Composite; I.e., Plural, Adjacent, Spatially Distinct Metal Components (e.g., Layers, Joint, Etc.) Patents (Class 428/615)
  • Patent number: 10913498
    Abstract: A method for painting a complex or compound curved three-dimensional surface of a portion of an article. The method comprises providing a paint film; providing sheet metal having opposite major surfaces; laminating the paint film onto a major surface of the sheet metal to form a painted sheet metal laminate comprising a first portion and a second portion; permanently deforming the first portion of the painted sheet metal laminate into a formed portion of the article having a complex or compound curved three-dimensional shape; applying an initial force for securing the second portion of the painted sheet metal laminate during an initial stage of said permanently deforming step; and applying a later force for securing the second portion of the painted sheet metal laminate during a later stage of said permanently deforming step. The later applied force is greater than the initially applied force.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: February 9, 2021
    Assignees: 3M Innovative Properties Company, McMaster University
    Inventors: Kent E. Nielsen, Mukesh K. Jain, Mohamed Elnagmi, Moisei Bruhis
  • Patent number: 10886206
    Abstract: A lead frame for use in an optical semiconductor device has a die pad portion on which an optical semiconductor element is mounted and a lead portion electrically connectable with the optical semiconductor element. A surface on a lead frame substrate forming a part of or an entirety of the die pad portion and the lead portion is laminated with a glossy Ni plating layer having a gloss of 2.0-3.5 and a noble metal plating layer including an Ag plating layer, as an uppermost layer, having a gloss of 1.6 or more.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: January 5, 2021
    Assignee: OHKUCHI MATERIALS CO., LTD.
    Inventor: Shunichi Kidoguchi
  • Patent number: 10875115
    Abstract: A method for joining a first part formed of an aluminum material to a second part formed of a steel material by metal inert gas welding and cold metal transfer is provided. An aluminum filler material forms a fillet joint between the parts and provides a structure for automotive body applications, such an aluminum bumper extrusion joined to a steel crush box connection. The first part includes a notch for hiding the start and end of the joint. A transition plate formed of a mixture of aluminum material and steel material can be disposed between the first part and the second part to provide the notch. The second part can include a mechanical fastener further joining the parts together. In another embodiment, the second part includes a plurality of dimples and is welded to the first part along the dimples.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: December 29, 2020
    Assignee: MAGNA INTERNATIONAL INC.
    Inventors: John Edward Hill, Terence Anthony Devers, Gianfranco Gabbianelli
  • Patent number: 10796853
    Abstract: An electronic component includes: a capacitor body; an external electrode disposed on an end of the capacitor body in a first direction and containing copper (Cu) as a main component; a metal frame electrically connected to the external electrode; and a bonding member disposed between the external electrode and the metal frame. The bonding member includes a tin (Sn)-based solder layer; a tin-copper based alloy solder layer disposed between the tin-based solder layer and the external electrode; and a tin-based alloy solder layer disposed between the tin-based solder layer and the metal frame.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: October 6, 2020
    Assignee: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Beom Joon Cho, Ki Young Kim, Jae Young Na
  • Patent number: 10744588
    Abstract: The present invention consists in a method of welding a nickel strength lug with a bronze connecting pin and a brass contact ring in an accelerometer sensor, the strength lug being interleaved between the connecting pin and the contact ring, the welding being effected electrically with the strength lug pressed simultaneously against the connecting pin and the contact ring. Before welding, the strength lug undergoes deformation of its external surface at least on each of two portions of the surface respectively facing the connecting pin and the contact ring, the surface deformation creating on each of the portions asperities intended to come into local contact with the connecting pin and the contact ring, respectively.
    Type: Grant
    Filed: April 17, 2017
    Date of Patent: August 18, 2020
    Assignees: CONTINENTAL AUTOMOTIVE FRANCE, CONTINENTAL AUTOMOTIVE GMBH
    Inventors: Thierry Morales, Jeroen Van-Est
  • Patent number: 10745289
    Abstract: Provided is a vanadium oxide film which shows substantially no hysteresis of resistivity changes due to temperature rising/falling, has a low resistivity at room temperature, has a large absolute value of the temperature coefficient of resistance, and shows semiconductor-like resistance changes in a wide temperature range. In the vanadium oxide film, a portion of the vanadium has been replaced by aluminum and copper, and the amount of substance of aluminum is 10 mol % based on the sum total of the amount of substance of vanadium, the amount of substance of aluminum, and the amount of substance of copper. This vanadium oxide film has a low resistivity, has a large absolute value of the temperature coefficient of resistance, and shows substantially no hysteresis of resistivity changes due to temperature rising/falling.
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: August 18, 2020
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Tetsuo Tsuchiya, Haruo Ishizaki, Tomohiko Nakajima, Kentaro Shinoda
  • Patent number: 10740510
    Abstract: A method of additive manufacturing includes additively manufacturing a first section for a component, wherein the first section is provided with a position feature, additively manufacturing a second section for the component on the first section, and, in case that a build failure occurs during the additive manufacture of the second section, machining back a present buildup until the position feature is revealed, additively manufacturing the second section separately from the first section, thereby providing the second section with a corresponding position feature, and connecting the first section and the second section to provide the component.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: August 11, 2020
    Assignee: Siemens Aktiengesellschaft
    Inventors: Carl Hockley, Simon Purschke
  • Patent number: 10486405
    Abstract: A method of fabricating a curved surface bonding technique using low melting temperature nanoparticles or nanofilms/nanoparticles of reactive metals as eutectic compounds. The ability of nanomaterials to melt at low temperature lowers the bonding temperature and reduces/eliminates the residual stresses generated in bulk material during the bonding process of two materials with different coefficients of thermal expansion. The nanoscale materials will then be integrated and the new bond will assume properties of the bulk material, including its higher melting temperature.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: November 26, 2019
    Assignee: U.S. Department of Energy
    Inventors: Kamleshkumar Suthar, Marion M. White
  • Patent number: 10348017
    Abstract: A process is disclosed for coating a substrate. The process includes providing a substrate having at least one free surface; depositing a first layer of a first material on the free surface of the substrate; depositing a second layer of a second material, different from the first material, on the first layer; depositing a third layer of a third material, different from the first and second materials, on the second layer; depositing a protective layer of a fourth material, different from the first, second and third materials, on the third layer; and performing a reflow of at least the second and third layers from the first, second, and third layers, by transfer of heat through the thermal contact on the protective layer, such that the protective layer prevents oxidation of at least the third layer.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: July 9, 2019
    Assignee: Tyco Electronics France SAS
    Inventor: Alain Bednarek
  • Patent number: 10158119
    Abstract: Disclosed is an electrolytic copper foil obtained by heat treating a copper foil manufactured through electrolysis, the electrolytic copper foil having specific resistivity of 1.68 to 1.72 ??·cm and a grain mean diameter of a crystallite of 1.0 to 1.5 ?m.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: December 18, 2018
    Assignee: ILJIN MATERIALS CO., LTD.
    Inventors: Ki Deok Song, Sun Hyoung Lee, Tae Jin Jo, Seul Ki Park
  • Patent number: 10122021
    Abstract: Disclosed is an electrolytic copper foil having specific resistivity of 1.68 to 1.72 ??·cm and a grain mean diameter of a crystallite less than 0.41 to 0.80 ?m.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: November 6, 2018
    Assignee: ILJIN MATERIALS CO., LTD.
    Inventors: Ki Deok Song, Sun Hyoung Lee, Tae Jin Jo, Seul Ki Park
  • Patent number: 10079383
    Abstract: An all-solid battery that includes a negative electrode layer, a positive electrode layer, a solid electrolyte layer disposed between the positive electrode layer and the negative electrode layer, a negative electrode current collector connected to the negative electrode layer, and a positive electrode current collector connected to the positive electrode layer, wherein the negative electrode layer contains a sulfide solid electrolyte, the negative electrode current collector contains a metal that reacts with the sulfide solid electrolyte, a sulfur compound layer that contains a sulfur compound generated by a reaction of the sulfide solid electrolyte and the metal is present between the negative electrode layer and the negative electrode current collector, charge capacity when constant current charge was conducted up to 3.6 V at 0.3 C or more and 3.6 C or less in an initial charge after preparation of the all-solid battery is 50 mAh/g or more and 90 mAh/g or less.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: September 18, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kengo Haga, Norihiro Ose, Hajime Hasegawa
  • Patent number: 9764418
    Abstract: A method of joining a bulk metallic glass to a second similar or dissimilar material in an air environment. The method includes the steps of: a) removing an oxide layer on at least a portion of a surface of a first bulk metallic glass during thermoplastic forming of the first bulk metallic glass in a supercooled liquid region, wherein the removing of the oxide layer on the at least the portion of the surface creates a fresh surface that is at least substantially free of oxides and/or contaminants; and b) joining the fresh surface of the first bulk metallic glass to a second material.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: September 19, 2017
    Assignee: Yale University
    Inventors: Jan Schroers, Wen Chen, Ze Liu
  • Patent number: 9691611
    Abstract: A method and apparatus for fabricating two-dimensional layered chalcogenide film are provided. A catalyst gas, a metal-based precursor gas and a chalcogen-based precursor gas are ionized with external stimuli to generate energetic particles which facilitate a chalcogen-substitution reaction of a metal-based precursor gas in a reaction chamber to form uniform two-dimensional layered chalcogenide film of at least a single crystalline layer via chemical vapor deposition.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: June 27, 2017
    Assignee: G-FORCE NANOTECH LTD.
    Inventors: Chao-Hui Yeh, Jen-Kuan Chiu
  • Patent number: 9561986
    Abstract: An article includes a silicon-containing region; at least one outer layer overlying a surface of the silicon-containing region; and a constituent layer on the surface of the silicon-containing region and between and contacting the silicon-containing region and the at least one outer layer, the constituent layer being formed by constituents of the silicon-containing region and being susceptible to creep within an operating environment of the article, wherein the silicon-containing region defines a plurality of channels and a plurality of ridges that interlock within the plurality of channels are formed in the silicon-containing region to physically interlock the at least one outer layer with the silicon-containing region through the constituent layer.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: February 7, 2017
    Assignee: General Electric Company
    Inventors: Don Mark Lipkin, Curtis Alan Johnson, Peter Joel Meschter, Sairam Sundaram, Julin Wan
  • Patent number: 9528176
    Abstract: A thermal spray powder of the present invention contains a rare earth element and a diluent element that is not a rare earth element or oxygen, which is at least one element selected, for example, from zinc, silicon, boron, phosphorus, titanium, calcium, strontium, and magnesium. A sintered body of a single oxide of the diluent element has an erosion rate under specific etching conditions that is no less than 5 times the erosion rate of an yttrium oxide sintered body under the same etching conditions.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: December 27, 2016
    Assignees: FUJIMI INCORPORATED, TOKYO ELECTRON LIMITED
    Inventors: Hiroaki Mizuno, Junya Kitamura, Yoshiyuki Kobayashi
  • Patent number: 9368447
    Abstract: An electronic device and method for production is disclosed. One embodiment provides an integrated component having a first layer which is composed of copper or a copper alloy or which contains copper or a copper alloy, and having an electrically conductive second layer, whose material differs from the material of the first layer, and a connection apparatus which is arranged on the first layer and on the second layer.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: June 14, 2016
    Assignee: Infineon Technologies AG
    Inventors: Khalil Hosseini, Matthias Stecher
  • Patent number: 9355761
    Abstract: The invention provides a process for forming crack-free dielectric films on a substrate. The process comprises the application of a dielectric precursor layer of a thickness from about 0.3 ?m to about 1.0 ?m to a substrate. The deposition is followed by low temperature heat pretreatment, prepyrolysis, pyrolysis and crystallization step for each layer. The deposition, heat pretreatment, prepyrolysis, pyrolysis and crystallization are repeated until the dielectric film forms an overall thickness of from about 1.5 ?m to about 20.0 ?m and providing a final crystallization treatment to form a thick dielectric film. The process provides a thick crack-free dielectric film on a substrate, the dielectric forming a dense thick crack-free dielectric having an overall dielectric thickness of from about 1.5 ?m to about 20.0 ?m.
    Type: Grant
    Filed: January 2, 2014
    Date of Patent: May 31, 2016
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Beihai Ma, Manoj Narayanan, Uthamalingam Balachandran, Sheng Chao, Shanshan Liu
  • Patent number: 9312207
    Abstract: A semiconductor device including a semiconductor substrate having a first surface and a second surface, the first surface being configured for formation of a semiconductor element; a through hole extending through the semiconductor substrate; and a through electrode disposed in the through hole. The through electrode includes an insulating film disposed along a sidewall of the through hole, a conductive layer comprising a first material disposed along the insulating film, and an electrode layer comprising a second material filled inside the through hole over the conductive layer. The first material is softer than the second material. The second material has a melting point higher than a melting point of the first material. The electrode layer includes a void portion being closed near the second surface of the semiconductor substrate.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: April 12, 2016
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Satoshi Wakatsuki, Atsuko Sakata, Kengo Uchida, Kazuyuki Higashi, Mitsuyoshi Endo
  • Patent number: 9289855
    Abstract: A sheet metal piece includes a base material layer and one or more intermediate and coating material layers, along with a weld notch formed along an edge region of the piece. At least a portion of the coating and intermediate material layers is removed at the weld notch so that certain constituents from such layers do not affect the integrity of a nearby weld joint when it is subsequently formed along the edge region. Various methods of ablation, including laser ablation, can be used to form the weld notch.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: March 22, 2016
    Assignee: Shiloh Industries, Inc.
    Inventors: James J. Evangelista, Michael Telenko, Jr., Jason E. Harfoot, Jack A. Atkinson, James W. Walther, Anthony M. Parente
  • Patent number: 9237646
    Abstract: A conductive thin film device includes a substrate and a thin film structure applied to the substrate. The thin film structure is applied as a first layer and forms a one-dimensional nanomaterial networked layer deposited on the substrate. A coating layer overlays the one-dimensional nanomaterial networked layer and can be made from graphene or graphene oxide. The coating layer at least partially covers the nanomaterial networked layer, thereby forming the device as a double-layer structure.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: January 12, 2016
    Assignee: The Hong Kong University of Science and Technology
    Inventors: Matthew Ming Fai Yuen, Xinfeng Zhang, Wayman Ngai Man Wong
  • Patent number: 9096438
    Abstract: The present invention relates to a nano-diamond dispersion solution and a method of preparing the same. The method of preparing a nano-diamond dispersion solution comprises the following steps: providing a nano-diamond aggregation; mixing the nano-diamond aggregation with a metal hydroxide solution and stirring the mixture such that the nano-diamond aggregation is separated, to obtain a mixture solution; stabilizing the mixture solution such that the mixture solution is separated into a supernatant and precipitates; and extracting the supernatant and precipitates.
    Type: Grant
    Filed: February 11, 2011
    Date of Patent: August 4, 2015
    Assignee: NEOENBIZ
    Inventors: Tae Hee Park, Kyu Tae Lee, Jung Suk Lee
  • Patent number: 9085715
    Abstract: The present invention relates to a process for assembling at least one zone of a first surface with at least one zone of a second surface or with a molecule of interest, comprising a step that consists in placing the said zone of the said first surface in contact with the said zone of the said second surface or with the said molecule of interest, the said zone of the said first surface bearing at least one radical and/or ionic species. The present invention also relates to a solid support whose surface bears at least one zone with at least one radical and/or ionic species, with at least one adhesion primer, or with at least one adhesion primer precursor, and to its various uses.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: July 21, 2015
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE
    Inventors: Thomas Berthelot, Guy Deniau, Vincent Huc, Xuan Tuan Le, Fabien Nekelson, Sébastien Roussel, Pascal Viel
  • Patent number: 9076773
    Abstract: The present invention concerns thin diffusion barriers in metal and metal alloy layer sequences of contact area/barrier layer/first bonding layer type for metal wire bonding applications. The diffusion barrier is selected from Co-M-P. Co-M-B and Co-M-B—P alloys wherein M is selected from Mn, Zr, Re, Mo, Ta and W having a thickness in the range 0.03 to 0.3 ?m. The first bonding layer is selected from palladium and palladium alloys.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: July 7, 2015
    Assignee: Atotech Deutschland GmbH
    Inventors: Albrecht Uhlig, Josef Gaida, Christof Suchentrunk
  • Patent number: 9061907
    Abstract: A hydrogen storage material is provided, the hydrogen storage material comprises a hydride-forming solid disposed in a film, a hydrogen-diffusing solid media disposed in the film with the hydride-forming solid, and a high density of interfaces between the hydride-forming solid and the hydrogen-diffusing solid media in the film. The hydrogen storage material may be made by co-depositing the hydride-forming solid and the hydrogen-diffusing solid media to form the film having different solid phases of the hydride-forming solid and the hydrogen-diffusing solid media and a high density of interfaces therebetween.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: June 23, 2015
    Assignee: The United States of America as represented by the Secretary of Commerce The National Institute of Standards and Technology
    Inventors: Leonid A. Bendersky, Edwin J. Heilweil, Zhuopeng Tan
  • Publication number: 20150132605
    Abstract: A composite composition that includes an MCrAlX alloy and a nano-oxide ceramic is disclosed. In the formula, M includes nickel, cobalt, iron, or a combination thereof, and X includes yttrium, hafnium, or a combination thereof, from about 0.001 percent to about 2 percent by weight of the alloy. The amount of the nano-oxide ceramic is greater than about 40 percent, by volume of the composition. A protective covering that includes the composite composition is also disclosed. The protective covering can be attached to a tip portion of a blade with a braze material. A method for joining a protective covering to a tip portion of a blade, and a method for repair of a blade, are also provided.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 14, 2015
    Applicant: General Electric Company
    Inventors: Sundeep Kumar, Anand Krishnamurthy, Kivilcim Onal, Pazhayannur Ramanathan Subramanian, Dennis Michael Gray, Padmaja Parakala
  • Publication number: 20150132601
    Abstract: A method of depositing a multi-layer cladding (40) of superalloy material and an apparatus so formed. A first layer of material (20) is deposited on a substrate (22) such as by laser cladding of superalloy powder (54). The deposited material includes a directionally solidified region (24) and a topmost equiaxed region (26). The topmost region is removed such as by grinding to expose a flat surface (28) of directionally solidified material. A second layer of material (32) deposited onto the exposed flat surface will again have a directionally solidified region (34) and a topmost equiaxed region (36). The process is repeated until a desired thickness of cladding material is achieved, the multi-layer cladding having no equiaxed material between its layers throughout its thickness.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 14, 2015
    Inventors: Gerald J. Bruck, Ahmed Kamel
  • Patent number: 9027823
    Abstract: A workpiece arrangement includes at least two join regions of at least one workpiece that are joined together by a material-to-material connection seam. The material-to-material connection seam covers only a portion of a first of the at least two join regions. A thermal insulation device is disposed in an area of the material-to-material connection seam and corresponds to the first of the at least two join regions.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: May 12, 2015
    Assignee: GSI Helmholtzzentrum fuer Schwerionenforschung GmbH
    Inventors: Tobias Engert, Ivan Kojouharov, Juergen Gerl
  • Patent number: 9018605
    Abstract: A nuclear fusion reactor first wall component includes a copper alloy element, an intermediate metal layer made from niobium and a beryllium element, directly in contact with the intermediate metal layer. The intermediate niobium layer is further advantageously associated with a mechanical stress-reducing layer formed by a metal chosen from copper and nickel. This mechanical stress-reducing layer is in particular arranged between the intermediate niobium layer and the copper alloy element. Furthermore, when the mechanical stress-reducing layer is made from pure copper, a layer of pure nickel can be inserted between the niobium and the pure copper before diffusion welding. Such a component presents the advantage of having an improved thermal fatigue behavior while at the same time preventing the formation of intermetallic compounds at the junction between the beryllium and the copper alloy.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: April 28, 2015
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Pierre-Eric Frayssines, Philippe Bucci, Jean-Marc Leibold, Emmanuel Rigal
  • Publication number: 20150093592
    Abstract: A sheet metal component includes a three dimensionally shaped first surface, a three dimensionally shaped second surface opposite and extending substantially parallel to the first surface and an edge interconnecting and extending about the perimeter of the first and second shaped surfaced. The edge includes a sheared portion formed during a trimming operation and an indented portion formed during a forming operation prior to the trimming operation.
    Type: Application
    Filed: December 10, 2014
    Publication date: April 2, 2015
    Inventor: Jerome Carson Smith
  • Patent number: 8993119
    Abstract: A coated substrate that is at least partially corrosion protected is described. The coated substrate includes (a) a substrate and (b) at least one metal layer provided on the substrate, the metal layer having (i) a first metal that is aluminum, lead, vanadium, manganese, magnesium, iron, cobalt, nickel, copper, titanium, or zinc; or (ii) a first metal alloy that is brass, bronze, stainless steel, magnesium alloy, titanium alloy, or aluminum alloy; and wherein at least one oxide, double oxide, oxide hydrate, or oxyhalogenide of a second metal selected from the group consisting of zirconium, titanium, and hafnium is embedded in the metal layer; and wherein the metal layer has a thickness in the range of 20 nm to 120 nm.
    Type: Grant
    Filed: April 17, 2007
    Date of Patent: March 31, 2015
    Assignee: Ropal Europe AG
    Inventors: Matthias Koch, Guido Wübbeling
  • Patent number: 8993122
    Abstract: The present invention relates to a method and apparatus of forming a sputter target assembly having a controlled solder thickness. In particular, the method includes the introduction of a bonding foil, between the backing plate and the sputter target, wherein the bonding foil is an ignitable heterogeneous stratified structure for the propagation of an exothermic reaction.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: March 31, 2015
    Assignee: Praxair Technology, Inc.
    Inventors: Paul S. Gilman, Binu Mathew, Brian J. O'Hara, Thomas J. Hunt, Peter McDonald, Holger J. Koenigsmann
  • Patent number: 8980414
    Abstract: The present invention provides a carrier-attached copper foil, wherein an ultrathin copper foil is not peeled from the carrier prior to the lamination to an insulating substrate, but can be peeled from the carrier after the lamination to the insulating substrate. A carrier-attached copper foil comprising a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer, wherein the intermediate foil is configured with a Ni layer in contact with an interface of the copper foil carrier and a Cr layer in contact with an interface of the ultrathin copper layer, said Ni layer containing 1,000-40,000 ?g/dm2 of Ni and said Cr layer containing 10-100 ?g/dm2 of Cr is provided.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: March 17, 2015
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Tomota Nagaura, Kazuhiko Sakaguchi
  • Patent number: 8974865
    Abstract: A component and a method of processing a component are disclosed. The method includes providing a base metal having a feature, removing the feature to form a processed region, applying a first layer to the processed region, and applying a second layer to the first layer. The base metal, the first layer, and the second layer each have predetermined thermal expansion coefficients, yield strengths, and elongations. The processed component includes the first layer applied to a processed region of the base metal and a second layer applied to the first layer.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: March 10, 2015
    Assignee: General Electric Company
    Inventors: Dechao Lin, Yan Cui, Srikanth Chandrudu Kottilingam, Ganjiang Feng
  • Patent number: 8974614
    Abstract: A powder metallurgical article and process are disclosed. The article is a repaired or enlarged powder metallurgical article. The repaired or enlarged powder metallurgical article includes a formed article including a first alloy and a material including a second alloy. The material is welded to the formed article to form the repaired or enlarged powder metallurgical article. The repaired or enlarged powder metallurgical article includes a substantially uniform grain structure.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: March 10, 2015
    Assignee: General Electric Company
    Inventors: Daniel Anthony Nowak, Raymond Joseph Stonitsch, Attila Szabo
  • Publication number: 20150050516
    Abstract: In one aspect of the disclosure, an apparatus for manipulating a plurality of curved sheets is provided. Each of the plurality of curved sheets includes an upper surface and a lower surface. The apparatus includes tooling to be coupled to the upper surface of each of the plurality of curved sheets. The tooling is capable of moving the plurality of curved sheets relative to each other and abutting the plurality of curved sheets so that the upper surface of each of the plurality of curved sheets is coextensive with a virtual arcuate surface. The apparatus also includes a welding apparatus capable of welding the plurality of curved sheets together after abutting the plurality of curved sheets.
    Type: Application
    Filed: August 13, 2013
    Publication date: February 19, 2015
    Applicant: The Boeing Company
    Inventor: Peter Z. Anast
  • Patent number: 8948562
    Abstract: The present invention provides templating methods for replicating patterned metal films from a template substrate such as for use in plasmonic devices and metamaterials. Advantageously, the template substrate is reusable and can provide plural copies of the structure of the template substrate. Because high-quality substrates that are inherently smooth and flat are available, patterned metal films in accordance with the present invention can advantageously provide surfaces that replicate the surface characteristics of the template substrate both in the patterned regions and in the unpatterned regions.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: February 3, 2015
    Assignee: Regents of the University of Minnesota
    Inventors: David J. Norris, Sang Eon Han, Aditya Bhan, Prashant Nagpal, Nathan Charles Lindquist, Sang-Hyun Oh
  • Publication number: 20150030874
    Abstract: A braze preform is provided that includes a filler metal and a luminescent material that covers at least a portion of the filler metal and that can luminesce when exposed to a black light. The luminescent material may include a luminescent ink and a solvent that are mixed together before being applied to filler metal. Presence of the braze preform may be determined using automated equipment by detecting luminescence of the braze preform with a sensor. A decision may be made on whether to advance a parts assembly for brazing based on the determination of presence or absence of the braze preform on such parts assembly.
    Type: Application
    Filed: September 24, 2012
    Publication date: January 29, 2015
    Inventors: Lawrence A. Wolfgram, Alan Belohlav
  • Patent number: 8927113
    Abstract: A composite metal ingot, comprising at least two layers of differing alloy composition, wherein pairs of adjacent layers consisting of a first alloy and a second alloy are formed by applying the second alloy in a molten state to the surface of the first alloy while the surface of the first alloy is at a temperature between solidus and liquidus temperatures of the first alloy to form an interface there between, wherein the second alloy is a high or medium strength heat treatable aluminum alloy, and further wherein one or more alloy components from the second alloy are present within grain boundaries of the first alloy adjacent said interface.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: January 6, 2015
    Assignee: Novelis Inc.
    Inventors: Mark Douglas Anderson, Kenneth Takeo Kubo, Todd F. Bischoff, Wayne J. Fenton, Eric W. Reeves, Brent Spendlove, Robert Bruce Wagstaff
  • Patent number: 8920893
    Abstract: An aerofoil has first and second panels spaced apart from each other to provide a cavity, the cavity containing a damping material, the first panel has at least one protrusion extending therefrom within the cavity towards the second panel, the protrusion having a proximal end and a distal end, wherein the proximal end is secured to the first panel and the distal end is slidably mounted to the second panel.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: December 30, 2014
    Assignee: Rolls-Royce PLC
    Inventor: Oliver M. Strother
  • Patent number: 8911875
    Abstract: A sliding element, particularly a piston ring for an internal combustion engine, includes a substrate, and a wear-protection layer, obtained by thermal spraying of a powder comprising the element proportions 2-50 percent by weight iron, FE; 5-60 percent by weight tungsten, W; 5-40 percent by weight chrome, Cr; 5-25 percent by weight nickel, Ni; 1-5 percent by weight molybdenum, Mo; 1-10 carbon, C and 0.1-2 percent by weight silicon, Si; and a running-in layer, obtained by thermal spraying of a powder comprising the element proportions 60-95 percent by weight nickel; 5-40 percent by weight carbon.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: December 16, 2014
    Assignee: Federal-Mogul Burscheid GmbH
    Inventors: Marcus Kennedy, Michael Zinnabold, Marc-Manuel Matz
  • Patent number: 8895152
    Abstract: The invention relates to a method for generating at least one electrically contactable area on a polymer which is doped with a conductive substance, wherein a contact material is applied onto the polymer, which has a lower specific resistance at 23° C. than the polymer. According to the invention the contact material is applied onto the polymer so tightly that close contact between the contact material and the conductive substance is achieved. Due to the tight application of the contact material, which has a lower specific resistance than the polymer, the input resistance of the doped polymer is effectively reduced. The invention further concerns a formed body made of a polymer which is doped with a conductive substance, which has at least one contactable area, within which a contact material is applied onto the polymer, which has a lower specific resistance at 23° C. than the polymer.
    Type: Grant
    Filed: October 25, 2004
    Date of Patent: November 25, 2014
    Assignee: Lonza Cologne GmbH
    Inventors: Herbert Mueller-Hartmann, Ewald Fernbach, Gregor Siebenkotten
  • Publication number: 20140335373
    Abstract: Joining process, joined article, and process of fabricating a joined article are disclosed. The joining process includes providing a consumable electrode comprising a first material and a second material, melting the consumable electrode by a current-induced melting or remelting, and re-solidifying the first material and the second material to form a dissimilar ingot having a first region being a re-solidification of the first material and a second region being a re-solidification of the second material. The joined article includes the first region and the second region; the dissimilar ingot at least partially defines the joined article. The process of fabricating includes providing the dissimilar ingot, positioning the dissimilar ingot within a die, and applying force from the die to compress the dissimilar ingot, thereby forming the joined article.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 13, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Yan CUI, Srikanth Chandrudu KOTTILINGAM, John R. WOOD, Dechao LIN
  • Patent number: 8881964
    Abstract: A method of welding including forming a filler material of a first oxide dispersoid metal, the first oxide dispersoid material having first strengthening particles that compensate for decreases in weld strength of friction stir welded oxide dispersoid metals; positioning the filler material between a first metal structure and a second metal structure each being comprised of at least a second oxide dispersoid metal; and friction welding the filler material, the first metal structure and the second metal structure to provide a weld.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: November 11, 2014
    Assignee: UT-Battelle, LLC
    Inventor: Weiju Ren
  • Patent number: 8877347
    Abstract: A wear element for component subject to abrasive influences, for example in a region of a receiving element for bulk material, includes an element formed by a one-piece, approximately plate-shape molded body made of a wear resistant alloy. The molded body is configured not to be planar in any plane. The molded body has an approximately rectangular cross-section and includes longitudinal sides and lateral sides that are rounded sections flowing into each other.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: November 4, 2014
    Assignee: Caterpillar Global Mining HMS GmbH
    Inventor: Michael Dietrich
  • Patent number: 8871357
    Abstract: A method for generating a closed-pore metal foam and a component in which such a metal foam is used are provided. To form the metal foam having closed pores, the component is provided with a composite of metal particles that may have a layer of a blowing agent. Alternatively the metal and the blowing agent can also be arranged in layers of a sheet, or as a mixture of particles. A heat treatment is the applied whereby the blowing agent liberates a propellant gas, the blowing agent including fullerenes or nanotubes to which the blowing agent is chemically or physically bound. Due to the high temperature stability of the nanotubes or fullerenes, blowing agents may be thereby generated which liberate propellant gas at temperatures of above 1000 DEG C., such that even metals with high solidus temperatures of above 1000 DEG C. may be processed to metal foams.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: October 28, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Frank Heinrichsdorff, Jens Dahl Jensen, Ursus Krüger, Gabriele Winkler
  • Patent number: 8871363
    Abstract: Provided is a resistor film comprising vanadium oxide as a main component, wherein metal-to-insulator transition is indicated in the vicinity of room temperature in temperature variations of electric resistance, there is no hysteresis in a resistance change in response to temperature variations or the temperature width is small at less than 1.5K even if there is hysteresis, and highly accurate measurement can be provided when used in a bolometer. Upon producing the resistor film comprising vanadium oxide as a main component by treating a coating film of an organovanadium compound via laser irradiation or the like, a crystalline phase and a noncrystalline (amorphous) phase are caused to coexist in the resistor film.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: October 28, 2014
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Tetsuo Tsuchiya, Masami Nishikawa, Tomohiko Nakajima, Toshiya Kumagai, Takaaki Manabe
  • Publication number: 20140311769
    Abstract: A composite conductor 10, including an internal layer 11 having a conductive material A, the conductive material A having fatigue strength of at least 150 MPa after being subjected to 106 cycles of cyclic loading in a fatigue test, and an external layer 12 having a conductive material B, the external layer coating the internal layer 11, the conductive material B having tensile strength higher than that of the conductive material A, the tensile strength being at least 250 MPa, in which the composite conductor 10 has fracture resistance to a sudden load and impact as well as bending durability.
    Type: Application
    Filed: December 6, 2012
    Publication date: October 23, 2014
    Applicants: DYDEN CORPORATION, FUKUOKA PREFECTURAL GOVERNMENT, NATIONAL UNIVERSITY CORPORATION KUMAMOTO UNIVERSITY
    Inventors: Hiroyuki In, Fumiyo Annou, Daisuke Matsunaga, Hiromoto Kitahara, Shinji Ando, Masayuki Tsushida, Toshifumi Ogawa
  • Patent number: 8846216
    Abstract: A method for producing a cast metal piece and a cast metal piece are provided. An information element includes at least one piece of information. The information element is produced from a magnetizable material and the information is deposited n the magnetizable material and is cast into the information element during casting of the price, the casting temperature being above the Curie temperature of the magnetizable material of the information element.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: September 30, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Rene Jabado, Jens Dahl Jensen, Ursus Krüger, Daniel Körtvelyessy, Richard Matz, Ralph Reiche, Michael Rindler, Steffen Walter
  • Patent number: 8827141
    Abstract: The present invention relates to a process and a device for joining precious metal sheets (1,4) to form structural parts, and to the products (1,4) made by the process.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: September 9, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Rudolf Singer, Stefan Zeuner, Bernd Weber, Joerg Kopatz