Laterally Noncoextensive Components (e.g., Embedded, Etc.) Patents (Class 428/614)
  • Patent number: 8911876
    Abstract: A method for forming pattern on substrate comprises steps of: providing a metal substrate; amorphousizing the metal substrate to from an amorphous pattern layer in the metal substrate; etching the metal substrate and forming an etching portion in the surface of the metal substrate which is not covered with the amorphous pattern layer. The article manufactured by the method is also provided.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: December 16, 2014
    Assignees: Shenzhen Futaihong Precision Industry Co., Ltd., FIH (Hong Kong) Limited
    Inventors: Quan Zhou, Xin-Wu Guan, Po-Feng Ho
  • Patent number: 8906822
    Abstract: This disclosure describes a coating composition comprising: MnxOy, MnCr2O4, or combinations thereof in a first region of a coating having a first thickness, wherein x and y are integers between 1 and 7; and X6W6(Siz, C1-z) in a second region of the coating having a second thickness, wherein X is Ni or a mixture of Ni and one or more transition metals and z ranges from 0 to 1.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: December 9, 2014
    Assignee: BASF Qtech, Inc.
    Inventors: Sabino Steven Anthony Petrone, Robert Leslie Deuis, Fuwing Kong, Yan Chen
  • Patent number: 8889263
    Abstract: The present invention provides an apparatus including a first metal component and a second metal component. The apparatus includes an interface between the first component and the second component, and a metal mesh interposed in the first interface. The apparatus further includes a composite component including a composite material. The composite component includes two portions, the first portion filling voids in the first interface and the second portion forming a structure that adjoins the first component and the second component. The metal mesh extends into the second portion of the composite component.
    Type: Grant
    Filed: December 24, 2011
    Date of Patent: November 18, 2014
    Assignee: Rolls-Royce Corporation
    Inventor: Edward Claude Rice
  • Patent number: 8877347
    Abstract: A wear element for component subject to abrasive influences, for example in a region of a receiving element for bulk material, includes an element formed by a one-piece, approximately plate-shape molded body made of a wear resistant alloy. The molded body is configured not to be planar in any plane. The molded body has an approximately rectangular cross-section and includes longitudinal sides and lateral sides that are rounded sections flowing into each other.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: November 4, 2014
    Assignee: Caterpillar Global Mining HMS GmbH
    Inventor: Michael Dietrich
  • Patent number: 8808870
    Abstract: In one aspect, composite articles are described comprising multifunctional coatings. A composite article described herein, in some embodiments, comprises a substrate and a coating adhered to the substrate, the coating comprising an inner layer and an outer layer, the inner layer comprising a presintered metal or alloy and the outer layer comprising particles disposed in a metal or alloy matrix.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: August 19, 2014
    Assignee: Kennametal Inc.
    Inventors: Qingjun Zheng, Piyamanee Komolwit, Yixiong Liu, Jim Faust, Jonathan Bitler, Srinivasarao Boddapati
  • Publication number: 20140134452
    Abstract: A heterogeneous composite body that is spall resistant and comprises a substantially discontinuous cermet phase in a substantially continuous metal rich matrix phase. The heterogeneous composite body is typically bonded to a substrate to form a hardfacing on the substrate. The heterogeneous composite body exhibits ductile phase toughening with a strain to failure of at least about 2 percent, a modulus of elasticity of less than about 35 million pounds per square inch, and a density of less than about 7 grams per cubic centimeter. The metal rich matrix phase between the ceramic rich regions in the heterogeneous composite body has an average minimum span of about 0.5 to 8 microns to allow ductility in the heterogeneous composite body. The heterogeneous composite body has a Vicker's hardness number of greater than approximately 500. The ceramic rich regions exhibit high hardness as compared with the matrix phase.
    Type: Application
    Filed: March 13, 2013
    Publication date: May 15, 2014
    Applicant: Mesocoat, Inc.
    Inventor: Mesocoat, Inc.
  • Publication number: 20140134453
    Abstract: Some embodiments of the invention are directed to electrochemical fabrication methods for forming structures or devices (e.g. microprobes for use in die level testing of semiconductor devices) from a core material and a shell or coating material that (1) partially coats the surface of the structure, (2) completely coats the surface of the structure, and/or (3) completely coats the surface of structural material of each layer from which the structure is formed including interlayer regions. These embodiments incorporate both the core material and the shell material into the structure as each layer is formed along with a sacrificial material that is removed after formation of all layers of the structure. In some embodiments the core material may be a material that would be removed with sacrificial material if it were accessible by an etchant during removal of the sacrificial material.
    Type: Application
    Filed: September 4, 2013
    Publication date: May 15, 2014
    Applicant: Microfabrica Inc.
    Inventors: Ming Ting Wu, Rulon J. Larsen, III, Young Kim, Kieun Kim, Adam L. Cohen, Ananda H. Kumar, Michael S. Lockard, Dennis R. Smalley
  • Publication number: 20140120364
    Abstract: There are often difficulties in producing materials that are wide and long, such as from the availability of properly dimensioned feedstock materials, processing costs, engineering challenges, and the like. As such, new methods for joining materials are needed. The present invention relates to composite materials, such as a sandwich composite, articles prepared from a composite material, and methods for preparing articles, that employ an edge joint. The edge joint may be employed for attaching the composite material to another composite material, or for attaching it to a monolithic material.
    Type: Application
    Filed: March 12, 2013
    Publication date: May 1, 2014
    Inventors: Stephen John Peca, Eyal Mizrahi
  • Patent number: 8663816
    Abstract: A hot-pressed member includes a steel sheet, a Ni-diffusion region present in a surface layer of the steel sheet, and an intermetallic compound layer and a ZnO layer which are provided in order on the Ni-diffusion region, the intermetallic compound layer corresponding to a ? phase present in a phase equilibrium diagram of a Zn—Ni alloy, wherein a spontaneous immersion potential indicated in a 0.5 M NaCl aqueous air-saturated solution at 25° C.±5° C. is ?600 to ?360 mV based on a standard hydrogen electrode.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: March 4, 2014
    Assignee: JFE Steel Corporation
    Inventors: Hiroki Nakamaru, Seiji Nakajima, Tatsuya Miyoshi, Hiroyuki Masuoka, Shinji Ootsuka
  • Publication number: 20140057127
    Abstract: A method for processing at least one carbon fiber according to an embodiment may include: electroplating a metal layer over at least one carbon fiber, wherein the metal layer contains a metal, which forms a common phase with carbon and a common phase with copper; and annealing the at least one carbon fiber and the metal layer. A method for processing at least one carbon fiber according to another embodiment may include: electroplating a first metal layer over at least one carbon fiber, wherein the first metal layer contains a metal, which forms a common phase with carbon and a common phase with nickel; electroplating a second metal layer over the first metal layer, wherein the second metal layer contains nickel; and annealing the at least one carbon fiber, the first metal layer and the second metal layer.
    Type: Application
    Filed: August 22, 2012
    Publication date: February 27, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventor: Friedrich Kroener
  • Publication number: 20140057128
    Abstract: A plate is provided. The plate includes a steel substrate and a precoat having a layer of intermetallic alloy in contact with the substrate, topped by a layer of aluminum alloy. On at least one precoated face of the plate, an area situated at the periphery of the plate has the aluminum alloy layer removed. A part and a welded blank are also provided. Methods are also provided.
    Type: Application
    Filed: November 1, 2013
    Publication date: February 27, 2014
    Applicant: ArcelorMittal France
    Inventors: Jean-Francois Canourgues, Aurelien Pic, Pascal Verrier, Rene Vierstraete, Wolfram Ehling, Bernd Thommes
  • Publication number: 20140057126
    Abstract: A method of manufacturing a workpiece with multiple metal layers is disclosed as including steps (a) providing a mold with at least a runner and a cavity, (b) providing in the cavity of the mold a first metal layer made of a first metal, the first metal layer having a surface which is roughened and/or includes an engagement structure, and (c) injecting a molten second metal onto the surface of the first metal layer to form a second metal layer on the first metal layer in which the second metal layer engages with the roughened surface of the first metal layer or with the engagement structure of the surface of the first metal layer, and the molten second metal enters the cavity of the mold at a speed of at least 70 meters per second (m/s).
    Type: Application
    Filed: October 29, 2013
    Publication date: February 27, 2014
    Applicants: (Dongguan) Grand Fame Industrial Limited, Zoltrix Material (Guangzhou) Limited
    Inventors: Chi Hung Kevin LIU, Chi Hung HO
  • Patent number: 8647752
    Abstract: A thermal interface material (TIM) assembly is provided for use in conducting heat away from heat generating components. The TIM assembly generally includes a substrate, a metal alloy coupled to at least one side surface of the substrate, and a coating material covering at least part of the substrate and at least part of the metal alloy. The substrate may include a metal foil, a heat dissipating unit, a heat generating component, etc. The metal alloy may include a low melting metal alloy coupled to the substrate to form multiple bumps along the substrate in a pattern. The pattern may be generic such that the TIM assembly may be used with multiple different heat generating components to effectively conduct heat away from the multiple different heat generating components, or it may correspond to particular locations on a heat generating component away from which heat is to be conducted.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: February 11, 2014
    Assignee: Laird Technologies, Inc.
    Inventors: Jason L Strader, Richard F Hill
  • Publication number: 20140011046
    Abstract: A housing having a coating is disclosed. The housing comprises a base substrate made of metallic material; a micro-arc oxide layer formed on the base substrate; and a protection outer film formed on the micro-arc oxide layer and comprising a coating layer and a metallic layer, wherein the metallic layer is formed on the micro-arc oxide layer and covers a portion of the micro-arc oxide layer; and the coating layer is formed on a remaining portion of the micro-arc oxide layer so that the micro-arc oxide layer is covered by the metallic layer and the coating layer.
    Type: Application
    Filed: September 13, 2013
    Publication date: January 9, 2014
    Applicants: Foxconn Technology Co., Ltd., Fu Zhun Precision Industry (Shen Zhen) Co., Ltd.
    Inventors: Zhe-Xuan ZHANG, Shih-Pin WANG, Yan XIONG, Che-Chao CHU
  • Publication number: 20140004374
    Abstract: An electroplating method that includes: a) contacting a first substrate with a first article, which includes a substrate and a conformable mask disposed in a pattern on the substrate; b) electroplating a first metal from a source of metal ions onto the first substrate in a first pattern, the first pattern corresponding to the complement of the conformable mask pattern; and c) removing the first article from the first substrate, is disclosed. Electroplating articles and electroplating apparatus are also disclosed.
    Type: Application
    Filed: September 4, 2013
    Publication date: January 2, 2014
    Applicant: University of Southern California
    Inventor: Adam L. Cohen
  • Patent number: 8590904
    Abstract: A seal comprising a high temperature silicone adhesive sealant layer; a first non-ceramic layer mounted to the silicone adhesive sealant layer; a first expanded metal layer mounted to the first non-ceramic layer; a first silicone cloth layer mounted to the first expanded metal layer; a metal reinforcement layer mounted to the first silicone cloth layer to provide structural integrity without the use of ceramic materials; a second expanded metal layer mounted to the metal reinforcement layer; a second non-ceramic layer mounted to the second expanded metal layer; a turbine mesh layer mounted to the second non-ceramic layer; a second silicone cloth layer mounted to the turbine mesh layer; a sealing castable applied over the second silicone cloth layer to provide a covering; and, a high temperature bonding adhesive disposed between each layer following the first non-ceramic layer to bind the layers together.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: November 26, 2013
    Assignee: Rush Brands, LLC
    Inventors: Jenifer G. Gelorme, Thomas J. Rush
  • Patent number: 8562868
    Abstract: The present invention is related to ternary metal transition metal non-oxide nano-particle compositions, methods for preparing the nano-particles, and applications relating in particular to the use of said nano-particles in dispersions, electrodes and capacitors. The nano-particle compositions of the present invention can include a precursor which includes at least one material selected from the group consisting of alkoxides, carboxylates and halides of transition metals, the material including transition metal(s) selected from the group consisting of vanadium, niobium, tantalum, tungsten and molybdenum.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: October 22, 2013
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Prashant Nagesh Kumta, Amit Paul, Prashanth Hanumantha Jampani
  • Patent number: 8563160
    Abstract: An interconnect member for use in a vibration welded battery module having a battery tab includes a portion weldable to the battery tab, and an inlay. The inlay is positioned with respect to the portion. The inlay may be the same material as the portion, with an insulating or heat-deterring outer ring, or may be the same material as the battery tab with or without the outer ring. Voids or openings may be provided in the interconnect member to reduce the thermal mass of the interconnect member. The voids may be defined by laminated or clad layers of the portion, and may be filled with an insulating material. A battery module is also disclosed having the battery tabs and the interconnect member noted above.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: October 22, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Wayne W. Cai, Susan M. Smyth, Robert S. Bucchi
  • Publication number: 20130260167
    Abstract: A steel base material 11 is subjected to a quenching step, a machining step, a plating step, and a tempering step to form a rod 4. In the quenching step, two axially spaced portions of the steel base material 11 are quenched to form quenched portions 12 and 13. In the machining step, plastic working or cutting is performed on a portion of the steel base material 11 between the two quenched portions 12 and 13 to form a full-circumferential groove 4C1 in a machined portion 4C. In the plating step, the quenched portion 12 is not plated, but a region of the steel base material 11 including the quenched portion 13 is plated to form a coating layer 16. In the tempering step, the quenched portions 12 and 13 are tempered.
    Type: Application
    Filed: March 11, 2013
    Publication date: October 3, 2013
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Yuichi KOBAYASHI, Takeshi MURAKAMI
  • Patent number: 8486541
    Abstract: A composite is produced by the steps of (a) blending a first mixture of metallic powders; (b) compacting the blended first mixture of metallic powders to a plurality of discretely shaped articles; (c) blending a second mixture of metallic powders; (d) mixing the plurality of discretely shaped articles with the blended second mixture of metallic powders to form a precursor blend; (e) compacting the precursor blend; and (f) sintering the precursor blend. The composite has a metallic matrix with embedded shapes dispersed throughout the matrix where the embedded shapes have an incipient liquid phase sintering temperature less than an incipient liquid phase sintering temperature of the matrix.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: July 16, 2013
    Assignee: Aerojet-General Corporation
    Inventors: Timothy J. Brent, Michael T. Stawovy
  • Patent number: 8459380
    Abstract: An article of manufacture includes a cemented carbide piece, and a joining phase that binds the cemented carbide piece into the article. The joining phase comprises a eutectic alloy material. The article of manufacture further includes a non-cemented carbide piece bound into the article of manufacture by the joining phase. An article of manufacture includes a fixed-cutter earth-boring bit body, a roller cone, and a part for an earth-boring bit.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: June 11, 2013
    Assignee: TDY Industries, LLC
    Inventors: Prakash K. Mirchandani, Michale E. Waller, Morris E. Chandler, Heath C. Coleman
  • Publication number: 20130143062
    Abstract: A wiring substrate manufacturing method includes forming a layered configuration including a first metal layer, a peeling layer, and a second metal layer, removing an edge part of the layered configuration, so that the first metal layer is smaller than the second metal layer from a plan view, forming a support body by adhering the first metal layer to a base member and adhering the base member to a process part, the process part being formed by the removing of the edge part, forming a wiring substrate on the second metal layer, removing a part of the support body and a part of the wiring substrate that are superposed with respect to the process part from a plan view, and separating the second metal layer and the wiring substrate from the support body after the removing of the parts of the support body and the wiring substrate.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 6, 2013
    Applicant: SHINKO ELECTRIC INDUSTRIES CO., LTD.
    Inventor: SHINKO ELECTRIC INDUSTRIES CO., LTD.
  • Publication number: 20130139373
    Abstract: A method for producing a single-clad or multiple-clad product includes providing a welded assembly comprising a cladding material disposed on a substrate material. Both the substrate material and the cladding material are individually selected alloys. At least a first edge of the cladding material of the welded assembly does not extend to a first edge of the substrate material and thereby provides a margin between the first edges. A material that is an alloy having hot strength greater than the cladding material is within the margin and adjacent the first edge of the cladding material. The welded assembly is hot rolled to provide a hot rolled band, and the material within the margin inhibits the cladding material from spreading beyond the edge of the substrate material during the hot rolling. In certain embodiments of the methods, the substrate material is stainless steel and the cladding material is nickel or a nickel alloy.
    Type: Application
    Filed: February 4, 2013
    Publication date: June 6, 2013
    Applicant: ATI PROPERTIES, INC.
    Inventor: ATI PROPERTIES, INC.
  • Patent number: 8435644
    Abstract: A metal molding (10) comprises a metal foam region (12) composed of a metal foam consisting of a metal, a further region (14) in which the metal has fewer or smaller cavities than in the metal foam region, and an essentially sheet-like one-part or multipart insert element (16) with orifices or interspaces. The insert element (16) is arranged in a fringe region between the metal foam region (12) and the further region (14). The metal in the further region (14) is connected metallically to the metal in the metal foam region (12) in orifices or interspaces of the insert element (16).
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: May 7, 2013
    Assignee: Huette Klein-Reichenbach Gesellschaft m.b.H
    Inventors: Franz Dobesberger, Herbert J. Flankl, Dietmar Leitlmeier
  • Publication number: 20130108463
    Abstract: A mating structure is provided and includes a first article having a first mating surface formed of a metallic material, a second article having a second mating surface, the second article being disposed such that the first and second mating surfaces mate with one another and a coating disposed on the first mating surface, which is formed of a material having a hardness that is higher than that of the metallic material of the first article. The coating has dimensions exceeded by corresponding dimensions of the first article.
    Type: Application
    Filed: October 27, 2011
    Publication date: May 2, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Yagnesh Dalpatbhai Hathiwala, Somayajula Kishore Kumar, Hariharan Sundaram
  • Patent number: 8387228
    Abstract: A method for producing a single-clad or multiple-clad product includes providing a welded assembly comprising a cladding material disposed on a substrate material. Both the substrate material and the cladding material are individually selected alloys. At least a first edge of the cladding material of the welded assembly does not extend to a first edge of the substrate material and thereby provides a margin between the first edges. A material that is an alloy having hot strength greater than the cladding material is within the margin and adjacent the first edge of the cladding material. The welded assembly is hot rolled to provide a hot rolled band, and the material within the margin inhibits the cladding material from spreading beyond the edge of the substrate material during the hot rolling. In certain embodiments of the methods, the substrate material is stainless steel and the cladding material is nickel or a nickel alloy.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: March 5, 2013
    Assignee: ATI Properties, Inc.
    Inventors: David S. Bergstrom, Kris J. Schott, Mark A. Tarhay
  • Publication number: 20120308843
    Abstract: A method of manufacturing a hot-gas component with cooling channels and a hot gas component manufactured by the method is provided. Pre-sintered preform materials are used for the manufacturing of a hot-gas component with a cooling channel. The method initially involves providing a carrier substrate for the hot-gas component and then providing a sheet of pre-sintered preform material. The sheet is then arranged on the carrier substrate so as to form the cooling channel. The sheet and the carrier substrate are then brazed to manufacture the hot-gas component with the cooling channel.
    Type: Application
    Filed: February 10, 2011
    Publication date: December 6, 2012
    Inventors: Michael Ott, Ingo Reinkensmeier
  • Publication number: 20120308842
    Abstract: A composite article includes a substrate, at least one protective layer on the substrate, and an intermediate layer between the protective layer and the substrate. The intermediate layer includes a first material that occupies a first continuous region and a second material that occupies a second continuous region next to the first continuous region. The first continuous region and the second continuous region are each in contact with the substrate and the protective layer.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 6, 2012
    Inventors: Wayde R. Schmidt, Paul Sheedy
  • Patent number: 8304090
    Abstract: An exemplary embodiment providing one or more improvements includes a composite structure of materials that are formed together in a way which gives the composite structure improved yield strength and thermal conduction capabilities.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: November 6, 2012
    Inventor: Joseph R. Demers
  • Patent number: 8283047
    Abstract: Method of making a composite casting involves providing a reinforcement insert with a ceramic coating, positioning the coated insert in a mold, and casting the molten metallic material into the mold where the metallic material is solidified. The composite casting produced includes the reinforcement insert disposed in a solidified metallic matrix with a ceramic coating between the reinforcement insert and the matrix.
    Type: Grant
    Filed: June 8, 2006
    Date of Patent: October 9, 2012
    Assignee: Howmet Corporation
    Inventors: Russell G. Vogt, George W. Wolter
  • Patent number: 8277953
    Abstract: The present invention relates to an apparatus with a structured hard chrome layer electrodeposited onto a work-piece, the structured hard chrome layer being cup-shaped and/or labyrinth-like and/or column-shaped. The structured hard chrome layer can be electrodeposited from an electrolyte onto the work-piece, said electrolyte containing (a) a Cr (VI) compound in an amount corresponding to 50 g/l to 600 g/l of chromic acid anhydride; (b) 0.5 g/l to 10 g/l of sulphuric acid; (c) 1 g/l to 20 g/l of aliphatic sulphonic acid, comprising 1 to 6 carbon atoms; and (d) 10 g/l to 200 g/l of at least one compound forming a dense cathode film, said compound being selected from among ammonium molybdate, alkali molybdate and alkaline earth molybdate, ammonium vanadate, alkali vanadate and alkaline earth vanadate, ammonium zirconate, alkali zirconate and alkaline earth zirconate.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: October 2, 2012
    Assignee: Federal-Mogul Burscheid GmbH
    Inventors: Rudolf Linde, Stefan Durdoth
  • Patent number: 8277938
    Abstract: A part of composite material having a wedge between two zones, the second zone being shorter than the first zone, whose structure includes from its outer surface to its inner surface: a first section formed from at least two continuous sheets extending parallel to its outer surface, the gradient of the wedge being between 20% and 50%; a wedge in the shape of a triangular prism with its larger surface dimensioned in such a way that it forms a wedge having a gradient of less than 20%; a second section formed by a plurality of continuous sheets extending parallel to the surface bounded by the first section with the wedge placed upon it. The invention also relates to a process for manufacture of the part.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: October 2, 2012
    Assignee: Airbus Operations S.L.
    Inventors: Vicente Martinez Valdegrama, Jose Luis Lozano Garcia, Jose Orencio Granado Macarrilla
  • Patent number: 8257833
    Abstract: A composite element is provided. The composite element includes a ceramic component defining a cavity having a first end and a second end, and a metallic component comprising a head and a body. At least a portion of the body of the metallic component is disposed in the cavity, and the head of the component is disposed on the first end of the cavity. A cross-sectional area of a portion of the body is greater than an area of the first end. In addition, the ceramic and metallic components are interlocked. Methods of making a composite element and of making a clearance sensor part are also provided.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: September 4, 2012
    Assignee: General Electric Company
    Inventor: Wayne Charles Hasz
  • Publication number: 20120210718
    Abstract: Method of joining a ceramic matrix composite article to a metallic component by providing the ceramic matrix composite article with a metallic region which bonds to the metallic component.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 23, 2012
    Applicant: General Electric Company
    Inventors: Benjamin Paul Lacy, Andres Garcia-Crespo
  • Patent number: 8241761
    Abstract: A composite casting for a wear resistant surface, comprising a base composed of a ductile material; and a plurality of wear resistant inserts embedded in said base and composed of a carbide-containing wear resistant alloy which after casting is hot strained by forging or rolling, said inserts being arranged in said base rows so that said inserts of each subsequent one of said rows overlap gaps between said inserts of a preceding one of said rows and (or) said inserts should be positioned with their side bases at a degree (relative to the movement of the abrasive material) of no less than 20°, which would prevent the wear of the ductile base of the composite castings.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: August 14, 2012
    Inventors: Mikhail Garber, Leonid Garber
  • Patent number: 8225886
    Abstract: An article of manufacture includes a cemented carbide piece and a joining phase that binds the cemented carbide piece into the article. The joining phase includes inorganic particles and a matrix material. The matrix material is a metal and a metallic alloy. The melting temperature of the inorganic particles is higher than the melting temperature of the matrix material. A method includes infiltrating the space between the inorganic particles and the cemented carbide piece with a molten metal or metal alloy followed by solidification of the metal or metal alloy to form an article of manufacture.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: July 24, 2012
    Assignee: TDY Industries, LLC
    Inventors: Prakash K. Mirchandani, Michale E. Waller, Morris E. Chandler, Heath C. Coleman
  • Patent number: 8227089
    Abstract: A method of producing a Nb3Sn superconducting wire rod includes forming a wire rod comprising Nb, Sn and Cu, and having a mole ratio of the Sn expressed as ax+b(1?x), where 0.25?x?0.8, 0.3?a?0.4 and 0.02?b?0.1, and x and 1?x are prescribed as a mole ratio of the Nb and a mole ratio of the Cu, respectively, to a total of a mole number of the Nb and a mole number of the Cu, and heating the wire rod to produce Nb3Sn from the Sn and the Nb. By the heating of the wire rod, a Cu—Sn alloy is produced from the Sn and the Cu, concurrently with the Nb3Sn produced from the Sn and the Nb.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: July 24, 2012
    Assignee: Hitachi Cable, Ltd.
    Inventors: Katsumi Ohata, Masahiro Seido, Morio Kimura
  • Publication number: 20120107638
    Abstract: Disclosed is a silver inlaid product and a method of manufacturing the silver inlaid product, in which silver having the aesthetic appeal and the sterilizing ability is inlaid into metal, such as stainless steel and brass, having the durability and convenience in use, to provide tableware having the property of both metal and silver.
    Type: Application
    Filed: July 9, 2009
    Publication date: May 3, 2012
    Inventor: Moon Hyun Lee
  • Patent number: 8163399
    Abstract: Various embodiments of the invention include products and parts including a frictional damping means and methods of making and using the same.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: April 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: James G. Schroth, Michael D. Hanna, Richard H. Hammar, Omar S. Dessouki, Brent D. Lowe, Mark T. Riefe, Mohan Sundar
  • Publication number: 20120063103
    Abstract: The thermal interface material including a thermally conductive metal a thermally conductive metal having a first surface and an opposing second surface, a diffusion barrier plate coupled to the first surface of the thermally conductive metal and the second surface of the thermally conductive metal, and a thermal resistance reducing layer coupled to the diffusion barrier plate.
    Type: Application
    Filed: September 10, 2010
    Publication date: March 15, 2012
    Inventor: Graham Charles Kirk
  • Patent number: 8105696
    Abstract: The present invention is directed to composite metal foams comprising hollow metallic spheres and a solid metal matrix. The composite metal foams show high strength, particularly in comparison to previous metal foams, while maintaining a favorable strength to density ratio. The composite metal foams can be prepared by various techniques, such as powder metallurgy and casting.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: January 31, 2012
    Assignee: North Carolina State University
    Inventor: Afsaneh Rabiei
  • Patent number: 8081467
    Abstract: An electronics package may include a housing and electronic circuitry carried thereby. The housing may include a first metallic material having a first coefficient of thermal expansion (CTE) and having an array of openings therein. The electronics package may also include a thermally conductive body within each of the openings in the array thereof to thereby define a heat sink for the electronic circuitry. Each of the thermally conductive bodies may include a second metallic material having a second CTE substantially different from the first CTE.
    Type: Grant
    Filed: August 20, 2008
    Date of Patent: December 20, 2011
    Assignees: SRI Hermetics Inc., H-Tech, LLC
    Inventor: Edward Allen Taylor
  • Patent number: 8070970
    Abstract: A layer of photoresist is spread on a metal substrate and heated, this layer is exposed through a mask to UV irradiation, the parts not photocured are developed, by dissolving them, so as to obtain a mold, a first layer of metal or of an alloy is galvanically deposited in the open parts of the mold, the metal structure and the mold are leveled by machining so as to obtain a plane upper surface, a metal ply layer is deposited on the entire upper surface, and then the above steps are repeated. A second layer of metal or an alloy is galvanically deposited in the open parts of the mold, the multilayer metal structure obtained is detached from the substrate by delamination and the photoresist is cured, the photoresist is separated so as to free the multilayer metal structure, and then that portion of the metal ply layer or layers which is not inserted between two electrodeposited metal layers is removed.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: December 6, 2011
    Assignee: Doniar SA
    Inventor: Clement Saucy
  • Patent number: 8029554
    Abstract: An endoprosthesis such as a stent is composed of a metal or ceramic, such as Irox, embedded in the stent material.
    Type: Grant
    Filed: November 2, 2007
    Date of Patent: October 4, 2011
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Thomas J. Holman, Liliana Atanasoska
  • Publication number: 20110236711
    Abstract: A structural element for reinforcing a fuselage cell of an aircraft is provided. The structural element comprises a reinforcement profile which is made in one piece from a metallic material. The profile is provided with a strap at least in regions. As a result of the strap which is made of a fibre-reinforced layer material or fibre metal laminate and is adhesively bonded, at least in regions, to a flange of the reinforcement profile the structural element has high damage tolerance and advantageous fatigue properties. The fibre metal laminate or layer material is made of a plurality of metal layers and fibre-reinforced plastics material layers which are stacked in alternating fashion and adhesively bonded to one another over the entire surface. The reinforcement profile and the strap are joined by means of a joining layer. Said joining layer is preferably constructed from two prepreg layers and a non-fibre-reinforced adhesive layer.
    Type: Application
    Filed: April 7, 2011
    Publication date: September 29, 2011
    Inventors: Nikolaus Ohrloff, Thomas Beumler, Derk Daverschot, Matthijs Plokker
  • Patent number: 8025112
    Abstract: An article of manufacture includes a cemented carbide piece and a joining phase that binds the cemented carbide piece into the article. The joining phase includes inorganic particles and a matrix material. The matrix material is a metal and a metallic alloy. The melting temperature of the inorganic particles is higher than the melting temperature of the matrix material. A method includes infiltrating the space between the inorganic particles and the cemented carbide piece with a molten metal or metal alloy followed by solidification of the metal or metal alloy to form an article of manufacture.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: September 27, 2011
    Assignee: TDY Industries, Inc.
    Inventors: Prakash K. Mirchandani, Morris E. Chandler, Michale E. Waller, Heath C. Coleman
  • Publication number: 20110223440
    Abstract: An exemplary embodiment providing one or more improvements includes a composite structure of materials that are formed together in a way which gives the composite structure improved yield strength and thermal conduction capabilities.
    Type: Application
    Filed: May 3, 2011
    Publication date: September 15, 2011
    Inventor: Joseph R. Demers
  • Publication number: 20110204700
    Abstract: A coating steel component with a pattern of an iron based matrix with crystalline particles metallurgically bound to the surface of a steel substrate for use as disc cutters or other components with one or more abrading surfaces that can experience significant abrasive wear, high point loads, and large shear stresses during use. The coated component contains a pattern of features in the shape of freckles or stripes that are laser formed and fused to the steel substrate. The features can display an inner core that is harder than the steel substrate but generally softer than the matrix surrounding the core, providing toughness and wear resistance to the features. The features result from processing an amorphous alloy where the resulting matrix can be amorphous, partially devitrified or fully devitrified.
    Type: Application
    Filed: April 18, 2011
    Publication date: August 25, 2011
    Applicant: UT-Battelle, LLC
    Inventors: Craig A. Blue, Frank Wong, Louis F. Aprigliano, Peter G. Engleman, William H. Peter, Tibor G. Rozgonyi, Levent Ozdemir
  • Publication number: 20110189619
    Abstract: The present invention relates to a heat accumulator composite material, a method for the manufacture thereof and a heat accumulator device. The object of the invention is therefore to provide heat accumulator materials, a method for the manufacture thereof and heat accumulator devices that exhibit high thermal capacities and heat accumulator capacities. The solution of the object is accomplished through a heat accumulator composite material that comprises a plurality of carbon particles and a thermally conducting material, wherein the material differs from the carbon particles. The manufacture of the thermal accumulator composite material according to the invention is accomplished by combining a plurality of carbon particles and a thermally conducting material for the formation of a mixture, and heating the mixture in a partial vacuum to a temperature above the melting point of the thermally conducting material.
    Type: Application
    Filed: February 20, 2009
    Publication date: August 4, 2011
    Applicant: I-SOL VENTURES GmbH
    Inventor: Robert Lloyd
  • Patent number: 7989085
    Abstract: An exemplary housing of electronic device includes a metallic main body and a metallic three-dimensional woven member formed on at least a part of a surface of the metallic main body. An electronic device using the housing is also provided. The housing of the electronic device has a textured touching feeling.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: August 2, 2011
    Assignees: Shenzhen Futaihong Precision Industry Co., Ltd., FIH (Hong Kong) Limited
    Inventors: Bin Li, Chao-Hsun Lin, Jen-Lung Huang, Xian-Liang Liu, Gui-Yun Yang