Next To Al-base Component Patents (Class 428/654)
  • Patent number: 10497942
    Abstract: A method for forming catalyst particles, each of which has a core/shell structure, by a Cu-UPD method. Namely, a method of manufacturing a catalyst wherein catalyst particles, each of which has a core/shell structure composed of a shell layer that is formed of platinum and a core particle that is covered with the shell layer and is formed of a metal other than platinum, are supported on a carrier. This method is characterized by comprising: an electrolysis step wherein the carrier supporting the core particles is electrolyzed in an electrolytic solution containing copper ions, so that copper is precipitated on the surfaces of the core particles; and a substitution reaction step wherein a platinum compound solution is brought into contact with the core particles, on which copper has been precipitated, so that the copper on the surface of each core particle is substituted by platinum, thereby forming a shell layer that is formed of platinum.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: December 3, 2019
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Koichi Matsutani, Takeshi Kaieda, Tomohiro Akiyama
  • Patent number: 10478919
    Abstract: A method for producing an aluminum joined body includes a step of forming a flare joint by using a first aluminum member and a second aluminum member; and a step of performing laser welding by irradiating a groove of the flare joint with a laser beam having a beam diameter of 0.8 to 3.5 mm while feeding a filler material to the groove, the filler material being made of an aluminum alloy containing, in percent by mass, 1.0% to 3.0% of Mg, 0.50% to 1.0% of Mn, 0.05% to 0.20% of Cr, and 0.05% to 0.20% of Ti, with the balance being aluminum and incidental impurities.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: November 19, 2019
    Assignee: Kobe Steel, Ltd.
    Inventors: Takuro Aoki, Tsuyoshi Matsumoto
  • Patent number: 10384248
    Abstract: An aluminum hot strip rolling mill including a multi-stand tandem finishing rolling train (2), at least one winding reel (8) arranged downstream, in the rolling direction, of the multi-stand tandem finishing rolling train, a cooling section (4) provided in the outlet region of the aluminum hot strip rolling mill, and at least one trimmer (6) paired with the multi-stand tandem finishing rolling train and arranged downstream, in the rolling direction, in the rolling direction, of the multi-stand tandem rolling mill train.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: August 20, 2019
    Assignee: SMS GROUP GMBH
    Inventor: Michael Breuer
  • Patent number: 10113600
    Abstract: A method for forming a vehicular brake rotor involving loading a shaped metal substrate with a mixture of metal alloying components and ceramic particles in a dieheating the contents of the die while applying pressure to melt at least one of the metal components of the alloying mixture whereby to densify the contents of the die and form a ceramic particle-containing metal matrix composite coating on the metallic substrate; and cooling the resulting coated product.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: October 30, 2018
    Assignee: ATS MER, LLC
    Inventors: Lori Bracamonte, James Withers, Jowie Abcede
  • Patent number: 10107344
    Abstract: A method for forming a vehicular brake rotor involving loading a shaped metal substrate with a mixture of metal alloying components and ceramic particles in a dieheating the contents of the die while applying pressure to melt at least one of the metal components of the alloying mixture whereby to densify the contents of the die and form a ceramic particle-containing metal matrix composite coating on the metallic substrate; and cooling the resulting coated product.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: October 23, 2018
    Assignee: ATS MER, LLC
    Inventors: Lori Bracamonte, James Withers, Jowie Abcede
  • Patent number: 10100890
    Abstract: A method for forming a vehicular brake rotor involving loading a shaped metal substrate with a mixture of metal alloying components and ceramic particles in a dieheating the contents of the die while applying pressure to melt at least one of the metal components of the alloying mixture whereby to densify the contents of the die and form a ceramic particle-containing metal matrix composite coating on the metallic substrate; and cooling the resulting coated product.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: October 16, 2018
    Assignee: ATS MER, LLC
    Inventors: Lori Bracamonte, James Withers, Jowie Abcede
  • Patent number: 9933031
    Abstract: A method for forming a vehicular brake rotor involving loading a shaped metal substrate with a mixture of metal alloying components and ceramic particles in a dieheating the contents of the die while applying pressure to melt at least one of the metal components of the alloying mixture whereby to densify the contents of the die and form a ceramic particle-containing metal matrix composite coating on the metallic substrate; and cooling the resulting coated product.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: April 3, 2018
    Assignee: ATS MER, LLC
    Inventors: Lori Bracamonte, James Withers, Jowie Abcede
  • Patent number: 9751143
    Abstract: An aluminum alloy brazing sheet for heat exchangers has a core, a sacrificial material formed on one side of the core, and a brazing filler metal formed on the other side of the core. The core is made of an aluminum alloy containing Si, Cu, Mn, and Al. The sacrificial material is made of an aluminum alloy containing Si, Zn, Mg, and Al. The brazing filler metal is made of an aluminum alloy. The aluminum alloy brazing sheet for heat exchangers has a work hardening exponent n of not less than 0.05. The core has an average crystal grain size of not more than 10 ?m in a cross-section. The aluminum alloy brazing sheet for heat exchangers has excellent strength and corrosion resistance even when it is formed into a thin material and also has excellent high frequency weldability and weld cracking resistance during electric resistance welding.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: September 5, 2017
    Assignees: KOBE STEEL, LTD., DENSO CORPORATION
    Inventors: Shimpei Kimura, Toshiki Ueda, Takahiro Izumi, Haruyuki Konishi, Hayaki Teramoto, Osamu Hakamata, Michiyasu Yamamoto
  • Patent number: 9714799
    Abstract: Method for producing AIMn strip or sheet for making components by brazing and products obtained by said method, in particular fin materials of thin gauge used in heat exchangers. Rolling slabs are produced from a melt with <0.3% Si, ?0.5% Fe, ?0.3% Cu, 1.0-2.0% Mn, ?0.5% Mg, ?4.0% Zn, ?0.5% Ni, ?0.3% each of group IVb, Vb, or Vib elements, and unavoidable impurity elements, as well as aluminum that, prior to hot rolling, are preheated at <550° C. to control the number and size of dispersoid particles, hot rolled into a hot strip, cold rolled into a strip with total reduction of at least 90%, and heat treated to obtain a 0.2% proof stress value that is 50-90% of its proof stress value in the as cold rolled condition and in a range between 100 and 200 MPa. The strip may alternatively be produced by twin-roll strip casting.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: July 25, 2017
    Assignee: Gränges Sweden AB
    Inventor: Anders Oskarsson
  • Patent number: 9545777
    Abstract: This application discloses a corrosion-resistant brazing sheet package for use in manufacturing tubing. The brazing sheet package includes a core layer of aluminum-containing alloy comprising from 0.1 wt % to 0.2 wt % of titanium. The core layer has a first side and a second side. The first side of the core layer is adjacent to a first cladding layer to form a first interface. The second side of the core layer is adjacent to a second cladding layer to form a second interface. The first cladding layer and the second cladding layer each include from 2.5 wt % to 4.0 wt % of zinc.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: January 17, 2017
    Assignee: Novelis Inc.
    Inventors: Pierre Henri Marois, Kevin Michael Gatenby, Andrew D. Howells
  • Patent number: 9493861
    Abstract: The present invention provides a method for producing AlMn strip or sheet for making components by brazing, as well as the products obtained by said method. In particular this method is related to fin materials used in heat exchangers. The fins can be delivered with or without a cladding depending on application. Rolling slabs are produced from a melt which contains 0.3-1.5% Si, ?0.5% Fe, ?0.3% Cu, 1.0-2.0% Mn, ?0.5% Mg, ?4.0% Zn, ?0.3% each of elements from group IVb, Vb, or VIb elements, and unavoidable impurity elements, as well as aluminum as the remainder in which the rolling slabs prior to hot rolling are preheated at a preheating temperature of less than 550° C., preferably between 400 and 520° C., more preferably between 450 and 520° C. to control the number and size of dispersoid particles, and the preheated rolling slab is hot rolled into a hot strip. The strip is thereafter cold rolled into a strip with a total reduction of at least 90%, and the cold rolled strip is heat treated to obtain a 0.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: November 15, 2016
    Assignee: GRÄNGES SWEDEN AB
    Inventors: Anders Oskarsson, Hans-Erik Ekstrom, Richard Westergard, Stian Tangen
  • Patent number: 9353430
    Abstract: The present invention provides a casting having increased crashworthiness including an an aluminum alloy of about 6.0 wt % to about 8.0 wt % Si; about 0.12 wt % to about 0.25 wt % Mg; less than or equal to about 0.35 wt % Cu; less than or equal to about 4.0 wt % Zn; less than or equal to about 0.6 wt % Mn; and less than or equal to about 0.15 wt % Fe, wherein the cast body is treated to a T5 or T6 temper and has a tensile strength ranging from 100 MPa to 180 MPa and has a critical fracture strain greater than 10%. The present invention further provides a method of forming a casting having increased crashworthiness.
    Type: Grant
    Filed: March 23, 2014
    Date of Patent: May 31, 2016
    Assignee: SHIPSTON ALUMINUM TECHNOLOGIES (MICHIGAN), INC.
    Inventors: Jen C. Lin, Moustapha Mbaye, Jan Ove Loland, Russell S. Long, Xinyan Yan
  • Patent number: 9121674
    Abstract: A ballistic armor system adapted to protect against penetration of the armor system by projectiles, including a first armor layer; a second armor layer, in which the second armor layer is mounted in spaced-apart relationship to the first armor layer, the relationship defining a void volume between the first armor layer and the second armor layer; and a fluid disposed in the void volume, in which the fluid includes a viscoelastic surfactant at a concentration sufficient to exhibit pseudosolid elastic behavior. The fluid may be removed from the void volume by use of a suitable breaker.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: September 1, 2015
    Assignee: Milmark Technologies, Inc.
    Inventor: Edwin Eugene Wilson
  • Patent number: 9108261
    Abstract: A method of assembling a light fixture includes positioning a first and a second portion of a light fixture adjacent one another. The method includes applying a brazing material between these portions and fastening the portions together with a coupling device, wherein one or more gaps are formed therebetween the portions. The method includes pre-heating the portions and the brazing material to a first temperature and placing them into a molten salt bath, wherein the brazing material flows into the gaps. The method includes cooling the fastened portions to form a metallurgical bond therebetween. The fixture includes a base, a manifold chamber, and a plurality of structures extending from a second surface of the base to the chamber, which defines a manifold therein. The base includes one or more openings extending therethrough. Each structure defines a wire way that is in communication with the chamber and one or more openings.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: August 18, 2015
    Assignee: Cooper Technologies Company
    Inventor: Ellis W. Patrick
  • Patent number: 9080500
    Abstract: Device for exchanging heat between an acidiferous gas and a heat transfer medium, with at least one flow duct for the acidiferous gas which consists essentially of aluminum and/or an aluminum alloy.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: July 14, 2015
    Assignee: MAHLE BEHR GMBH & CO. KG
    Inventors: Bernd Grünenwald, Wolfgang Knödler
  • Publication number: 20150132602
    Abstract: A method for coating a component for use in a semiconductor chamber for plasma etching includes providing a component for use in a semiconductor manufacturing chamber, loading the component into a deposition chamber, cold spray coating a metal powder onto the component to form a coating on the component, and anodizing the coating to form an anodization layer.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 14, 2015
    Applicant: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Vahid Firouzdor
  • Publication number: 20150118517
    Abstract: An aluminum alloy brazing sheet makes it possible to inexpensively braze aluminum in a nitrogen gas furnace without using flux and a toxic element. The aluminum alloy brazing sheet is used for brazing aluminum in an inert gas atmosphere without using flux, and includes a core material and a filler metal, one side or each side of the core material being clad with the filler metal, the core material being formed of an aluminum alloy that includes 0.2 to 1.3 mass % of Mg, and the filler metal including 6 to 13 mass % of Si and 0.004 to 0.1 mass % of Li, with the balance being aluminum and unavoidable impurities.
    Type: Application
    Filed: May 2, 2013
    Publication date: April 30, 2015
    Inventors: Yasunaga Itoh, Tomoki Yamayoshi
  • Patent number: 9012033
    Abstract: An aluminum alloy clad sheet for heat exchangers includes a core material, a cladding material 1, and a cladding material 2, one side and the other side of the core material being respectively clad with the cladding material 1 and the cladding material 2, the core material containing 0.5 to 1.2% of Si, 0.2 to 1.0% of Cu, 1.0 to 1.8% of Mn, and 0.05 to 0.3% of Ti, with the balance being Al and unavoidable impurities, the cladding material 1 containing 3 to 6% of Si, 2 to 8% of Zn, and at least one of 0.3 to 1.8% of Mn and 0.05 to 0.3% of Ti, with the balance being Al and unavoidable impurities, and the cladding material 2 containing 6 to 13% of Si, with the balance being Al and unavoidable impurities, the cladding material 1 serving as the outer side of the aluminum alloy clad sheet during use.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: April 21, 2015
    Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Hiroki Matsuo, Haruhiko Miyachi, Kenji Negura, Naoki Yamashita, Yuji Hisatomi, Yasunaga Itoh
  • Patent number: 8986850
    Abstract: Various illustrative embodiments of a multi-layer brazing sheet are provided. The multi-layer brazing sheet demonstrates improved corrosion resistance on its exposed air side surface.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: March 24, 2015
    Assignee: Alcoa, Inc.
    Inventors: Stephen F. Baumann, Raymond J. Kilmer, Baolute Ren
  • Publication number: 20150072169
    Abstract: The present invention relates to an automotive clad sheet product comprising a core layer and at least one clad layer wherein the core comprises an alloy of the following composition in weight %: Mg 0.45-0.8, Si 0.45-0.7, Cu 0.05-0.25, Mn 0.05-0.2, Fe up to 0.35, other elements (or impurities) <0.05 each and <0.15 in total, balance aluminium; and the at least one clad layer comprises an alloy of the following composition in weight %: Mg 0.3-0.7, Si 0.3-0.7, Mn up to 0.15, Fe up to 0.35, other elements (impurities) <0.05 each and <0.15 in total, balance aluminium. The clad automotive sheet product provides excellent hemmability which does not substantially change over time and yet also provides a good age-hardening response after bake hardening.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Applicant: Novelis Inc.
    Inventors: Juergen Timm, Corrado Bassi
  • Publication number: 20150072170
    Abstract: Al—Mg and Al—Mg—Zn weld filler alloy compositions for use with fusion weldable 7xxx, 6xxx, 5xxx and 2xxx series aluminum alloy base metals are disclosed. The weld filler alloys may be used for joining a first aluminum base metal segment to a second aluminum base metal segment, where the base metal segments is at least one of 7xxx, 6xxx, 5xxx and 2xxx series aluminum alloy. The weld filler alloys, in wire or rod form, may also be used to repair a defective weld.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Inventors: Jen C. Lin, Israel Stol, Kyle L. Williams
  • Patent number: 8968882
    Abstract: The invention relates to a clad sheet product, ideally suitable for automotive body sheet, including a core sheet and a cladding layer on one or both core sheet surfaces, the core sheet has an aluminum alloy of the AA6000-series alloys and at least one cladding consisting of an aluminum alloy of the AA6000-series alloys having a Cu-content of less than 0.25 wt. %.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: March 3, 2015
    Assignee: Aleris Aluminum Duffel BVBA
    Inventor: Christiaan Theodorus Wilhelmus Lahaije
  • Publication number: 20150053751
    Abstract: Use of an aluminium composite material consisting of at least one aluminium core alloy and at least one outer brazing layer consisting of an aluminium brazing alloy provided on one or both sides of the aluminium core alloy. Based on this prior art the object of the present invention is to provide a thermal joining process for an aluminium composite material, so that the use of fluxes can be dispensed with, this object being achieved in that the aluminium brazing layer of the aluminium composite material has a pickled surface and the aluminium composite material is used in a fluxless thermal joining process and the joining process is carried out in the presence of a protective gas.
    Type: Application
    Filed: November 3, 2014
    Publication date: February 26, 2015
    Applicant: HYDRO ALUMINIUM ROLLED PRODUCTS GMBH
    Inventors: Kathrin Eckhard, Jochen Schwarz, Olaf Güßgen, Raimund Sicking, Hartmut Janssen
  • Publication number: 20150050520
    Abstract: An aluminum alloy material contains Si: 1.0 mass % to 5.0 mass % and Fe: 0.01 mass % to 2.0 mass % with balance being Al and inevitable impurities, wherein 250 pcs/mm2 or more to 7×105 pcs/mm2 or less of Si-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 ?m are present in a cross-section of the aluminum alloy material, while 100 pcs/mm2 to 7×105 pcs/mm2 of Al-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 ?m are present in a cross-section of the aluminum alloy material. An aluminum alloy structure is manufactured by bonding two or more members in vacuum or a non-oxidizing atmosphere at temperature at which a ratio of a mass of a liquid phase generated in the aluminum alloy material to a total mass of the aluminum alloy material is 5% or more and 35% or less.
    Type: Application
    Filed: October 1, 2012
    Publication date: February 19, 2015
    Inventors: Akio Niikura, Kazuko Fujita, Takashi Murase, Yoshiyuki Oya, Tomohito Kurosaki
  • Publication number: 20150037607
    Abstract: An aluminum alloy brazing sheet makes it possible to implement a stable brazability equal to that achieved by brazing using flux even if an etching treatment is not performed on the brazing site. The aluminum alloy brazing sheet is used to braze aluminum in an inert gas atmosphere without using flux, the brazing sheet including a core material and a filler metal, one side or each side of the core material being clad with the filler metal, the core material being formed of an aluminum alloy that includes 0.2 to 1.3 mass % of Mg, the filler metal including 6 to 13 mass % of Si and 0.004 to 0.1 mass % of Li, with the balance being aluminum and unavoidable impurities, a surface oxide film having been removed from the brazing sheet, and an oil solution that decomposes when heated at 380° C. or less in an inert gas having been applied to the brazing sheet.
    Type: Application
    Filed: July 24, 2014
    Publication date: February 5, 2015
    Inventors: Yasunaga ITOH, Tomoki YAMAYOSHI
  • Patent number: 8945721
    Abstract: An aluminum alloy heat exchanger with aluminum alloy tubes is provided by assembling and brazing. A coating which includes from 1 to 5 g/m2 of Si powder, from 3 to 20 g/m2 of Zn containing flux, and from 0.2 to 8.3 g/m2 of binder is formed on the aluminum alloy tubes. The fins contain Zn and 0.8 to 2.0% by mass of Mn, Si in a ratio of 1/2.5 to 1/3.5 relative to the Mn, and less than 0.30% by mass of Fe. A fillet is formed between the tube and the aluminum alloy fin after brazing, and a primary crystal portion is formed in the fillet. A eutectic crystal portion is formed in a portion other than the primary crystal portion, and the electric potential of the primary crystal portion is equal to or higher than the electric potential of the aluminum alloy fin.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: February 3, 2015
    Assignee: Mitsubishi Aluminum Co., Ltd.
    Inventors: Yasunori Hyogo, Michihide Yoshino
  • Patent number: 8940406
    Abstract: The present invention relates to an automotive clad sheet product comprising a core layer and at least one clad layer wherein the core comprises an alloy of the following composition in weight %: Mg 0.45-0.8, Si 0.45-0.7, Cu 0.05-0.25, Mn 0.05-0.2, Fe up to 0.35, other elements (or impurities) <0.05 each and <0.15 in total, balance aluminum; and the at least one clad layer comprises an alloy of the following composition in weight %: Mg 0.3-0.7, Si 0.3-0.7, Mn up to 0.15, Fe up to 0.35, other elements (impurities) <0.05 each and <0.15 in total, balance aluminum. The clad automotive sheet product provides excellent hemmabtlity which does not substantially change over time and yet also provides a good age-hardening response after bake hardening.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: January 27, 2015
    Assignee: Novelis Inc.
    Inventors: Juergen Timm, Corrado Bassi
  • Publication number: 20150017470
    Abstract: In order to enable a satisfactory fluxless brazing without needing flux or vacuum facilities, a brazing object including an aluminum alloy material provided with an Al—Si—Mg brazing filler metal is joined by the Al—Si—Mg brazing filler metal without the use of flux by heating the aluminum alloy material, when raising the temperature in a brazing furnace, at least in a temperature range of 450° C. to before melting of the filler metal under a first inert gas atmosphere having an oxygen concentration of preferably 50 ppm and following by heating at least at or above a temperature at which the filler metal starts to melt under a second inert gas atmosphere having an oxygen concentration of preferably 25 ppm and a nitrogen gas concentration of preferably 10% by volume or less.
    Type: Application
    Filed: November 22, 2013
    Publication date: January 15, 2015
    Applicants: MITSUBISHI ALUMINUM CO., LTD., TAIYO NIPPON SANSO CORPORATION
    Inventors: Masakazu Edo, Hideyuki Miyake, Masatoshi Akiyama, Yuji Nomura, Norihiro Nose, Hiroki Amano
  • Patent number: 8932728
    Abstract: There are provided an aluminum-alloy clad sheet and a clad sheet subjected to heating equivalent to brazing, which each have a high strength and an excellent erosion resistance and thus allow a reduction in thickness of a clad sheet subjected to heating equivalent to brazing such as an aluminum alloy radiator tube, and/or of a clad sheet such as an aluminum-alloy brazing sheet. An aluminum-alloy clad sheet or a clad sheet subjected to heating equivalent to brazing includes at least a core aluminum alloy sheet and an aluminum-alloy sacrificial anti-corrosive material cladded with each other, and is to be formed into a heat exchanger by brazing. The core aluminum alloy sheet includes a specified 3000 series composition.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: January 13, 2015
    Assignee: Kobe Steel, Ltd.
    Inventors: Katsushi Matsumoto, Masao Kinefuchi, Takahiro Izumi
  • Patent number: 8927113
    Abstract: A composite metal ingot, comprising at least two layers of differing alloy composition, wherein pairs of adjacent layers consisting of a first alloy and a second alloy are formed by applying the second alloy in a molten state to the surface of the first alloy while the surface of the first alloy is at a temperature between solidus and liquidus temperatures of the first alloy to form an interface there between, wherein the second alloy is a high or medium strength heat treatable aluminum alloy, and further wherein one or more alloy components from the second alloy are present within grain boundaries of the first alloy adjacent said interface.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: January 6, 2015
    Assignee: Novelis Inc.
    Inventors: Mark Douglas Anderson, Kenneth Takeo Kubo, Todd F. Bischoff, Wayne J. Fenton, Eric W. Reeves, Brent Spendlove, Robert Bruce Wagstaff
  • Publication number: 20140356647
    Abstract: The aluminum alloy clad material for forming of the present disclosure includes: an aluminum alloy core material containing Mg: 0.2 to 1.5% (mass %, the same hereinafter), Si: 0.2 to 2.5%, Cu: 0.2 to 3.0%, and the remainder being Al and inevitable impurities; an aluminum alloy surface material which is cladded on one side or both sides the core material, the thickness of the clad for one side being 3 to 30% of the total sheet thickness, and which has a composition including Mg: 0.2 to 1.5%, Si: 0.2 to 2.0%, Cu being restricted to 0.1% or smaller, and the remainder being Al and inevitable impurities; and an aluminum alloy insert material which is interposed between the core material and the surface material, and has a solidus temperature of 590° C. or lower.
    Type: Application
    Filed: October 31, 2012
    Publication date: December 4, 2014
    Applicant: UACJ CORPORATION
    Inventors: Hiroki Takeda, Akira Hibino
  • Publication number: 20140329109
    Abstract: In a method for brazing a sheet material without use of flux, an inert gas is firstly introduced into an oxygen pump to reduce an oxygen partial pressure in the inert gas to 1×10?10 Pa or less, and the sheet material is heated in a brazing furnace in an atmosphere of the inert gas discharged from the oxygen pump. A core alloy of the sheet material or a brazing filler alloy cladded to a surface of the core alloy contains Mg. Both the core alloy and the brazing filler alloy may contain Mg. Accordingly, brazability of the sheet material is sufficiently improved.
    Type: Application
    Filed: April 29, 2014
    Publication date: November 6, 2014
    Applicants: DENSO CORPORATION, Chiba Institute of Technology, Canon Machinery Inc., UACJ Corporation
    Inventors: Shin Takewaka, Shogo Yamada, Syumpei Ozawa, Tohru Nagasawa, Haruhiko Matsushita, Yasunaga Itoh, Tomoki Yamayoshi
  • Publication number: 20140329108
    Abstract: In a first aspect, the invention provides aluminium alloy comprising the following composition, all values in weight %: Si 0.25-1.5 Cu 0.3-1.5 Fe up to 0.5 Mn up to 0.1 all other elements including Mg being incidental and present (if at all) then in an amount less than or equal to 0.05 individually, and less than or equal to 0.15 in aggregate, the balance being aluminium. In a second aspect, the invention provides a composite aluminium sheet product comprising a core layer and at least one clad layer wherein the at least one clad layer is an aluminium alloy comprising the following composition, all values in weight %: Si 0.25-1.5 Cu 0.3-1.5 Fe up to 0.5 Mn up to 0.1 all other elements including Mg being incidental and present (if at all) then in an amount less than or equal to 0.05 individually, and less than or equal to 0.15 in aggregate, the balance being aluminium.
    Type: Application
    Filed: November 9, 2012
    Publication date: November 6, 2014
    Applicant: NOVELIS INC.
    Inventors: Cyrille Bezencon, Corrado Bassi, Frank Schellinger
  • Publication number: 20140322558
    Abstract: An aluminum alloy clad material for forming includes: an aluminum alloy core material containing Mg: 3.0 to 10% (mass %, the same hereinafter), and the remainder being Al and inevitable impurities; an aluminum alloy surface material which is cladded on one side or both sides of the core material, the thickness of the clad for one side being 3 to 30% of the total sheet thickness, and which has a composition including Mg: 0.4 to 5.0%, and the remainder being Al and inevitable impurities; and an aluminum alloy insert material which is interposed between the core material and the surface material, and has a solidus temperature of 580° C. or lower.
    Type: Application
    Filed: October 31, 2012
    Publication date: October 30, 2014
    Inventors: Hiroki Takeda, Akira Hibino
  • Patent number: 8871356
    Abstract: The invention relates to a self-fluxing brazing piece. The piece comprises a composite material comprising at least one inorganic material distributed in a metal or metal alloy matrix, the inorganic material forming a flux during brazing to promote the formation of a thermally induced metallic bond. The matrix may be an aluminum silicon brazing alloy and the inorganic material may be a potassium-fluoro-aluminate flux. The piece is made by spray forming.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: October 28, 2014
    Assignees: Sandvik Osprey Limited, Sapa Heat Transfer AB
    Inventors: Andrew Josef Widawski Ogilvy, Douglas Kenneth Hawksworth, Elisabeth Abom
  • Publication number: 20140315042
    Abstract: A brazing sheet for flux-free brazing, comprising a core material, a brazing material disposed on at least one surface of the core material, and a thin skin material disposed on the brazing material, wherein the core material is made of an aluminum alloy having a higher melting point than that of the brazing material; the brazing material is made of an Al—Si—Mg based alloy and has a thickness of 25 to 250 ?m; the thin skin material is made of an aluminum alloy having a higher melting initiation temperature than the brazing material and containing substantially no Mg, and has a thickness of 5 to 30 ?m; and a content of an oxide existing at an interface between the brazing material and the thin skin material is 0.1 ppm or less in weight ratio with respect to the entire clad material. The present invention provides a brazing sheet for flux-free brazing, which has a thin skin material, with uniform brazing characteristics, and enables stable joining.
    Type: Application
    Filed: January 11, 2013
    Publication date: October 23, 2014
    Applicant: UACJ Corporation
    Inventors: Yoshikazu Suzuki, Akihito Gotou, Yutaka Yanagawa
  • Patent number: 8846209
    Abstract: The invention relates to an aluminium composite sheet material in which a clad sheet is applied to at least one side of a core material. The core material has an aluminium alloy the AA5xxx- or AA6xxx-series, and the clad sheet has an aluminium alloy selected from the group of the AA1xxx-series, AA3xxx-series and AA7xxx-series with less than 1.5 wt. % of Zn.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: September 30, 2014
    Assignee: Aleris Aluminum Duffel BVBA
    Inventor: Christiaan Theodorus Wilhelmus Lahaye
  • Patent number: 8841001
    Abstract: A device housing having an aluminum or aluminum alloy substrate, an aluminum layer and a corrosion resistant layer formed on the aluminum or aluminum alloy substrate in that order is provided. The corrosion resistant layer is an Al—C—N gradient layer implanted with iridium ions by ion implantation process. The atomic percentages of N and C in the Al—C—N gradient layer both gradually increase from the area near the aluminum layer to the area away from aluminum or aluminum alloy substrate. Therefore the device housing has a high corrosion resistance. A method for making the device housing is also provided.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: September 23, 2014
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Xiao-Qiang Chen
  • Publication number: 20140272462
    Abstract: This application discloses a multilayer aluminum material comprising an aluminum alloy core and aluminum alloy cladding, wherein the aluminum alloy cladding contains 0.1-1.0 wt % Cu, 0.1-0.5 wt % Fe, 0.1-1.0 wt % Mn, 3-15 wt % Si, 0.005-0.15 wt % Ti and >3-?7 wt % Zn, remainder Al. The aluminum alloy cladding can also optionally contain one or more of 0.001-0.3 wt % Mg, 0.001-0.01 wt % Ni or 0.001-0.05 wt % of at least one of Sr, Ca or Na. A process for producing the material is also described. The material can be produced in sheet form and is suitable for brazing application. The metal forms fabricated from the multilayer aluminum material by a process comprising brazing steps are also described.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: NOVELIS INC.
    Inventor: PIERRE HENRI MAROIS
  • Publication number: 20140272461
    Abstract: This application discloses a corrosion-resistant brazing sheet package for use in manufacturing tubing. The brazing sheet package includes a core layer of aluminum-containing alloy comprising from 0.1 wt % to 0.2 wt % of titanium. The core layer has a first side and a second side. The first side of the core layer is adjacent to a first cladding layer to form a first interface. The second side of the core layer is adjacent to a second cladding layer to form a second interface. The first cladding layer and the second cladding layer each include from 2.5 wt % to 4.0 wt % of zinc.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: NOVELIS INC.
    Inventors: PIERRE HENRI MAROIS, KEVIN MICHAEL GATENBY, ANDREW D. HOWELLS
  • Publication number: 20140272460
    Abstract: The present invention provides a new aluminum alloy material which may be used for a core alloy of a corrosion-resistant brazing sheet. This core alloy displays with high strength, and good corrosion resistance for use in heat exchangers. This aluminum alloy material was made by direct chill (DC) casting. The present inventions also provides corrosion-resistant brazing sheet packages including the aluminum alloy material as a core and one or more cladding layers.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: NOVELIS INC.
    Inventors: ANDREW D. HOWELLS, HANY AHMED, KEVIN MICHAEL GATENBY, JYOTHI KADALI, PIERRE HENRI MAROIS
  • Publication number: 20140272463
    Abstract: This application discloses a multilayer aluminum material having an aluminum alloy core and an aluminum alloy cladding, wherein the aluminum alloy cladding contains ?1.0 wt % Cu, ?0.5 wt % Fe, ?1.0 wt % Mn, ?15 wt % Si, ?0.15 wt % Ti, ?7 wt % Zn and at least one of Sr or Na, remainder Al. The aluminum alloy cladding can also contain one or more of ?0.2 wt % Mg or ?0.05 wt % Ni. A process for producing the material is also disclosed. The material can be produced in sheet form and is suitable for brazing application. The metal forms fabricated from the multilayer aluminum material by a process comprising brazing steps are also disclosed.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: NOVELIS INC.
    Inventor: PIERRE HENRI MAROIS
  • Publication number: 20140272459
    Abstract: Components of semiconductor material processing chambers are disclosed, which may include a substrate and at least one corrosion-resistant coating formed on a surface thereof. The at least one corrosion-resistant coating is a high purity metal coating formed by a cold-spray technique. An anodized layer can be formed on the high purity metal coating. The anodized layer comprises a process-exposed surface of the component. Semiconductor material processing apparatuses including one or more of the components are also disclosed, the components being selected from the group consisting of a chamber liner, an electrostatic chuck, a focus ring, a chamber wall, an edge ring, a plasma confinement ring, a substrate support, a baffle, a gas distribution plate, a gas distribution ring, a gas nozzle, a heating element, a plasma screen, a transport mechanism, a gas supply system, a lift mechanism, a load lock, a door mechanism, a robotic arm and a fastener.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: LAM RESEARCH CORPORATION
    Inventors: John Daugherty, Hong Shih, Lin Xu, Anthony Amadio, Robert G. O'Neill, Peter Holland, Sivakami Ramanathan, Tae Won Kim, Duane Outka, John Michael Kerns, Sonia Castillo
  • Patent number: 8802243
    Abstract: A core material for an aluminum alloy clad material contains Si in a content of 0.3% to 1.5% (hereinafter “%” means “percent by mass”), Mn in a content of 0.3% to 2.0%, Cu in a content of 0.3% to 1.5%, Ti in a content of 0.01% to 0.5%, and B in a content of 0.001% to 0.1%, with the remainder including Al and inevitable impurities. The core material and an aluminum alloy clad material using the same ensure sufficient corrosion resistance and give a product having an extended life.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: August 12, 2014
    Assignee: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Shinji Sakashita, Takahiro Ozawa, Satoshi Yoshida
  • Publication number: 20140220381
    Abstract: The subject of the invention is a composite sheet material made of aluminium alloy for motor vehicle body components, in which a cladding sheet is applied to at least one side of a core, the compositions of the core and of the cladding sheet, in weight percentages, being such as below (See table): other elements <0.05 each and 0.15 in total, remainder aluminium. Another subject of the invention is the process for manufacturing said composite sheet material by co-rolling.
    Type: Application
    Filed: August 30, 2012
    Publication date: August 7, 2014
    Applicant: CONSTELLIUM FRANCE
    Inventors: Estelle Muller, Sylvain Henrry, Gilles Guiglionda
  • Patent number: 8791005
    Abstract: A structure formed in an opening having a substantially vertical sidewall defined by a non-metallic material and having a substantially horizontal bottom defined by a conductive pad, the structure including a diffusion barrier covering the sidewall and a fill composed of conductive material.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: July 29, 2014
    Assignee: International Business Machines Corporation
    Inventors: Mukta G. Farooq, John A. Fitzsimmons, Troy L. Graves-Abe
  • Patent number: 8784999
    Abstract: The invention relates to an extruded or rolled clad metal article having a core metal layer and a cladding metal layer on at least one surface of the core layer, wherein the metals of the core metal layer and the cladding metal layer are each aluminum alloys, preferably an aluminum-magnesium alloy, having at least Sc in a range of 0.05% to 1%, and wherein the Sc-content in the core metal layer is lower than in the cladding metal layer. This further relates to a welded structure incorporating such a metal article.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: July 22, 2014
    Assignee: Aleris Aluminum Koblenz GmbH
    Inventors: Andrew Norman, Sabine Spangel
  • Patent number: 8784998
    Abstract: A structure includes a nanophase titanium node and a plurality of nanophase aluminum struts. Each of the plurality of nanophase aluminum struts is bonded to the nanophase titanium node at a weld joint.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: July 22, 2014
    Assignee: Aerojet Rocketdyne of DE, Inc.
    Inventors: Daniel P. Cap, Arunabh Bhattacharya
  • Publication number: 20140193666
    Abstract: The invention relates to a strip consisting of an aluminum material for producing components with improved bending behavior and exacting shaping requirements, a method for producing the strip and the use of sheets produced from the strip according to the invention. The strip has a core layer of an AlMgSi alloy and at least one outer aluminum alloy layer arranged on one or both sides, made from a non-hardenable aluminum alloy, wherein the at least one outer aluminum layer has a lower tensile strength in the (T4) state than the AlMgSi layer, wherein the strip has a uniform strain (Ag) in the (T4) state of more than 23% transverse to the rolling direction and, at a thickness of 1.5 mm-1.6 mm, achieves a bending angle of less than 40° in a bending test.
    Type: Application
    Filed: March 12, 2014
    Publication date: July 10, 2014
    Applicant: Hydro Aluminium Rolled Products GmbH
    Inventors: Henk-Jan Brinkman, Dietmar Schröder, Thomas Wirtz, Natalie Hörster, Werner Kehl, Olaf Engler
  • Patent number: 8771838
    Abstract: The invention relates to a sliding bearing element comprising a supporting layer, an aluminum alloy-based intermediate layer, and an aluminum alloy-based bearing metal layer. The aluminum alloy composition of the intermediate layer includes at least the following components in percent by weight: 3.5 to 4.5 of copper; 0.1 to 1.5% of manganese; 0.1 to 1.5% of magnesium; and 0.1 to 1.0% of silicon.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: July 8, 2014
    Assignee: Federal-Mogul Wiesbaden GmbH
    Inventors: Thomas Grooteboer, Karl-Heinz Lindner, Karl-Heinz Lebien