particle in which an organic metal compound of a fatty acid and/or an amine-metal complex is adhered to the periphery of the metal particle. This organic metal compound and the amine-metal complex are admixed together in a solvent and then the resulting mixture is subjected to a reducing treatment to thus form a dispersion containing metal nano-particles in a concentration of not less than 5% by mass and not more than 90% by mass. The resulting dispersion is applied onto the surface of a base material, followed by drying the applied layer of the dispersion and then firing the dried layer of the dispersion at a low temperature to thus form a thin metallic wire or a metal film having conductivity.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: December 8, 2009
    Assignees: ULVAC, Inc., JEMCO, Inc.
    Inventors: Tsutomu Atsuki, Masaaki Oda, Toshiharu Hayashi, Reiko Kiyoshima
  • Publication number: 20090295518
    Abstract: A water atomized Fe powder for a magnetic compact reduced in deformation resistance during molding and annealing temperature for removing strains is provided. A compact having improved magnetic properties is also provided. The water atomized powder containing at least one element selected from Nb, Ta, Ti, Zr and V in an amount of 0.001-0.03 atom % is soft magnetic and has a precipitation in the matrix, which is composed of at least one element selected from Nb, Ta, Ti, Zr and V and oxygen as a main component and has an average size of 0.02-0.5 ?m. Disclosed is a method for manufacturing a soft magnetic powder includes adding at least one element selected from Nb, Ta, Ti, Zr and V, and annealing in a hydrogen-containing reduction atmosphere. This method decrease gaseous impurities, particularly oxygen, and defuse it, to improve the magnetic properties of the powder and compact.
    Type: Application
    Filed: May 28, 2009
    Publication date: December 3, 2009
    Applicant: Hitachi, Ltd.
    Inventors: Kazuya Nishi, Yasuhisa Aono
  • Patent number: 7625637
    Abstract: Metallic nanoparticles and processes for forming metallic nanoparticles. In one aspect, the invention is to a process for forming nanoparticles comprising the step of heating a solution comprising a first metal precursor and a nucleating agent (e.g., nucleate nanoparticles or a nucleate precursor) in the presence of a base under conditions effective to form the nanoparticles. The first metal precursor preferably comprises a cationic metal species having a low reduction potential. The invention is also to a nanoparticle or plurality of nanoparticles, each nanoparticle comprising a core having a largest dimension less than about 10 nm; and a metal layer substantially surrounding the core and having a largest dimension less than about 200 nm.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: December 1, 2009
    Assignee: Cabot Corporation
    Inventor: Hyungrak Kim
  • Publication number: 20090286099
    Abstract: A silver-coated ball 10 according to the present invention includes: a spherical core 1; and a coating layer 2 including silver superfine particles, which is arranged so as to surround the core 1. The silver superfine particles included in the coating layer 2 have a mean particle size of 1 nm to 50 nm.
    Type: Application
    Filed: May 23, 2006
    Publication date: November 19, 2009
    Applicant: NEOMAX MATERIALS CO., LTD.
    Inventors: Ken Asada, Fumiaki Kikui
  • Publication number: 20090258244
    Abstract: A method for producing composite, shelled, alloy and compound nanoparticles as well as nanostructured films of composite, shelled, alloy and compound nanoparticles by using laser ablation of microparticles is disclosed.
    Type: Application
    Filed: March 24, 2009
    Publication date: October 15, 2009
    Applicant: The Board of Regents, The University of Texas System
    Inventors: Michael F. Becker, John W. Keto, Desiderio Kovar
  • Patent number: 7579069
    Abstract: A negative coefficient of thermal expansion particle includes a first bilayer having a first bilayer inner layer and a first bilayer outer layer, and a second bilayer having a second bilayer inner layer and a second bilayer outer layer. The first and second bilayers are joined together along perimeters of the first and second bilayer outer layers and first and second bilayer inner layers, respectively. The first bilayer inner layer and the second bilayer inner layer are made of a first material and the first bilayer outer layer and the second bilayer outer layer are made of a second material. The first material has a greater coefficient of thermal expansion than that of the second material.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: August 25, 2009
    Assignee: International Business Machines Corporation
    Inventors: Gareth Geoffrey Hougham, Xiao Hu Liu, S. Jay Chey, James Patrick Doyle, Joseph Zinter, Jr., Michael J. Rooks, Brian Richard Sundlof, Jon Alfred Casey
  • Patent number: 7572314
    Abstract: Carbon-containing nickel-particle powder is provided. The carbon-containing nickel-particle powder has improved shrinkage property when fired due to the presence of carbon. Also, the carbon-containing nickel-particle powder has a very restricted degree of forming agglomerates.
    Type: Grant
    Filed: July 9, 2007
    Date of Patent: August 11, 2009
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-young Choi, Soon-ho Kim, Tae-Kyoung Kim, Hak-joon Lee, Seon-mi Yoon
  • Publication number: 20090191421
    Abstract: The present invention relates to a composite soft magnetic powdery material. The composite soft magnetic powdery material includes a strong permanent magnetic powder and a Fe-based soft magnetic powder. The mixing ratio of the Fe-based soft magnetic powder to the strong permanent magnetic powder is from 5:5 to 9:1. The composite soft magnetic powdery material has a magnetic permeability of from 5 to 50.
    Type: Application
    Filed: April 18, 2008
    Publication date: July 30, 2009
    Applicant: DELTA ELECTRONICS, INC.
    Inventors: Zhi Huang, Wei Chen, Yi-Lin Chen, Yu-Chin Chen
  • Patent number: 7556863
    Abstract: A process of preparing gold-coated magnetic nanoparticles is disclosed and includes forming a suspension of magnetic nanoparticles within a suitable liquid, adding an amount of a reducible gold compound and a reducing agent to the suspension, and, maintaining the suspension for time sufficient to form gold-coated magnetic nanoparticles.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: July 7, 2009
    Assignee: Los Alamos National Security, LLC
    Inventors: Douglas E. Berning, Robert H. Kraus, Jr., Robert W. Atcher, Jurgen G. Schmidt
  • Patent number: 7527875
    Abstract: A group of metal magnetic nanoparticles is provided. The metal magnetic nanoparticle includes a core having a noble metal cluster of a diameter of 3 nm or less; and a metal shell, formed to surround the core, having noble metal atoms randomly distributed therein; wherein the metal shell has a noble metal atom content: (number of noble metal atoms)/(number of whole metal atoms)×100 of 1 to 15 at. %.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: May 5, 2009
    Assignee: Sony Corporation
    Inventors: Mikihisa Mizuno, Yuichi Sasaki, Makoto Inoue
  • Publication number: 20090104470
    Abstract: A method of producing an aluminum matrix composite material is described that comprises the steps of: mixing an aluminum powder and a ceramic powder to prepare a mixed powder; providing a lower casing made of aluminum and formed in a hollow rectangular parallelepiped shape having an open top, and a closing member made of aluminum and formed in a shape adapted to hermetically close the open top of the lower casing; packing the mixed powder into the lower casing; closing the open top of the lower casing filled with the mixed powder, by the closing member, to prepare a pre-rolling assembly having the mixed powder hermetically sealed therein; preheating the pre-rolling assembly; and rolling the preheated assembly to obtain the aluminum matrix composite material, where the aluminum matrix composite material includes a pair of metal plates having the mixed powder therebetween.
    Type: Application
    Filed: October 23, 2007
    Publication date: April 23, 2009
    Inventors: Hideki Suzuki, Kazuto Sanada, Yuichi Tamaki, Toshimasa Nishiyama, Hideki Honmou, Toshiaki Yamazaki
  • Publication number: 20090090440
    Abstract: The compositions of different energetic metallic particles and corresponding coatings are chosen to take advantage of the resulting exothermic alloying reactions when the metals are combined or alloyed through heat activation. Bimetallic particles composed of a core/shell structure of differing metals are chosen such that, upon achieving the melt point for at least one of the metals, a relatively substantial amount of exothermic heat of alloying is liberated. In an embodiment, the core metal is aluminum and the shell metal is nickel. The nickel may be applied to the outer surface of the aluminum particles using an electroless process from a metal salt solution with a reducing agent in an aqueous solution or a solvent media. The aluminum particles may be pretreated with zinc to remove any aluminum oxide. The resulting bimetallic particles may be utilized as an enhanced blast additive by being dispersed within an explosive material.
    Type: Application
    Filed: October 4, 2007
    Publication date: April 9, 2009
    Applicant: Ensign-Bickford Aerospace & Defense Company
    Inventor: Richard M. Kellett
  • Patent number: 7510766
    Abstract: A magnetic composite for AC applications with improved magnetic properties (i.e. low hysteresis losses and low eddy current losses) is disclosed. The composite comprises a consolidation of magnetizable metallic microlamellar particles each having a top and bottom surfaces and opposite ends. The top and bottom surfaces are coated with a dielectric coating for increasing the resistivity of the composite and reducing eddy current losses. The dielectric coating is made of a refractory material and the ends of the lamellar particles are metallurgically bonded to each other to reduce hysteresis losses of the composite. A process for manufacturing the same is also disclosed. The composite is suitable for manufacturing devices for AC applications such as transformers, stator and rotor of motors, generators, alternators, field concentrators, chokes, relays, electromechanical actuators, synchroresolvers, etc.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: March 31, 2009
    Assignee: Corporation Imfine Inc.
    Inventor: Patrick Lemieux
  • Publication number: 20090068488
    Abstract: An object of the present invention is to provide a method for producing granulated metallic iron superior in rust resistance. Another object of the present invention is to provide a method for producing such granulated metallic iron. In the method, the granulated metallic iron is produced by agglomerating a material mixture including an iron-oxide-containing material and a carbonaceous reducing agent; charging and heating the agglomerated material mixture in a moving hearth-type reducing furnace to reduce the iron oxide in the material mixture with the carbonaceous reducing agent to obtain hot granulated metallic iron; and cooling the hot granulated metallic iron, wherein the hot granulated metallic iron is cooled while its relative position is changed; and an oxide coating is formed on the surface of the hot granulated metallic iron by bringing moisture into contact with almost the entire surface of the hot granulated metallic iron.
    Type: Application
    Filed: March 24, 2006
    Publication date: March 12, 2009
    Applicant: Mesabi Nugget LLC
    Inventors: Koji Tokuda, Osamu Tsuge