Next To Al-base Component Patents (Class 428/654)
  • Patent number: 11958140
    Abstract: Aluminum welding alloys with improved welding performance are disclosed. The aluminum welding alloys include high loading levels of magnesium and one or more surface active elements and arc stabilizer elements. Methods of making and using the aluminum welding alloys are further disclosed.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: April 16, 2024
    Assignee: General Cable Technologies Corporation
    Inventors: Shenjia Zhang, Janusz Stanislaw Sekunda, Jean Bilodeau
  • Patent number: 11806816
    Abstract: An aluminum brazing sheet for flux-free brazing having a multilayer structure of two or more layers including at least one core material layer and one brazing material layer, wherein the brazing material layer is positioned on one or both sides of the core material layer and on an outermost surface of the brazing sheet. The brazing material layer is made of an Al—Si—Mg—X brazing material containing: in mass%, 0.05 to 2.0% of Mg, and 2.0 to 14.0% of Si, and further containing one or more of 0.01 to 0.3% of Bi, Ga, Sn, In and Pb, a total amount of Bi, Ga, Sn, In and Pb being 0.5% or less. X indicates one or more of Bi, Ga, Sn, In and Pb.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: November 7, 2023
    Assignee: MA Aluminum Corporation
    Inventors: Michihide Yoshino, Hideyuki Miyake, Hajime Chiba
  • Patent number: 11733113
    Abstract: A strain element (10), which is configured such that a frame portion (11) and a central portion (12) are connected by arm portions (20) to (22), is masked except for the arm portions (20) to (22) where a strain gauge (A1) and the like are to be disposed, and then peening is carried out. With this, a compressive residual stress layer is formed on four sides of each of the arm portions (20) to (22). When the strain element (10) receives a load resulting from an external force, the arm portions (20) to (22) elastically deform; however, due to the compressive residual stress layer thus formed, the arm portions (20) to (22) are less prone to fatigue failure. When projection of a shot material is carried out as peening, the surface roughness of the arm portions (20) to (22) increases, the adhesion of strain gauges improves, detection accuracy improves, and stable measurement can be ensured.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: August 22, 2023
    Assignee: SINTOKOGIO, LTD.
    Inventors: Masahiko Nagasaka, Hiroyasu Makino
  • Patent number: 11661657
    Abstract: Coated substrate comprising a substrate (1) comprising a metal substrate surface (11) coated with a coating system (7) consisting of or comprising a functional coating film (5), said functional coating film (5) consisting of or comprising at least one MCr Al—X coating layer, whereas ° the at least one MCr Al—X coating layer is deposited directly on the metal substrate (11), or ° the at least one MCr Al—X coating layer is deposited on an intermediate coating layer (3) that is formed of at least one substrate matching layer (31), wherein the at least one substrate matching layer (31) is deposited directly on the metal substrate surface (11), wherein the layer deposited directly on the metal substrate surface (11), it means respectively the MCr Al—X coating layer if it is deposited directly on the metal substrate surface (11) or the substrate matching layer (31) if it is deposited on the metal substrate surface (11) exhibits: ° epitaxial growth in part or totally, or ° heteroepitaxial growth in part or totally.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: May 30, 2023
    Assignee: Oerlikon Surface Solutions AG, Pfäffikon
    Inventors: Juergen Ramm, Beno Widrig, Oliver Jarry, Oliver Hunold
  • Patent number: 11572615
    Abstract: A preparation method of a zirconium-titanium-based alloy embedded aluminized layer includes putting a zirconium-titanium-based alloy and an aluminiferous penetrant into a mould from bottom to top in a sequence of a first penetrant layer, a first zirconium-titanium-based alloy, a second penetrant layer, a second zirconium-titanium-based alloy and a third penetrant layer, and compacting to obtain a mixed sample; sequentially covering a surface of a mixed sample with activated carbon powder and alkali metal halide, and then carrying out heating and cooling treatments to obtain a zirconium-titanium-based alloy embedded aluminized layer. The preparation method does not need to adopt a special heating furnace or carry out heat treatment under a vacuum condition in an actual application, which simplifies operation process and condition and is suitable for large-scale production and application due to few technical difficulties and low equipment investment cost.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: February 7, 2023
    Assignee: Yanshan University
    Inventors: Xinyu Zhang, Yize Liu, Jiaqian Qin, Riping Liu
  • Patent number: 11548062
    Abstract: A method for reducing target surface features in continuously cast articles is described. The method can remove a target surface feature, such as a compositional variation or casting defect, from the continuously cast article by removing, before cold rolling, material from the continuously cast article surface.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: January 10, 2023
    Assignee: Golden Aluminum Company
    Inventor: Mark Selepack
  • Patent number: 11524362
    Abstract: The invention relates to a process for laser welding monolithic semi-finished products made of aluminium alloy without filler wire, known to a person skilled in the art under the name “Remote Laser Welding” comprising the following steps:—supplying at least two semi-finished products made of aluminium alloy, at least one of which is a laminated plate with the composition (% by weight): Si: 2.5-14; Fe: 0.05-0.8; Cu: 0.25-1.0; Mg: 0.05-0.8; Mn: ?0.70; Cr: ?0.35; Ti: 0.02-0.30; Sr up to 500 ppm; Na up to 200 ppm; Sb up to 0.15%, unavoidable impurities <0.05 each and <0.15 in total, remainder aluminium,—laser welding the semi-finished products made of aluminium alloy without filler wire, which process is known to a person skilled in the art under the name “Remote Laser Welding”. The invention also includes a structural, body-in-white, skin or opening component of a motor vehicle obtained by a process according to the invention.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: December 13, 2022
    Assignee: Constellium Neuf-Brisach
    Inventors: Jean-Philippe Masse, Laurent Cervi, Stefan Kempa
  • Patent number: 11491585
    Abstract: An aluminum alloy brazing sheet has a 3XXX, 1XXX or 6XXX core, an interliner and a 4XXX brazing layer without added Mg. The interliner has Bi and Mg, the magnesium migrating to the surface of the brazing sheet during brazing and reducing the aluminum oxide to facilitate brazing without flux in a controlled inert atmosphere with reduced oxygen.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: November 8, 2022
    Assignee: ARCONIC TECHNOLOGIES LLC
    Inventors: Stephen F. Baumann, Michael P. Danz, Ning Sun
  • Patent number: 11396065
    Abstract: An apparatus, material and method for forming a brazing sheet has a composite braze liner layer of low melting point aluminum alloy and 4000 series braze liner. The low melting point layer of the composite braze liner facilitates low temperature brazing and decrease of the diffusion of magnesium from the core into the composite braze liner. The reduction of magnesium diffusion also lowers the formation of associated magnesium oxides at the braze joint interface that are resistant to removal by Nocolok flux, thereby facilitating the formation of good brazing joints through the use of low temperature controlled atmosphere brazing (CAB) and Nocolok flux. The apparatus also enables the production of brazing sheet materials with high strength and good corrosion property.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: July 26, 2022
    Assignee: ARCONIC TECHNOLOGIES LLC
    Inventors: Baolute Ren, Michael P. Danz, Marvin Goins
  • Patent number: 11298779
    Abstract: A brazing sheet brazing suitable for brazing performed in an inert gas atmosphere or in a vacuum without using a flux has a three-layer composition. An aluminum alloy core material contains Mg: 1.3 mass % or less. An aluminum alloy intermediate material is layered on the core material and contains Mg: 0.40-6.0 mass %. An aluminum alloy filler material is layered on the intermediate material and contains Si: 6.0-13.0 mass %, Bi: 0.0040-0.070 mass %, and Mg: 0.050-0.10 mass %.
    Type: Grant
    Filed: November 6, 2018
    Date of Patent: April 12, 2022
    Assignee: UACJ CORPORATION
    Inventor: Yasunaga Itoh
  • Patent number: 11235428
    Abstract: A flux-free brazing aluminum alloy brazing sheet includes: a core material formed of aluminum alloy comprising Si of 0.50 to 0.90 mass %, Cu of 0.30 to 2.50 mass %, and Mn of 1.40 to 1.80 mass %, with a Mg content limited to 0.05 mass % or less, and with the balance being Al and inevitable impurities; an intermediate material being formed of aluminum alloy comprising Mg of 0.40 to 1.00 mass %, and Zn of 2.00 to 6.00 mass %, with the balance being Al and inevitable impurities; and a brazing material being formed of aluminum alloy comprising Si of 6.00 to 13.00 mass %, Mg of 0.05 to 0.40 mass %, and Bi of 0.010 to 0.050 mass %, with the balance being Al and inevitable impurities.
    Type: Grant
    Filed: March 5, 2019
    Date of Patent: February 1, 2022
    Assignee: UACJ CORPORATION
    Inventors: Tatsuya Ide, Yutaka Yanagawa, Shogo Yamada, Takahiro Shinoda, Shingo Ono
  • Patent number: 11229978
    Abstract: A brazing sheet for flux-free brazing has an outermost surface brazing filler metal layer, consisting of an Al—Si-based alloy containing 2 to 13% Si in mass %, and an intermediate brazing filler metal layer, consisting of an Al—Si—Mg-based alloy containing 4 to 13% Si and 0.1 to 5.0% Mg in mass %, which are cladded on one or both sides of a core material. In the outermost surface brazing filler metal layer, the number of Si particles having a circle equivalent diameter of 1.75 ?m or more is 10% or more of the number having a circle equivalent diameter of 0.8 ?m or more, as observed in the direction of the surface layer. The intermediate brazing filler metal layer contains less than 3000 per 10000 ?m2 of Si particles having a circle equivalent diameter of 0.25 ?m or more, as observed in a cross section of the brazing filler metal layer.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: January 25, 2022
    Assignee: MITSUBISHI ALUMINUM CO., LTD.
    Inventor: Hideyuki Miyake
  • Patent number: 11203801
    Abstract: Provided herein are new aluminum alloy products and methods of making these alloys. The aluminum alloy products are age-hardenable, display high strength and formability, and allow for the use of recycled scrap. The aluminum alloys can serve as the core in a clad aluminum alloy product. The alloy products can be used in a variety of applications, including automotive, transportation, and electronics applications.
    Type: Grant
    Filed: March 11, 2020
    Date of Patent: December 21, 2021
    Assignee: NOVELIS INC.
    Inventors: Aurèle Mariaux, Aude Celine Despois, Milan Felberbaum, Guillaume Florey
  • Patent number: 11161199
    Abstract: Provided are a simple and effective friction welding method that can suppress increases in hardness of the welded part and reductions in hardness (strength) in the heat affected zone regardless of the composition of ferrous material, and a welded structure obtained with the same. The present invention relates to a friction welding method wherein surfaces to be welded of two metal members (2, 4) to be welded are made to slide in contact with each other. The friction welding method is characterized in that at least one of the metal members (2, 4) to be welded is a ferrous material, and the maximum temperature reached during welding is equal to or less than the A3 point or equal to or less than the Acm point of the ferrous material. The maximum temperature reached during welding is preferably equal to or less than the A1 point of the ferrous material.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: November 2, 2021
    Assignee: OSAKA UNIVERSITY
    Inventors: Hidetoshi Fujii, Rintaro Ueji, Yoshiaki Morisada
  • Patent number: 11143463
    Abstract: A stiffener for a heat exchanger includes a top plate and at least two legs extending from opposing sides of the top plate. Each of the at least two legs includes a bent portion, an angled portion, and a straight portion. The bent portion attaches the leg to the top plate. The angled portion increases a width of the stiffener from a width of the top plate. The straight portion extends perpendicular to a plane of the top plate.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: October 12, 2021
    Assignees: DENSO International America, Inc., DENSO CORPORATION
    Inventors: Guriqbal Singh, Jason Spenny, Osamu Hakamata
  • Patent number: 11020819
    Abstract: A hot stamping method for simultaneously forming workpieces includes steps of: performing laser welding to which an aluminum filler wire is applied to a welding site between the two or more sheets of blanks, and hot-stamping the two or more sheets of blanks, which are welded in the step of performing the laser welding.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: June 1, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: So-Youn Kim
  • Patent number: 10926319
    Abstract: This application discloses a material including an aluminum metal alloy cladding fusion-cast to a metal alloy core. Also disclosed is a material having a metal core with a high content of scrap metal and having two sides, a first aluminum metal cladding fusion cast to the first side of the core layer, and a second aluminum metal cladding fusion cast to the second side of the core layer. The materials can be in a form of a sheet. Sheets are roll bonded together to create permanent metallurgical bonds except at regions where a weld-stop ink is applied. The sheets are used to make corrosion resistant heat exchangers.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: February 23, 2021
    Assignee: NOVELIS INC.
    Inventors: John Anthony Hunter, Yudie Yuan
  • Patent number: 10927869
    Abstract: Welding methods and welded joints for improving corrosion resistance of the joint between a plurality of high-strength aluminum alloy structural members are described herein. An example method can include applying a first weld at a junction between the plurality of high-strength aluminum alloy structural members using a first filler metal, and applying a second weld on at least a portion of a toe of the first weld using a second filler metal. The second weld can be applied using a fusion welding process (e.g., an arc welding process or a high energy beam welding process). Additionally, the secondary weld can alter a secondary phase of the first weld.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: February 23, 2021
    Assignee: OHIO STATE INNOVATION FOUNDATION
    Inventors: Wei Zhang, Tyler Borchers
  • Patent number: 10898963
    Abstract: Brazing sheet for flux-free brazing, wherein an outermost surface brazing filler metal layer, consisting of an Al—Si-based alloy containing 4 to 12% Si in mass %, and an intermediate brazing filler metal layer, consisting of an Al—Si—Mg-based alloy containing 1% or more and less than 4% Si and 0.1 to 5.0% Mg in mass %, are cladded on one side or both sides of a core material, and wherein aluminum members are joined to each other without using flux in a non-oxidizing gas atmosphere under normal pressure with an oxygen concentration of 300 ppm or less, using the brazing sheets.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: January 26, 2021
    Assignee: MITSUBISHI ALUMINUM CO., LTD.
    Inventor: Hideyuki Miyake
  • Patent number: 10888955
    Abstract: A method of laser welding a workpiece stack-up that includes two or more overlapping aluminum alloy workpieces is disclosed. The method involves controlling the power level of the laser beam during at least one of an initial stage or a final stage of advancing the laser beam along a weld path so as to limit a line energy of the laser beam during such stage or stages to being no greater than 10% above a line energy of the laser beam during an intermediate stage of laser beam advancement that is performed between the initial and final stages. By limiting the line energy during the initial and/or final stages of laser beam advancement along the weld path, excessive fusion of the workpiece stack-up assembly can be avoided in those locations to help protect against hot-cracking in the resultant laser weld joint.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: January 12, 2021
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Hui-Ping Wang, Michael G. Poss
  • Patent number: 10788275
    Abstract: An aluminum alloy clad material includes a core material, one side being clad with cladding material 1, the other side being clad with cladding material 2, the core material including an aluminum alloy that includes 0.5 to 1.8% of Mn, and limited to 0.05% or less of Cu, with the balance being Al and unavoidable impurities, the cladding material 1 including an aluminum alloy that includes 3 to 10% of Si, and 1 to 10% of Zn, with the balance being Al and unavoidable impurities, and the cladding material 2 including an aluminum alloy that includes 3 to 13% of Si, and limited to 0.05% or less of Cu, with the balance being Al and unavoidable impurities, wherein the Si content X (%) in the cladding material 1 and the Si content Y (%) in the cladding material 2 satisfy the value (Y?X) is ?1.5 to 9%.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: September 29, 2020
    Assignees: DENSO CORPORATION, UACJ Corporation
    Inventors: Shusuke Otsuki, Shoei Teshima, Yuusuke Kitoh, Jun Abei, Tomohiro Shoji, Naoki Yamashita, Toshikazu Tanaka, Hirokazu Tanaka
  • Patent number: 10737357
    Abstract: A brazing sheet is provided for use in brazing performed in an inert gas atmosphere both using flux and without using flux. The brazing sheet includes an aluminum-based core, an intermediate material layered on the core and being composed of an aluminum alloy that contains Mg: 0.40-3.0 mass %, and a filler metal layered on the intermediate material and being composed of an aluminum alloy that contains Si: 6.0-13.0 mass % and Mg: less than 0.050 mass %. The brazing sheet satisfies the formula below where M [mass %] is the Mg content in the intermediate material, ti [?m] is the thickness of the intermediate material, and tf [?m] is the thickness of the filler metal: tf?10.15×ln(M×ti)+3.7.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: August 11, 2020
    Assignee: UACJ CORPORATION
    Inventors: Yasunaga Itoh, Shoichi Sakoda, Atsushi Fukumoto
  • Patent number: 10682730
    Abstract: An aluminum alloy brazing sheet used for brazing aluminum, without using a flux, in an inert gas atmosphere or vacuum is formed by arranging a brazing material on one side or both sides of a core material made of pure aluminum or aluminum alloy, the brazing material including 6% to 13% by mass of Si and the balance being Al and inevitable impurities, and performing cladding with an intermediate material interposed between the core material and the brazing material, the intermediate material including 0.01% to 1.5% by mass of Bi, 1.5% to 13% by mass of Si, and the balance being Al and inevitable impurities, the intermediate material having a thickness of 2% to 35% of a thickness of the brazing material, wherein one or both of the intermediate material and the core material includes 0.4% to 6% by mass of Mg.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: June 16, 2020
    Assignee: UACJ CORPORATION
    Inventors: Yasunaga Itoh, Tomoki Yamayoshi, Yutaka Yanagawa
  • Patent number: 10634439
    Abstract: Provided are an aluminum alloy brazing sheet for heat exchangers, which exhibits excellent formability and brazeability, and an advantageous process for producing the same. The aluminum alloy brazing sheet for heat exchangers according to the present invention is configured such that: the aluminum alloy composition of a core material and the aluminum alloy composition and temper of a filler material are respectively controlled; and a core material portion of the brazing sheet has a specific electric resistivity at room temperature and a specific dispersion ratio of second phase particles. The brazing sheet is configured to further exhibit certain properties in terms of a work hardening exponent (n-value) where a nominal strain is within a range of 1%-2% and in terms of a push-in depth when a penetration crack is generated in a punch stretch forming test using a round-head punch having a diameter of 50 mm.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: April 28, 2020
    Assignee: UACJ Corporation
    Inventors: Wataru Nakagawa, Satoshi Tanaka
  • Patent number: 10518363
    Abstract: An aluminum alloy brazing sheet has high strength, corrosion resistance and elongation, and includes an aluminum alloy clad material. The material includes a core material, one surface of which is clad with a sacrificial material and an other surface of which is clad with an Al—Si-based or Al—Si—Zn-based brazing filler metal. The core material has a composition containing 1.3 to 2.0% Mn, 0.6 to 1.3% Si, 0.1 to 0.5% Fe and 0.7 to 1.3% Cu, by mass, with the balance Al and impurities. The sacrificial material has a composition containing more than 4.0% to 8.0% Zn, 0.7 to 2.0% Mn, 0.3 to 1.0% Si, 0.3 to 1.0% Fe and 0.05 to 0.3% Ti, by mass, with the balance Al and impurities. At least the core material has a lamellar crystal grain structure. Elongation of material is at least 4% and a tensile strength after brazing is at least 170 MPa.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: December 31, 2019
    Assignee: MITSUBISHI ALUMINUM CO., LTD.
    Inventors: Michihide Yoshino, Masakazu Edo
  • Patent number: 10497942
    Abstract: A method for forming catalyst particles, each of which has a core/shell structure, by a Cu-UPD method. Namely, a method of manufacturing a catalyst wherein catalyst particles, each of which has a core/shell structure composed of a shell layer that is formed of platinum and a core particle that is covered with the shell layer and is formed of a metal other than platinum, are supported on a carrier. This method is characterized by comprising: an electrolysis step wherein the carrier supporting the core particles is electrolyzed in an electrolytic solution containing copper ions, so that copper is precipitated on the surfaces of the core particles; and a substitution reaction step wherein a platinum compound solution is brought into contact with the core particles, on which copper has been precipitated, so that the copper on the surface of each core particle is substituted by platinum, thereby forming a shell layer that is formed of platinum.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: December 3, 2019
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Koichi Matsutani, Takeshi Kaieda, Tomohiro Akiyama
  • Patent number: 10478919
    Abstract: A method for producing an aluminum joined body includes a step of forming a flare joint by using a first aluminum member and a second aluminum member; and a step of performing laser welding by irradiating a groove of the flare joint with a laser beam having a beam diameter of 0.8 to 3.5 mm while feeding a filler material to the groove, the filler material being made of an aluminum alloy containing, in percent by mass, 1.0% to 3.0% of Mg, 0.50% to 1.0% of Mn, 0.05% to 0.20% of Cr, and 0.05% to 0.20% of Ti, with the balance being aluminum and incidental impurities.
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: November 19, 2019
    Assignee: Kobe Steel, Ltd.
    Inventors: Takuro Aoki, Tsuyoshi Matsumoto
  • Patent number: 10384248
    Abstract: An aluminum hot strip rolling mill including a multi-stand tandem finishing rolling train (2), at least one winding reel (8) arranged downstream, in the rolling direction, of the multi-stand tandem finishing rolling train, a cooling section (4) provided in the outlet region of the aluminum hot strip rolling mill, and at least one trimmer (6) paired with the multi-stand tandem finishing rolling train and arranged downstream, in the rolling direction, in the rolling direction, of the multi-stand tandem rolling mill train.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: August 20, 2019
    Assignee: SMS GROUP GMBH
    Inventor: Michael Breuer
  • Patent number: 10113600
    Abstract: A method for forming a vehicular brake rotor involving loading a shaped metal substrate with a mixture of metal alloying components and ceramic particles in a dieheating the contents of the die while applying pressure to melt at least one of the metal components of the alloying mixture whereby to densify the contents of the die and form a ceramic particle-containing metal matrix composite coating on the metallic substrate; and cooling the resulting coated product.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: October 30, 2018
    Assignee: ATS MER, LLC
    Inventors: Lori Bracamonte, James Withers, Jowie Abcede
  • Patent number: 10107344
    Abstract: A method for forming a vehicular brake rotor involving loading a shaped metal substrate with a mixture of metal alloying components and ceramic particles in a dieheating the contents of the die while applying pressure to melt at least one of the metal components of the alloying mixture whereby to densify the contents of the die and form a ceramic particle-containing metal matrix composite coating on the metallic substrate; and cooling the resulting coated product.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: October 23, 2018
    Assignee: ATS MER, LLC
    Inventors: Lori Bracamonte, James Withers, Jowie Abcede
  • Patent number: 10100890
    Abstract: A method for forming a vehicular brake rotor involving loading a shaped metal substrate with a mixture of metal alloying components and ceramic particles in a dieheating the contents of the die while applying pressure to melt at least one of the metal components of the alloying mixture whereby to densify the contents of the die and form a ceramic particle-containing metal matrix composite coating on the metallic substrate; and cooling the resulting coated product.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: October 16, 2018
    Assignee: ATS MER, LLC
    Inventors: Lori Bracamonte, James Withers, Jowie Abcede
  • Patent number: 9933031
    Abstract: A method for forming a vehicular brake rotor involving loading a shaped metal substrate with a mixture of metal alloying components and ceramic particles in a dieheating the contents of the die while applying pressure to melt at least one of the metal components of the alloying mixture whereby to densify the contents of the die and form a ceramic particle-containing metal matrix composite coating on the metallic substrate; and cooling the resulting coated product.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: April 3, 2018
    Assignee: ATS MER, LLC
    Inventors: Lori Bracamonte, James Withers, Jowie Abcede
  • Patent number: 9751143
    Abstract: An aluminum alloy brazing sheet for heat exchangers has a core, a sacrificial material formed on one side of the core, and a brazing filler metal formed on the other side of the core. The core is made of an aluminum alloy containing Si, Cu, Mn, and Al. The sacrificial material is made of an aluminum alloy containing Si, Zn, Mg, and Al. The brazing filler metal is made of an aluminum alloy. The aluminum alloy brazing sheet for heat exchangers has a work hardening exponent n of not less than 0.05. The core has an average crystal grain size of not more than 10 ?m in a cross-section. The aluminum alloy brazing sheet for heat exchangers has excellent strength and corrosion resistance even when it is formed into a thin material and also has excellent high frequency weldability and weld cracking resistance during electric resistance welding.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: September 5, 2017
    Assignees: KOBE STEEL, LTD., DENSO CORPORATION
    Inventors: Shimpei Kimura, Toshiki Ueda, Takahiro Izumi, Haruyuki Konishi, Hayaki Teramoto, Osamu Hakamata, Michiyasu Yamamoto
  • Patent number: 9714799
    Abstract: Method for producing AIMn strip or sheet for making components by brazing and products obtained by said method, in particular fin materials of thin gauge used in heat exchangers. Rolling slabs are produced from a melt with <0.3% Si, ?0.5% Fe, ?0.3% Cu, 1.0-2.0% Mn, ?0.5% Mg, ?4.0% Zn, ?0.5% Ni, ?0.3% each of group IVb, Vb, or Vib elements, and unavoidable impurity elements, as well as aluminum that, prior to hot rolling, are preheated at <550° C. to control the number and size of dispersoid particles, hot rolled into a hot strip, cold rolled into a strip with total reduction of at least 90%, and heat treated to obtain a 0.2% proof stress value that is 50-90% of its proof stress value in the as cold rolled condition and in a range between 100 and 200 MPa. The strip may alternatively be produced by twin-roll strip casting.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: July 25, 2017
    Assignee: Gränges Sweden AB
    Inventor: Anders Oskarsson
  • Patent number: 9545777
    Abstract: This application discloses a corrosion-resistant brazing sheet package for use in manufacturing tubing. The brazing sheet package includes a core layer of aluminum-containing alloy comprising from 0.1 wt % to 0.2 wt % of titanium. The core layer has a first side and a second side. The first side of the core layer is adjacent to a first cladding layer to form a first interface. The second side of the core layer is adjacent to a second cladding layer to form a second interface. The first cladding layer and the second cladding layer each include from 2.5 wt % to 4.0 wt % of zinc.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: January 17, 2017
    Assignee: Novelis Inc.
    Inventors: Pierre Henri Marois, Kevin Michael Gatenby, Andrew D. Howells
  • Patent number: 9493861
    Abstract: The present invention provides a method for producing AlMn strip or sheet for making components by brazing, as well as the products obtained by said method. In particular this method is related to fin materials used in heat exchangers. The fins can be delivered with or without a cladding depending on application. Rolling slabs are produced from a melt which contains 0.3-1.5% Si, ?0.5% Fe, ?0.3% Cu, 1.0-2.0% Mn, ?0.5% Mg, ?4.0% Zn, ?0.3% each of elements from group IVb, Vb, or VIb elements, and unavoidable impurity elements, as well as aluminum as the remainder in which the rolling slabs prior to hot rolling are preheated at a preheating temperature of less than 550° C., preferably between 400 and 520° C., more preferably between 450 and 520° C. to control the number and size of dispersoid particles, and the preheated rolling slab is hot rolled into a hot strip. The strip is thereafter cold rolled into a strip with a total reduction of at least 90%, and the cold rolled strip is heat treated to obtain a 0.
    Type: Grant
    Filed: October 6, 2009
    Date of Patent: November 15, 2016
    Assignee: GRÄNGES SWEDEN AB
    Inventors: Anders Oskarsson, Hans-Erik Ekstrom, Richard Westergard, Stian Tangen
  • Patent number: 9353430
    Abstract: The present invention provides a casting having increased crashworthiness including an an aluminum alloy of about 6.0 wt % to about 8.0 wt % Si; about 0.12 wt % to about 0.25 wt % Mg; less than or equal to about 0.35 wt % Cu; less than or equal to about 4.0 wt % Zn; less than or equal to about 0.6 wt % Mn; and less than or equal to about 0.15 wt % Fe, wherein the cast body is treated to a T5 or T6 temper and has a tensile strength ranging from 100 MPa to 180 MPa and has a critical fracture strain greater than 10%. The present invention further provides a method of forming a casting having increased crashworthiness.
    Type: Grant
    Filed: March 23, 2014
    Date of Patent: May 31, 2016
    Assignee: SHIPSTON ALUMINUM TECHNOLOGIES (MICHIGAN), INC.
    Inventors: Jen C. Lin, Moustapha Mbaye, Jan Ove Loland, Russell S. Long, Xinyan Yan
  • Patent number: 9121674
    Abstract: A ballistic armor system adapted to protect against penetration of the armor system by projectiles, including a first armor layer; a second armor layer, in which the second armor layer is mounted in spaced-apart relationship to the first armor layer, the relationship defining a void volume between the first armor layer and the second armor layer; and a fluid disposed in the void volume, in which the fluid includes a viscoelastic surfactant at a concentration sufficient to exhibit pseudosolid elastic behavior. The fluid may be removed from the void volume by use of a suitable breaker.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: September 1, 2015
    Assignee: Milmark Technologies, Inc.
    Inventor: Edwin Eugene Wilson
  • Patent number: 9108261
    Abstract: A method of assembling a light fixture includes positioning a first and a second portion of a light fixture adjacent one another. The method includes applying a brazing material between these portions and fastening the portions together with a coupling device, wherein one or more gaps are formed therebetween the portions. The method includes pre-heating the portions and the brazing material to a first temperature and placing them into a molten salt bath, wherein the brazing material flows into the gaps. The method includes cooling the fastened portions to form a metallurgical bond therebetween. The fixture includes a base, a manifold chamber, and a plurality of structures extending from a second surface of the base to the chamber, which defines a manifold therein. The base includes one or more openings extending therethrough. Each structure defines a wire way that is in communication with the chamber and one or more openings.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: August 18, 2015
    Assignee: Cooper Technologies Company
    Inventor: Ellis W. Patrick
  • Patent number: 9080500
    Abstract: Device for exchanging heat between an acidiferous gas and a heat transfer medium, with at least one flow duct for the acidiferous gas which consists essentially of aluminum and/or an aluminum alloy.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: July 14, 2015
    Assignee: MAHLE BEHR GMBH & CO. KG
    Inventors: Bernd Grünenwald, Wolfgang Knödler
  • Publication number: 20150132602
    Abstract: A method for coating a component for use in a semiconductor chamber for plasma etching includes providing a component for use in a semiconductor manufacturing chamber, loading the component into a deposition chamber, cold spray coating a metal powder onto the component to form a coating on the component, and anodizing the coating to form an anodization layer.
    Type: Application
    Filed: November 13, 2013
    Publication date: May 14, 2015
    Applicant: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Vahid Firouzdor
  • Publication number: 20150118517
    Abstract: An aluminum alloy brazing sheet makes it possible to inexpensively braze aluminum in a nitrogen gas furnace without using flux and a toxic element. The aluminum alloy brazing sheet is used for brazing aluminum in an inert gas atmosphere without using flux, and includes a core material and a filler metal, one side or each side of the core material being clad with the filler metal, the core material being formed of an aluminum alloy that includes 0.2 to 1.3 mass % of Mg, and the filler metal including 6 to 13 mass % of Si and 0.004 to 0.1 mass % of Li, with the balance being aluminum and unavoidable impurities.
    Type: Application
    Filed: May 2, 2013
    Publication date: April 30, 2015
    Inventors: Yasunaga Itoh, Tomoki Yamayoshi
  • Patent number: 9012033
    Abstract: An aluminum alloy clad sheet for heat exchangers includes a core material, a cladding material 1, and a cladding material 2, one side and the other side of the core material being respectively clad with the cladding material 1 and the cladding material 2, the core material containing 0.5 to 1.2% of Si, 0.2 to 1.0% of Cu, 1.0 to 1.8% of Mn, and 0.05 to 0.3% of Ti, with the balance being Al and unavoidable impurities, the cladding material 1 containing 3 to 6% of Si, 2 to 8% of Zn, and at least one of 0.3 to 1.8% of Mn and 0.05 to 0.3% of Ti, with the balance being Al and unavoidable impurities, and the cladding material 2 containing 6 to 13% of Si, with the balance being Al and unavoidable impurities, the cladding material 1 serving as the outer side of the aluminum alloy clad sheet during use.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: April 21, 2015
    Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Hiroki Matsuo, Haruhiko Miyachi, Kenji Negura, Naoki Yamashita, Yuji Hisatomi, Yasunaga Itoh
  • Patent number: 8986850
    Abstract: Various illustrative embodiments of a multi-layer brazing sheet are provided. The multi-layer brazing sheet demonstrates improved corrosion resistance on its exposed air side surface.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: March 24, 2015
    Assignee: Alcoa, Inc.
    Inventors: Stephen F. Baumann, Raymond J. Kilmer, Baolute Ren
  • Publication number: 20150072169
    Abstract: The present invention relates to an automotive clad sheet product comprising a core layer and at least one clad layer wherein the core comprises an alloy of the following composition in weight %: Mg 0.45-0.8, Si 0.45-0.7, Cu 0.05-0.25, Mn 0.05-0.2, Fe up to 0.35, other elements (or impurities) <0.05 each and <0.15 in total, balance aluminium; and the at least one clad layer comprises an alloy of the following composition in weight %: Mg 0.3-0.7, Si 0.3-0.7, Mn up to 0.15, Fe up to 0.35, other elements (impurities) <0.05 each and <0.15 in total, balance aluminium. The clad automotive sheet product provides excellent hemmability which does not substantially change over time and yet also provides a good age-hardening response after bake hardening.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Applicant: Novelis Inc.
    Inventors: Juergen Timm, Corrado Bassi
  • Publication number: 20150072170
    Abstract: Al—Mg and Al—Mg—Zn weld filler alloy compositions for use with fusion weldable 7xxx, 6xxx, 5xxx and 2xxx series aluminum alloy base metals are disclosed. The weld filler alloys may be used for joining a first aluminum base metal segment to a second aluminum base metal segment, where the base metal segments is at least one of 7xxx, 6xxx, 5xxx and 2xxx series aluminum alloy. The weld filler alloys, in wire or rod form, may also be used to repair a defective weld.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Inventors: Jen C. Lin, Israel Stol, Kyle L. Williams
  • Patent number: 8968882
    Abstract: The invention relates to a clad sheet product, ideally suitable for automotive body sheet, including a core sheet and a cladding layer on one or both core sheet surfaces, the core sheet has an aluminum alloy of the AA6000-series alloys and at least one cladding consisting of an aluminum alloy of the AA6000-series alloys having a Cu-content of less than 0.25 wt. %.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: March 3, 2015
    Assignee: Aleris Aluminum Duffel BVBA
    Inventor: Christiaan Theodorus Wilhelmus Lahaije
  • Publication number: 20150053751
    Abstract: Use of an aluminium composite material consisting of at least one aluminium core alloy and at least one outer brazing layer consisting of an aluminium brazing alloy provided on one or both sides of the aluminium core alloy. Based on this prior art the object of the present invention is to provide a thermal joining process for an aluminium composite material, so that the use of fluxes can be dispensed with, this object being achieved in that the aluminium brazing layer of the aluminium composite material has a pickled surface and the aluminium composite material is used in a fluxless thermal joining process and the joining process is carried out in the presence of a protective gas.
    Type: Application
    Filed: November 3, 2014
    Publication date: February 26, 2015
    Applicant: HYDRO ALUMINIUM ROLLED PRODUCTS GMBH
    Inventors: Kathrin Eckhard, Jochen Schwarz, Olaf Güßgen, Raimund Sicking, Hartmut Janssen
  • Publication number: 20150050520
    Abstract: An aluminum alloy material contains Si: 1.0 mass % to 5.0 mass % and Fe: 0.01 mass % to 2.0 mass % with balance being Al and inevitable impurities, wherein 250 pcs/mm2 or more to 7×105 pcs/mm2 or less of Si-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 ?m are present in a cross-section of the aluminum alloy material, while 100 pcs/mm2 to 7×105 pcs/mm2 of Al-based intermetallic compound particles having equivalent circle diameters of 0.5 to 5 ?m are present in a cross-section of the aluminum alloy material. An aluminum alloy structure is manufactured by bonding two or more members in vacuum or a non-oxidizing atmosphere at temperature at which a ratio of a mass of a liquid phase generated in the aluminum alloy material to a total mass of the aluminum alloy material is 5% or more and 35% or less.
    Type: Application
    Filed: October 1, 2012
    Publication date: February 19, 2015
    Inventors: Akio Niikura, Kazuko Fujita, Takashi Murase, Yoshiyuki Oya, Tomohito Kurosaki
  • Publication number: 20150037607
    Abstract: An aluminum alloy brazing sheet makes it possible to implement a stable brazability equal to that achieved by brazing using flux even if an etching treatment is not performed on the brazing site. The aluminum alloy brazing sheet is used to braze aluminum in an inert gas atmosphere without using flux, the brazing sheet including a core material and a filler metal, one side or each side of the core material being clad with the filler metal, the core material being formed of an aluminum alloy that includes 0.2 to 1.3 mass % of Mg, the filler metal including 6 to 13 mass % of Si and 0.004 to 0.1 mass % of Li, with the balance being aluminum and unavoidable impurities, a surface oxide film having been removed from the brazing sheet, and an oil solution that decomposes when heated at 380° C. or less in an inert gas having been applied to the brazing sheet.
    Type: Application
    Filed: July 24, 2014
    Publication date: February 5, 2015
    Inventors: Yasunaga ITOH, Tomoki YAMAYOSHI