Alternative Base Metals From Diverse Categories Patents (Class 428/656)
  • Patent number: 5079102
    Abstract: A tool comprising a blank and shank, bonded at a low temperature through a bonding layer of gold formed by thermocompression bonding between the blank and shank is provided which can be used at a high temperature independently of the temperature at which the blank and shank were bonded.
    Type: Grant
    Filed: July 12, 1990
    Date of Patent: January 7, 1992
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Katsuyuki Tanaka, Yoshiaki Kumazawa, Nobuo Urakawa
  • Patent number: 5043230
    Abstract: Disclosed is a multi-layered zinc-manganese alloy coating electrodeposited on sheet steel. The alloy layer closest to the surface of the sheet steel has a composition of at least 50% manganese while the composition of the other alloy layers farther removed from the surface of the sheet steel have less than 50% manganese.
    Type: Grant
    Filed: May 11, 1990
    Date of Patent: August 27, 1991
    Assignee: Bethlehem Steel Corporation
    Inventors: Vijay Jagannathan, Herbert E. Townsend
  • Patent number: 5019459
    Abstract: A high temperture, bimetallic cylinder of either ASTM 193B-16 carbon steel or duplex stainless steel having a wear and corrosion resistant inlay or liner of a nickel-based alloy containing 1.5 to 4.5% carbon, 1.5 to 3.5% silicon, 1.0 to 3.0% boron, up to 7.0% chromium, up to 15% iron, 1.0 to 6.0% cobalt and 30 to 60% tungsten. The inlay is centrifugally cast within the cylinder which is thermally compatible with the inlay such that it retains a high yield strength after casting.
    Type: Grant
    Filed: April 5, 1990
    Date of Patent: May 28, 1991
    Assignee: Xaloy Incorporated
    Inventors: Schiao F. Chou, Willie Roberson
  • Patent number: 5013614
    Abstract: Disclosed is a surface treated steel plate for cans prepared by drawing and ironing (DI process). In order to enable the manufactured can to maintain a good weatherability and a high corrosion resistance, an Al-Sn alloy film having a thickness of 0.05 to 5.0 .mu.m is formed on at least that surface of a steel plate which faces the outside when the steel plate is drawn to have a cup shape.
    Type: Grant
    Filed: May 30, 1990
    Date of Patent: May 7, 1991
    Assignee: NKK Corporation
    Inventors: Yoshihiko Yasue, Hiroshi Kagechika
  • Patent number: 5008160
    Abstract: Adherent metal coatings of metals that cannot be adherently applied directly onto a desired substrate metal by chemical vapor deposition at a temperature below about 300.degree. C. are obtained by applying an adherent metal undercoating to the surface of the metal substrate which weakly or not at all chemisorbs carbon monoxide, then applying the desired outercoat metal to the undercoated substrate by chemical vapor deposition, using a heat decomposable metal carbonyl as the source of the desired outer coating metal. The undercoating metal may be applied by conventional plating processes such as electroplating or electroless plating. In preferred embodiments, the substrate is iron or steel or their alloys, the undercoating metal is copper, and the outer coating metal is a ferrous metal, i.e., nickel, iron, or cobalt.
    Type: Grant
    Filed: April 12, 1990
    Date of Patent: April 16, 1991
    Inventor: William C. Jenkin
  • Patent number: 4892776
    Abstract: An improved circuit board material having a support layer, an electrical resistance layer and a conductive layer. The circuit board material has a resistance of at least about 500 ohms/square. The circuit board material is formed by electro-plating the electrical resistance layer on the conductive layer. The conductive layer is desirably activated prior to electro-deposition of the electrical resistance layer thereon. The conductive layer is activated by contacting with an activating agent such as benzotriazole electrolytic chromate and the like. A preferred electro-plating bath for electro-deposition of the electrical resistance layer comprises about 0.5 mole per liters nickel hypophosphite. The disclosed electro-plating bath functions at ambient temperatures and is effectively temperature independent. Circuit boards can be formed from the circuit board material through a process involving only two etching steps.
    Type: Grant
    Filed: September 2, 1987
    Date of Patent: January 9, 1990
    Assignee: Ohmega Electronics, Inc.
    Inventor: James H. Rice
  • Patent number: 4795654
    Abstract: An improved shielding structure for providing shielding from X-ray and gamma radiation, containing at least two, and possibly three layers of material, provided in specific order from the side in which X-ray or gamma radiation is received. The first layer in order has K-edge and L.sub.I -edge levels of a first range. The second layer in order has K-edge levels between the K-edge and L.sub.I -edge levels, and lower than a secondary radiation level which is emitted by the first layer. A third layer in order has K-edge levels between the K-edge and L.sub.I -edge levels of the second layer. Materials such as uranium, lead, and gold, among others, may be used in the first layer. Materials such as tin and indium, among others, may be used in the second layer. Materials such as zinc, copper, nickel, and chromium, among others, may be used in the third layer.
    Type: Grant
    Filed: October 2, 1986
    Date of Patent: January 3, 1989
    Assignee: INNOFINANCE Altalanos Innovacios Penzintezet
    Inventor: Peter Teleki
  • Patent number: 4743514
    Abstract: A coating for protecting the surfaces of gas turbine components such as single crystal turbine blades and vanes, wherein the coating has a composition (in weight percent) consisting essentially of chromium, 15-35; aluminum, 8-20; tantalum, 0-10; tantalum plus niobium, 0-10; silicon, 0.1-1.5; hafnium, 0.1-1.5; yttrium, 0-1; cobalt, 0-10; and nickel, balance totalling 100 percent. A preferred coating, which is particularly desirable for use with single-crystal turbine blades and vanes, has a composition consisting essentially of chromium, 17-23; aluminum, 10-13; tantalum plus niobium, 3-8; silicon, 0.1-1.5; hafnium, 0.1-1.5; yttrium, 0-0.8; cobalt, 0-trace; and nickel, balance totalling 100 percent. A process for preparing the coated component is also described.
    Type: Grant
    Filed: June 29, 1983
    Date of Patent: May 10, 1988
    Assignee: Allied-Signal Inc.
    Inventors: Thomas E. Strangman, Steven J. Vonk
  • Patent number: 4585481
    Abstract: Improved coating compositions are described for the protection of superalloys at elevated temperatures. The coatings are of the MCrAlY type where M is nickel or cobalt and are significantly improved by the addition of from 0.1-7% silicon and 0.1-2% hafnium. Coatings of the invention are preferably applied by plasma spraying and as so applied are found to be substantially more effective than prior art coatings.
    Type: Grant
    Filed: August 22, 1983
    Date of Patent: April 29, 1986
    Assignee: United Technologies Corporation
    Inventors: Dinesh K. Gupta, David S. Duvall
  • Patent number: 4536455
    Abstract: A centrifugally cast double-layer tube with resistance to carbon deposition, comprising an inner layer of a specific metallic material containing 1-10 wt % of Al and an outer layer of a heat resisting metallic material, can be applied to apparatuses for treating a fluid, containing hydrocarbons, their derivatives, or carbon monoxide, at elevated temperatures and to piping for transferring the fluid without carbon deposition on its inside surface, because the surface of said inner layer is oxidized to form a firm Al-containing oxide film prior to and/or during the treatment of the fluid, and also a sufficient strength and ductility of the tube are preserved by the support of the outer layer of said tube.
    Type: Grant
    Filed: July 26, 1983
    Date of Patent: August 20, 1985
    Assignees: JGC Corporation, Taihei Kinzoku Kogyo Co., Ltd.
    Inventors: Keikichi Maeda, Takahiro Iijima, Eiichi Sato
  • Patent number: 4535033
    Abstract: An oxide thermal barrier coating comprises ZrO.sub.3 --Yb.sub.2 O.sub.3 that is plasma sprayed onto a previously applied bond coating. The zirconia is partially stabilized with about 12.4 w/o ytterbia to insure cubic, monoclinic, and tetragonal phases.
    Type: Grant
    Filed: August 14, 1984
    Date of Patent: August 13, 1985
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Stephan Stecura
  • Patent number: 4515869
    Abstract: Hardfacing of metal parts employing a thin, homogeneous, ductile foil is disclosed. The hardfacing foil has a composition consisting essentially of 0 to about 25 atom percent cobalt, 0 to about 20 atom percent iron, 0 to about 15 atom percent chromium, 0 to about 16 atom percent tungsten, 0 to about 5 atom percent molybdenum, about 2 to about 20 atom percent boron, 0 to about 10 atom percent silicon and 0 to about 5 atom percent carbon, the balance being nickel and incidental impurities with the proviso that the total of iron, cobalt, nickel, chromium, tungsten and molybdenum ranges from about 70 to 88 atom percent and the total of boron, silicon and carbon ranges from about 12 to 30 atom percent. The ductile hardfacing foil permits continuous hardfacing of soft matrix, like low carbon and low alloy steels, and imparts superior resistance to wear and corrosion.
    Type: Grant
    Filed: July 21, 1983
    Date of Patent: May 7, 1985
    Assignee: Allied Corporation
    Inventors: Debasis Bose, Amitava Datta, Nicholas J. DeCristofaro, Claude Henschel
  • Patent number: 4515868
    Abstract: Hardfacing of metal parts employing a thin, homogeneous, ductile foil is disclosed. The hardfacing foil has a composition consisting essentially of 0 to about 32 atom percent nickel, 0 to about 10 atom percent iron, 0 to about 30 atom percent chromium, 0 to about 2 atom percent tungsten, 0 to about 4 atom percent molybdenum, about 5 to about 25 atom percent boron, 0 to about 15 atom percent silicon and 0 to about 2 atom percent manganese and 0 to 5 atom percent carbon the balance being cobalt and incidental impurities with the proviso that the total of iron, cobalt, nickel, chromium, tungsten and molybdenum ranges from about 70 to 88 atom percent and the total of boron, silicon and carbon ranges from about 12 to 30 atom percent. The ductile foil permits continuous hardfacing of soft matrix, like low carbon and low alloy steels, imparting superior resistance to wear and corrosion.
    Type: Grant
    Filed: July 21, 1983
    Date of Patent: May 7, 1985
    Assignee: Allied Corporation
    Inventors: Debasis Bose, Amitava Datta, Nicholas J. DeChristofaro, Claude Henschel
  • Patent number: 4515870
    Abstract: Hardfacing of metal parts employing a thin, homogeneous ductile foil is disclosed. The hardfacing foil has a composition consisting essentially of about 0 to about 25 atom percent cobalt, 0 to about 30 atom percent nickel, 0 to about 30 atom percent chromium, 0 to about 5 atom percent tungsten, 0 to about 4 atom percent molybdenum, about 2 to about 25 atom percent boron, 0 to about 15 atom percent silicon, and 0 to about 5 atom percent carbon, the balance being iron and incidental impurities with the proviso that the total or iron, cobalt, nickel, chromium, tungsten and molybdenum ranges from about 70 to 88 atom percent and the total of boron, silicon and carbon ranges from about 12 to 30 atom percent. The ductile foil permits continuous hardfacing of soft matrix, like low carbon and low alloy steels, imparting superior resistance to wear and corrosion.
    Type: Grant
    Filed: September 19, 1984
    Date of Patent: May 7, 1985
    Assignee: Allied Corporation
    Inventors: Debasis Bose, Amitava Datta, Nicholas J. DeCristofaro, Claude Henschel
  • Patent number: 4485151
    Abstract: This invention relates to a high temperature oxidation resistant thermal barrier coating system for a nickel-, cobalt-, or iron-base alloy substrate. An inner metal bond coating contacts the substrate, and a thermal barrier coating covers the bond coating.NiCrAlR, FeCrAlR, and CoCrAlR alloys have been satisfactory as bond coating compositions where R=Y or Yb. These alloys contain, by weight, 24.9-36.7% chromium, 5.4-18.5% aluminum, and 0.05 to 1.55% yttrium or 0.05 to 0.53% ytterbium. The coatings containing ytterbium are preferred over those containing yttrium.An outer thermal barrier coating of partially stabilized zirconium oxide (zirconia) which is between 6% and 8%, by weight, of yttrium oxide (yttria) covers the bond coating. Partial stabilization provides a material with superior durability. Partially stabilized zirconia consists of mixtures of cubic, tetragonal, and monoclinic phases.
    Type: Grant
    Filed: August 16, 1983
    Date of Patent: November 27, 1984
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventor: Stephan Stecura
  • Patent number: 4485148
    Abstract: Chromium boron diffusion coatings on nickel iron alloys uniquely provide them with improvement in high cycle fatigue strength (up to 30%) and erosion resistance (up to 15 times), compared to uncoated alloy. The diffused chromium layer extends in two essential concentration zones to a total depth of about 40.times.10.sup.-6 m, while the succeeding boron layer is limited to 50-90% of the depth of the richest Cr layer nearest the surface. Both coatings are applied using conventional pack diffusion processes.
    Type: Grant
    Filed: July 8, 1983
    Date of Patent: November 27, 1984
    Assignee: United Technologies Corporation
    Inventors: James M. Rashid, Leonard A. Friedrich, Melvin Freling
  • Patent number: 4477538
    Abstract: A coating for nickel/cobalt base alloys used in gas turbine constructions comprises a platinum metal underlayer, an intermediate MCrAlY layer, and a platinum metal overlayer. The platinum type metal is selected from the group consisting of platinum, rhodium, palladium and/or iridium. The MCrAlY material consists of yttrium (Y), aluminum (Al), chromium (Cr) and a balance represented by the letter (M) and selected from the group cobalt, iron and nickel.
    Type: Grant
    Filed: February 17, 1981
    Date of Patent: October 16, 1984
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Robert L. Clarke
  • Patent number: 4452864
    Abstract: A magnetic recording medium comprises a substrate and a magnetic recording layer formed on the substrate and having an easy magnetization axis in the perpendicular direction to the surface of the medium, characterized in that said magnetic recording layer is composed of from 75 to 90% by weight of Co, at most 15% by weight of Mo and the rest being V and unavoidable impurities.
    Type: Grant
    Filed: September 16, 1982
    Date of Patent: June 5, 1984
    Assignee: TDK Electronics Co., Ltd.
    Inventors: Yoshimi Kitahara, Kazumasa Fukuda, Fumio Maruta
  • Patent number: 4451972
    Abstract: Electronic chip having a composite stratified metal back and method of making it in which strata of metal and/or metal alloys are deposited on the back of the silicon base or a wafer carrying a plurality of circuit components on its face at least one of the strata being resistant to passage of copper at attaching and operational temperatures, and a stratum of solder is provided on the surface of the previously deposited strata for joining the chip to a lead frame.
    Type: Grant
    Filed: April 12, 1982
    Date of Patent: June 5, 1984
    Assignee: National Semiconductor Corporation
    Inventor: Victor A. Batinovich
  • Patent number: 4447503
    Abstract: Coatings for iron-, nickel- and cobalt-base superalloys and the resulting coated components having good high temperature oxidation resistance. The coatings consist essentially of, by weight, 5% to 50% chromium, 3% to 30% aluminum, 0.01% to 15% tantalum, up to 10% manganese, up to 5% tungsten, up to 12% silicon, up to 10% hafnium, up to 5% reactive metal from the group consisting of lanthanum, yttrium, and other rare earth elements, up to 5% of rare earth and/or refractory metal oxide particles, and the balance selected from the group consisting of nickel, cobalt and iron, and combinations thereof. Additions of titanium up to 5% and noble metals up to 15% are also contemplated.
    Type: Grant
    Filed: March 31, 1981
    Date of Patent: May 8, 1984
    Assignee: Howmet Turbine Components Corporation
    Inventors: Louis E. Dardi, Srinivasan Shankar
  • Patent number: 4446196
    Abstract: Method for hard facing iron or iron base alloy substrates using as a hard facing material a solid composition consisting essentially of grains of vanadium carbide having in solid solution from about 10 to 50% by weight tungsten, and containing from about 0.5 to 5% by weight manganese and 0 to 3% by weight copper in the grain boundaries.
    Type: Grant
    Filed: June 28, 1982
    Date of Patent: May 1, 1984
    Assignee: Union Carbide Corporation
    Inventor: Harry J. Brown
  • Patent number: 4430387
    Abstract: A base plate for magnetic recording disc is produced by coating thin metal layers containing no impurities for forming defects by an anodizing treatment on one or both sides of a discoid substrate made of a metal such as aluminum or an aluminum alloy or from a plastic by a dry process, and anodizing the thin metal layers so as to form anodized film from the surfaces of the thin metal layers to a certain depth while the portions contacting to the substrate are retained not anodized.
    Type: Grant
    Filed: November 12, 1980
    Date of Patent: February 7, 1984
    Assignee: Hitachi, Ltd.
    Inventors: Nobuo Nakagawa, Yoshiki Kato, Katsuo Abe, Takao Edamura, Takao Nakamura
  • Patent number: 4429019
    Abstract: A heat resistant machine component, e.g. a gas turbine blade, a vane or the like, for use in a hot-gas atmosphere, especially under dynamic mechanical strain. The engine component comprises a core body consisting of a heat resistant material and a surface layer sprayed thereon and constituted by a composite material. The composite material consists on the one hand of an alloy component containing 1 to 12% Al, namely preferably 3 to 8% Al, 10 to 30% Cr, small quantities of one or more elements in the group Si, Mn, Co, Y and Hf, and the balance Fe, and on the other hand a small quantity of an oxide component containing Al.sub.2 O.sub.3 and possibly one or more oxides of the remaining metals of the alloy component, wherein the pores and the oxide component form elongated, narrow regions, which partly surround or cover the alloy component. The surface layer is applied by flame or arc spraying under a controlled minor oxidation.
    Type: Grant
    Filed: January 21, 1981
    Date of Patent: January 31, 1984
    Assignee: Bulten-Kanthal AB
    Inventor: Nils G. Schrewelius, deceased
  • Patent number: 4419416
    Abstract: Improved coating compositions are described for the protection of superalloys at elevated temperatures. The coatings are of the MCrAlY type where M is nickel or cobalt and are significantly improved by the addition of from 0.1-7% silicon and 0.1-2% hafnium. Coatings of the invention are preferably applied by plasma spraying and as so applied are found to be substantially more effective than prior art coatings.
    Type: Grant
    Filed: August 5, 1981
    Date of Patent: December 6, 1983
    Assignee: United Technologies Corporation
    Inventors: Dinesh K. Gupta, David S. Duvall
  • Patent number: 4417097
    Abstract: A low porosity coating comprised of at least two layers of material or composites capable of protecting a metal substrate from the corrosive effects of a chlorine-metal chloride environment at temperature values ranging up to 650.degree. C. The first of the two layers has a coefficient of thermal expansion that lies between the metal of the substrate and that of a metal oxide(s) layer disposed upon the first layer. A layer of metal oxide is disposed on the first layer, the metal oxide having a coefficient of expansion somewhat less than the first layer and a minimum solubility in the chlorine-chloride environment. The material or composite of the first layer and the metal oxide of the oxide layer are applied by a technique which sprays particles of the material or composite and metal oxide(s) against a surface at relatively high velocities and temperatures.
    Type: Grant
    Filed: June 4, 1981
    Date of Patent: November 22, 1983
    Assignee: Aluminum Company of America
    Inventor: Subodh K. Das
  • Patent number: 4415635
    Abstract: A multifiber electrical brush formed of an electrically conductive matrix material having plural electrically conducting fiber wires embedded therein and extending therefrom, wherein the fiber wires have a diameter varying from 1 to 120.mu.m, a length on the order of 100 times greater than the diameter thereof, and a packing density between 1-25%. Suitable materials for the fiber wires are platinum, gold, silver, copper, palladium, or niobium which may be embedded in a copper, silver, or other suitable matrix material, or copper embedded in an aluminum matrix. The fiber wires may be provided with a coating of a suitable barrier material on the lateral surfaces thereof as may be required to protect the fiber wires from etching during removal of the matrix material, or to prevent and/or retard interdiffusion between the matrix material and the fiber wire material during annealing or hot-forming of brush stock, and/or to impart improved electrical performance to the resultant electrical brush.
    Type: Grant
    Filed: April 9, 1980
    Date of Patent: November 15, 1983
    Assignee: The University of Virginia
    Inventors: Doris Wilsdorf, Heinz G. F. Wilsdorf, Charles M. Adkins, III
  • Patent number: 4411963
    Abstract: A thin film of magnetic recording material is sputter deposited over a base layer of gold and tantalum on a polished substrate. A protective layer of gold and tantalum is deposited overlaying the magnetic recording film. A solid lubricant layer such as carbon, preferably in the form of graphite, gold, silver, tin, molybdenum disulfide, and tungsten disulfide is sputter deposited or ion plated over the protective layer to reduce wear. The recording contacting portion of the recording head is similarly coated with a solid lubricant material. Other suitable protective materials include tantalum, niobium, tungsten and nitrides and carbides of such metals. In a preferred method for making such recording members, the layers are successively sputter deposited in an evacuated sputter chamber, whereby the recording layers and protective coatings are formed in a continuous process requiring only one pump down.
    Type: Grant
    Filed: July 6, 1981
    Date of Patent: October 25, 1983
    Inventor: Harry E. Aine
  • Patent number: 4385943
    Abstract: The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.
    Type: Grant
    Filed: October 21, 1981
    Date of Patent: May 31, 1983
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Victor M. Hovis, Jr., William C. Pullen, Thomas G. Kollie, Richard T. Bell
  • Patent number: 4371589
    Abstract: An article of improved wear characteristics and composed of a relatively low wear resistant base metal coated by a particulate refractory metal having a melting point of at least 1490.degree. C. deposited within the near-surface region thereof comprising a base metal or alloy of relatively low wear resistance, a refractory metal deposited within said near-surface region, said refractory metal being selectively deposited in the form of discrete particles, and the particles being idiomorphic or blocky or equiaxial or spheroidal or acicular or dendritic and a plurality of these particles having dimensions of less than 10 micrometers, a plurality of the particles being contiguous to form clusters of the particles that are spaced from each other. The clusters of particles may form microscopic regions of refractory metal which in turn may produce macroscopic regions of refractory metal having the appearance of a continuous coating.
    Type: Grant
    Filed: April 20, 1979
    Date of Patent: February 1, 1983
    Assignee: Warner London Inc.
    Inventors: Joshua B. Warner, James S. Wolf
  • Patent number: 4298661
    Abstract: A surface treated steel materials coated with manganese having a film of MmOOH (manganic hydroxide) formed thereon, which show excellent corrosion resistance, workability and weldability. The surface treated steel materials may be further coated with zinc as a base coating underlying the manganese coating or further coated with a coating of at least one selected from the group consisting of P, B, Si, Cu, Mn, Cr, Ni, Co, Fe, Zn, Al, Ca, Mg, Ti, Pb, Sn, inorganic carbon and their compounds and still further coated with an organic coating. The film of MmOOH (manganic hydroxide) is formed by a treatment in an aqueous solution containing Cr.sup.6+.
    Type: Grant
    Filed: June 1, 1979
    Date of Patent: November 3, 1981
    Assignee: Nippon Steel Corporation
    Inventors: Teruo Ikeno, Satoshi Kado, Saburo Ayusawa, Hironobu Kawasaki, Takashi Watanabe
  • Patent number: 4277540
    Abstract: A thin film of magnetic recording material is sputter deposited over a base layer of gold and tantalum on a polished substrate. A protective layer of gold and tantalum is deposited overlaying the magnetic recording film. A solid lubricant layer such as carbon, preferably in the form of graphite, gold, silver, tin, molybdenum disulfide, and tungsten disulfide is sputter deposited or ion plated over the protective layer to reduce wear. The recording contacting portion of the recording head is similarly coated with a solid lubricant material. Other suitable protective materials include tantalum, niobium, tungsten and nitrides and carbides of such metals. In a preferred method for making such recording members, the layers are successively sputter deposited in an evacuated sputter chamber, whereby the recording layers and protective coatings are formed in a continuous process requiring only one pump down.
    Type: Grant
    Filed: October 29, 1976
    Date of Patent: July 7, 1981
    Inventor: Harry E. Aine
  • Patent number: 4254189
    Abstract: A structure and method for manufacturing said structure are disclosed for producing a surface of improved smoothness. The result is achieved by applying to the substrate a layer of low melting point metal or low melting point glass and elevating the composite structure to the melting point of said low melting point metal or low melting point glass. The said metal or glass thereupon spreads to a smooth surface of greatly improved roughness.
    Type: Grant
    Filed: July 5, 1979
    Date of Patent: March 3, 1981
    Assignee: Memorex Corporation
    Inventor: Robert D. Fisher
  • Patent number: 4224382
    Abstract: Method for hard-facing metal substrates is disclosed using a hard facing material consisting essentially of combined vanadium, tungsten and carbon and from about 5 to about 40% by weight of chromium carbide with up to 15% by weight in the aggregate of cobalt, iron, molybdenum and nickel.
    Type: Grant
    Filed: January 26, 1979
    Date of Patent: September 23, 1980
    Assignee: Union Carbide Corporation
    Inventors: Harry J. Brown, Kuldip S. Chopra
  • Patent number: 4210389
    Abstract: A solid state laser rod and a mount through which heat is dissipated from the rod are joined together at a bond comprised of a reflective layer on the surface of the rod, a barrier layer over the reflective layer, and a solder layer between the barrier layer and the mount. The reflective layer may be applied by sputter or other deposition procedures and is highly reflective in the region of the spectrum at which the laser operates, thus insuring optimum efficiency for the rod. The barrier layer may be applied to the reflective layer by the same deposition procedure, and it is impervious to the solder so that the solder does not penetrate it and scavenge the reflective layer. The solder should have a low melting point so as to avoid setting up excessive mechanical stresses in the rod when the solder solidifies. Both the mount and the barrier layer may be covered with a wetting layer prior to soldering to achieve better adhesion of the solder.
    Type: Grant
    Filed: November 14, 1978
    Date of Patent: July 1, 1980
    Assignee: McDonnell Douglas Corporation
    Inventors: Gordon H. Burkhart, Robert R. Rice, James R. Teague
  • Patent number: 4188458
    Abstract: Steel surfaces are protected from erosion and corrosion by a coating which includes at least three metallic layers of increasing normal potential from the base layer lying on the steel surface to that layer farthest from the steel surface. Also, the base layer immediately adjacent the steel surface has approximately the same normal potential as the steel surface.
    Type: Grant
    Filed: April 6, 1977
    Date of Patent: February 12, 1980
    Assignee: Stal-Laval Turbin AB
    Inventors: Evald Hugosson, Anders Kullendorf
  • Patent number: 4164607
    Abstract: High stability thin film resistors are made from an alloy comprising selected portions of nickel, chromium, and gold selected in a ratio to provide the desired temperature coefficient of resistance (TCR). The resistors are made by co-depositing gold with the nickel chromium alloy by a flash evaporation process. The evaporation process is carried out by feeding a nickel chromium wire, having a gold wire extending therealong to provide the desired composition, onto a heated tungsten strip within a vacuum system with substrates disposed in a position to obtain uniform deposition of the evaporated material thereon.
    Type: Grant
    Filed: April 4, 1977
    Date of Patent: August 14, 1979
    Assignee: General Dynamics Corporation Electronics Division
    Inventors: Ronald A. Thiel, Edward H. Maurer
  • Patent number: 4124736
    Abstract: It is known to manufacture a recording member having a substrate supporting a magnetic recording alloy on a surface and to locate a protective covering on the surface of the alloy remote from the substrate. An improved protective covering for use in this combination comprises a barrier layer located on the surface of the recording alloy and an oxide layer located on the surface of the barrier layer remote from the recording alloy. The barrier layer preferably consists of a nonmagnetic material. The oxide layer is also nonmagnetic and is sufficiently thick to protect the magnetic alloy layer against surface abrasion. The barrier layer isolates the oxide layer from the magnetic recording layer so as to preserve the character and uniformity of the magnetic recording layer as the oxide layer is created.
    Type: Grant
    Filed: October 29, 1974
    Date of Patent: November 7, 1978
    Assignee: Poly-Disc Systems, Inc.
    Inventors: Pravin K. Patel, David H. Johnston, John Makaeff
  • Patent number: 4101713
    Abstract: A flame sprayed high energy milled powder coated article comprising a superalloy substrate and a coating consisting of chromium and at least one element selected from iron, cobalt or nickel. Optionally the coating can contain other elements, e.g., aluminum, carbon, yttrium or the rare earth elements.
    Type: Grant
    Filed: January 14, 1977
    Date of Patent: July 18, 1978
    Assignee: General Electric Company
    Inventors: Harold H. Hirsch, John R. Rairden, III
  • Patent number: 4091173
    Abstract: A novel fastening means of a highly corrosion resistant nature and presenting a bright chrome-like outer appearance.
    Type: Grant
    Filed: February 1, 1974
    Date of Patent: May 23, 1978
    Assignee: M.C.P. Industries, Inc.
    Inventor: Jacob M. Hage
  • Patent number: 4087589
    Abstract: An article having an outer surface and an inner cavity, such as a hole or channel with a metallic inner surface, is provided with an inner metallic coating on the inner surface and, in one form, an outer metallic coating on the outer surface. The inner coating is provided as a result of decomposition and subsequent thermal homogenization of one or more organic compounds including Al, Cr or Ni or alloys including one or more of those elements. The outer coating can be the same as the inner coating or can be a metallic coating of one of a variety of known metallic coatings.
    Type: Grant
    Filed: November 19, 1976
    Date of Patent: May 2, 1978
    Assignee: General Electric Company
    Inventor: Irwin I. Bessen
  • Patent number: 4041196
    Abstract: In the pack diffusion coating of chromium into the surface of a superalloy, the formation of undesirable oxide inclusion is reduced when the diffusion coating pack contains at least about 3% Ni.sub.3 Al. Also the formation of alpha-chromium is reduced when the pack diffusion is carried out in a retort effectively not over five inches in height. Pack aluminizing in the presence of chromium makes a very effective aluminum- and chromium-containing top coating over platinum plated or platinum coated nickel-base superalloys. Aluminized nickel can also have its aluminum attacked and at least partially removed with aqueous caustic to leave a very highly active catalytic surface. Pack diffusion can also be arranged to simultaneously provide different coatings in different locations by using different pack compositions in those locations. An aluminizing pack containing a large amount of chromium provides a thinner aluminized case than an aluminizing pack containing less chromium, or less chromium and some silicon.
    Type: Grant
    Filed: May 13, 1975
    Date of Patent: August 9, 1977
    Assignee: Alloy Surfaces Company, Inc.
    Inventors: Alfonso L. Baldi, Victor V. Damiano
  • Patent number: 4022587
    Abstract: Nickel and cobalt base alloy articles are provided coated with a composition consisting essentially of about 20-60% chromium, 6-11% aluminum, 0.01-2.0% of a reactive metal such as yttrium, lanthanum or cerium and the balance nickel.
    Type: Grant
    Filed: September 8, 1975
    Date of Patent: May 10, 1977
    Assignee: Cabot Corporation
    Inventor: Stanley T. Wlodek
  • Patent number: RE32121
    Abstract: Improved coating compositions are described for the protection of superalloys at elevated temperatures. The coatings are of the MCrAlY type where M is nickel or cobalt and are significantly improved by the addition of from 0.1-7% silicon and 0.1-2% hafnium. Coatings of the invention are preferably applied by plasma spraying and as so applied are found to be substantially more effective than prior art coatings.
    Type: Grant
    Filed: April 24, 1984
    Date of Patent: April 22, 1986
    Assignee: United Technologies Corporation
    Inventors: Dinesh K. Gupta, David S. Duvall
  • Patent number: RE32464
    Abstract: A thin film of magnetic recording material is sputter deposited over a base layer of gold and tantalum on a polished substrate. A protective layer of gold and tantalum is deposited overlaying the magnetic recording film. A solid lubricant layer such as carbon, preferably in the form of graphite, gold, silver, tin, molybdenum disulfide, and tungsten disulfide is sputter deposited or ion plated over the protective layer to reduce wear. The recording contacting portion of the recording head is similarly coated with a solid lubricant material. Other suitable protective materials include tantalum, niobium, tungsten and nitrides and carbides of such metals. In a preferred method for making such recording members, the layers are successively sputter deposited in an evacuated sputter chamber, whereby the recording layers and protective coatings are formed in a continuous process requiring only one pump down.
    Type: Grant
    Filed: April 16, 1986
    Date of Patent: July 28, 1987
    Inventor: Harry E. Aine