Layer Contains Compound(s) Of Plural Metals Patents (Class 428/697)
  • Publication number: 20130149528
    Abstract: Some aspects of the invention provide an oxide substrate having a flat surface at the atomic layer level, and suited to forming a thin film of a perovskite manganese oxide. One aspect of the invention provides a single-crystal oxide substrate 10 having a single-crystal supporting substrate 1 of (210)-oriented SrTiO3 and a single-crystal underlayer 2 of (LaAlO3)0.3—(SrAl0.5Ta0.5O3)0.7, which is LSAT, formed on the (210) plane surface of the supporting substrate. In another aspect of the present invention, the LSAT underlayer 2A is formed in an amorphous state. Other aspects of the invention are also disclosed.
    Type: Application
    Filed: February 12, 2013
    Publication date: June 13, 2013
    Applicant: FUJI ELECTRIC CO., LTD.
    Inventor: FUJI ELECTRIC CO., LTD.
  • Publication number: 20130149555
    Abstract: An object of the present invention is to manufacture a long transparent conductive film comprising a transparent film substrate and a crystalline indium composite oxide film formed on the transparent film substrate. The manufacturing method of the present invention includes an amorphous laminate formation step of forming an amorphous film of an indium composite oxide containing indium and a tetravalent metal on the long transparent film substrate with a sputtering method, and a crystallization step of continuously feeding the long transparent film substrate on which the amorphous film is formed into a furnace and crystallizing the amorphous film. The temperature inside the furnace in the crystallization step is preferably 170 to 220° C. The change rate of the film length in the crystallization step is preferably +2.5% or less.
    Type: Application
    Filed: July 6, 2011
    Publication date: June 13, 2013
    Applicant: NITTO DENKO CORPORATION
    Inventors: Yuka Yamazaki, Tomotake Nashiki, Hideo Sugawara, Hironobu Machinaga, Eri Sasaki
  • Patent number: 8460796
    Abstract: A composite body that is spall resistant and comprises a substantially discontinuous cermet phase in a substantially continuous metal rich matrix phase. The composite body is typically bonded to a substrate to form a hardfacing on the substrate. The composite body exhibits ductile phase toughening with a strain to failure of at least about 2 percent, a modulus of elasticity of less than about 46 million pounds per square inch, and a density of less than about 7 grams per cubic centimeter. The metal rich matrix phase between the ceramic rich regions in the composite body has an average minimum span of about 0.5 to 8 microns to allow ductility in the composite body. The composite body has a Vicker's hardness number of greater than approximately 650. The discontinuous cermet phase is in the form of ceramic rich regions embedded within the composite body, and it includes ceramic particles and a cermet binder. The ceramic particles having a Moh's hardness of at least approximately 7.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: June 11, 2013
    Assignee: Mesocoat, Inc.
    Inventor: Andrew J. Sherman
  • Patent number: 8460803
    Abstract: Disclosed is a crystalline hard coating layer having no cracks, which exhibits both high hardness and excellent wear resistance at the same time. A method for forming the hard coating layer is also disclosed. A crystalline hard coating layer (3) coating a substrate (2) is formed by a PVD method, and contains Si and C as essential components, while containing an element M (which is one or more elements selected from among group 3A elements, group 4A elements, group 5A elements, group 6A elements, B, Al and Ru) and N as optional components. The crystalline hard coating layer (3) has the following composition: SixC1-x-y-zNyMz (where 0.4?x?0.6, 0?y?0.1, and 0?z?0.2).
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: June 11, 2013
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, Iscar Ltd.
    Inventors: Kenji Yamamoto, Albir A. Layyous
  • Publication number: 20130143018
    Abstract: Coated polymer compositions having improved dielectric strength are disclosed. The coated polymer compositions can comprise a polymer substrate and an inorganic material. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 6, 2013
    Applicant: Sabic Innovative Plastics IP B.V.
    Inventor: Sabic Innovative Plastics IP B.V.
  • Patent number: 8455116
    Abstract: The present invention relates to PVD coated cemented carbide cutting tool inserts semifinishing and finishing metal cutting operations. The cemented carbide cutting tool insert comprises a substrate and a wear resistant coating. The substrate comprises in addition to WC, from about 5.5 to about 8.5 wt-% Co and Cr such that the Cr/Co weight ratio is from about 0.08 to about 0.12 and also small amounts of Ti and Ta. The wear resistant coating is a homogeneous AlxTi1?xN-layer with x equals from about 0.6 to about 0.67. The thickness of this layer is from about 1 to about 3.8 ?m.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: June 4, 2013
    Assignee: Sandvik Intellectual Property AB
    Inventors: Pierre Donnadieu, Susanne Norgren
  • Publication number: 20130136951
    Abstract: Provided is a piezoelectric thin film including a non-lead-containing (that is, lead-free) ferroelectric material and having high piezoelectric performance comparable to that of PZT, and a method of manufacturing the piezoelectric thin film. The piezoelectric film according to the present invention comprises a laminate structure. The laminate structure comprises an electric film and a (1-x)(Na,Bi)TiO3-xBaTiO3 film. x represents a value of not less than 0.03 and not more than 0.15. The (1-x)(Na,Bi)TiO3-xBaTiO3 film has a (110) surface orientation only. The (1-x)(Na,Bi)TiO3-xBaTiO3 film has an orthorhombic crystal structure only.
    Type: Application
    Filed: December 31, 2012
    Publication date: May 30, 2013
    Applicant: PANASONIC CORPORATION
    Inventor: Panasonic Corporation
  • Patent number: 8449992
    Abstract: Disclosed is a surface coated member having excellent adhesion resistance and fracture resistance. A surface coated member (1) comprises a coating layer (3) on the surface of a base (2). The coating layer (3) is composed of a multilayer body wherein a titanium carbonitride (TiCN) layer (4), a continuously existing intermediate layer (5) containing titanium, aluminum, carbon and oxygen and having an average film thickness of 5-30 nm, and an ?-aluminum oxide (Al2O3) layer (9) composed of aluminum oxide (Al2O3) having an ? crystal structure are sequentially formed by deposition.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: May 28, 2013
    Assignee: KYOCERA Corporation
    Inventors: Takahito Tanibuchi, Yoshikazu Kodama, Tsuyoshi Fukano
  • Patent number: 8449994
    Abstract: A thermal barrier coating is formed over the substrate. A majority of the thermal barrier coating comprises a multi-phase material comprising a polycrystalline material including two or more phases. Each phase forms an individual grain, adjacent individual grains are separated by grain boundaries, each phase comprises an oxide compound, the multi-phase material is formed from three or more constituents, the three or more constituents consist of different materials that are not completely soluble in each other, and the two or more phases are not completely soluble in each other and do not form only one compound.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: May 28, 2013
    Assignee: Honeywell International Inc.
    Inventor: Vladimir K. Tolpygo
  • Patent number: 8449991
    Abstract: Polycrystalline diamond compacts for use in artificial joints achieve reduced corrosion and improved biocompatibility through the use of solvent metal formulations containing tin and through the control of solvent metal pore size, particularly in inner layers of the compact. Solvent metal formulations containing tin have been discovered which provide sintering ability, part strength, and grind resistance comparable to levels achieved by using CoCrMo solvent metals. It has been discovered that limiting the solvent metal pore size in the diamond layers minimizes or eliminates the occurrence of micro cracks in the solvent metal and significantly reduces the corrosion of the compact as manifested by the release of heavy metal ions from the compact. Polycrystalline diamond compacts which utilize both the solvent metal formulations containing tin and the control of pore sizes achieve significantly reduced corrosion and improved biocompatibility compared to prior art polycrystalline diamond compacts.
    Type: Grant
    Filed: April 10, 2009
    Date of Patent: May 28, 2013
    Assignee: Dimicron, Inc.
    Inventors: Clayton F. Gardinier, Alfred S. Despres, Troy J. Medford, Tim Bunton
  • Patent number: 8449973
    Abstract: The present invention relates to a reflective member. The reflective member includes a reflective layer formed to be porous using an inorganic material. The reflective layer has a porosity of 15-43%. The reflective layer is formed by partly combining a plurality of inorganic particles with each other.
    Type: Grant
    Filed: March 25, 2006
    Date of Patent: May 28, 2013
    Assignee: Kyocera Corporation
    Inventors: Kousuke Katabe, Yuki Mori
  • Patent number: 8445083
    Abstract: Certain example embodiments of this invention relate to articles including anticondensation coatings that are exposed to an external environment, and/or methods of making the same. In certain example embodiments, the anticondensation coatings may be survivable in an outside environment. The coatings also may have a sufficiently low sheet resistance and hemispherical emissivity such that the glass surface is more likely to retain heat from the interior area, thereby reducing (and sometimes completely eliminating) the presence condensation thereon. The articles of certain example embodiments may be, for example, skylights, vehicle windows or windshields, IG units, VIG units, refrigerator/freezer doors, and/or the like.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: May 21, 2013
    Assignee: Guardian Industries Corp.
    Inventors: Jean-Marc Lemmer, Nestor P. Murphy
  • Patent number: 8445112
    Abstract: The present invention relates to essentially transparent glazings comprising a system of films deposited under vacuum by magnetron, and having antisun and/or low-emission properties, comprising as protective surface layer a layer based on titanium oxide and on at least one other metal oxide of high hardness from the group comprising: ZrO2, SiO2, Cr2O3. The glazings according to the invention are of “matchable” type.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: May 21, 2013
    Assignee: AGC Glass Europe
    Inventor: Gaetan Di Stefano
  • Patent number: 8440310
    Abstract: A coated article is provided which may be heat treated (e.g., thermally tempered) and/or heat bent in certain example instances. In certain example embodiments, a zinc stannate based layer is provided between a tin oxide based layer and a silicon nitride based layer, and this has been found to significantly reduce undesirable mottling damage upon heat treatment/bending. This results in significantly improved bendability of the coated article in applications such as vehicle windshields and the like.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: May 14, 2013
    Assignees: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C), Guardian Industries Corp.
    Inventors: Jose Ferreira, Pierrot Pallotta, Richard Blacker, Muhammad Imran
  • Patent number: 8440328
    Abstract: In one aspect, coated cutting tools are described herein which, in some embodiments, can demonstrate improved wear resistance in one or more cutting applications. In some embodiments, a coated cutting tool described herein comprises a substrate and a coating adhered to the substrate, the coating comprising an inner layer deposited by physical vapor deposition and an outer deposited by physical vapor deposition over the inner layer.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: May 14, 2013
    Assignee: Kennametal Inc.
    Inventors: Aharon Inspektor, Nicholas F Waggle, Jr., Michael F Beblo, Mark J Rowe, Zhigang Ban
  • Patent number: 8440314
    Abstract: The present disclosure is directed to cutting tools. The disclosed cutting tools may have a wear resistant coating on a substrate. The substrate may have hard particles cemented in a binder phase. The binder may have a near-surface concentration gradient of at least one platinum group element and/or rhenium. Processes for producing cutting tools are also disclosed.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: May 14, 2013
    Assignee: TDY Industries, LLC
    Inventors: Craig W. Morton, Dewitt Dortch, John Bost, David J. Wills
  • Patent number: 8440327
    Abstract: A method of producing hard wear resistant layer with improved wear resistance. The method is a reactive arc-evaporation based process using a cathode including as main constituent at least one phase of a refractory compound Mn+1AXn (n=1, 2 or 3), wherein M is one or more metals selected from the groups IIIB, IVB, VB, VIB and VIIB of the periodic table of elements, A is one or more elements selected from the groups IIIA, IVA, VA and VIA of the periodic table of elements, and wherein X is carbon and/or nitrogen.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: May 14, 2013
    Assignee: Seco Tools AB
    Inventors: Jens-Petter Palmqvist, Jacob Sjolen, Lennart Karlsson
  • Patent number: 8435649
    Abstract: A white film structure includes a combining layer and a color layer. The combining layer is formed on a surface of a substrate and is made of chromium nitride. The color layer is formed on the combining layer and is made of a mixture of alumina and titanium oxide. A weight percent of the aluminum in the color layer is more than that of the titanium in the color layer.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: May 7, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Hsin-Chin Hung
  • Patent number: 8435638
    Abstract: A coated glass includes a substrate and a coating. The coating is deposited on the substrate by vacuum sputtering. The coating is a tin oxide layer co-doped with antimony and bismuth, the molar ratio of tin, antimony, and bismuth is 11-14:1.2-2:0.2-1.5, the coating has a thickness of about 300 nm to about 450 nm.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: May 7, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Jia Huang
  • Publication number: 20130108877
    Abstract: Methods of forming a crystalline strontium titanate layer may include providing a substrate with a crystal enhancement surface (e.g., Pt), depositing strontium titanate by atomic layer deposition, and conducting a post-deposition anneal to crystallize the strontium titanate. Large single crystal domains may be formed, laterally extending greater distances than the thickness of the strontium titanate and demonstrating greater ordering than the underlying crystal enhancement surface provided to initiate ALD. Functional oxides, particularly perovskite complex oxides, can be heteroepitaxially deposited over the crystallized STO.
    Type: Application
    Filed: September 11, 2012
    Publication date: May 2, 2013
    Inventor: Tom E. Blomberg
  • Patent number: 8431253
    Abstract: A polymer-assisted deposition process for deposition of epitaxial cubic metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be used as templates for the development of high quality cubic GaN based electronic devices.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: April 30, 2013
    Assignee: Los Alamos National Security, LLC
    Inventors: Anthony K. Burrell, Thomas Mark McCleskey, Quanxi Jia, Alexander H. Mueller, Hongmei Luo
  • Publication number: 20130101818
    Abstract: Disclosed is a surface coating film for a forming machine, including: a substrate; a nitride layer on the substrate; a multilayered film layer deposited on the nitride layer by reaction of nitrogen (N) with a TiAl target and a Cr target; and a carbonitride layer deposited on the multilayered film layer by reaction of nitrogen (N) and carbon (C) with a TiAl target and a Cr target.
    Type: Application
    Filed: July 31, 2012
    Publication date: April 25, 2013
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Sung Chul Cha, Byung Kyu Cho, Ho Young Kong, Soo Jin Chung, Jun Seok Lee
  • Publication number: 20130095348
    Abstract: An optical information recording medium includes a recording layer capable of recording information signals on the basis of application of light, wherein the recording layer contains an oxide of metal X and an oxide of metal Y, the metal X is at least one type selected from the group consisting of tungsten and molybdenum, and the metal Y is at least one type selected from the group consisting of copper, manganese, nickel, and silver.
    Type: Application
    Filed: October 10, 2012
    Publication date: April 18, 2013
    Applicant: SONY CORPORATION
    Inventor: SONY CORPORATION
  • Patent number: 8420238
    Abstract: A tungsten bronze structured ceramic material as a thermal barrier coating is described wherein the tungsten bronze structured ceramic coating material has the formula AO—BvOw—CyOz where O stands for Oxygen, A stands for a 2+ or a 1+ cation, B stands for a 2+ or 3+ cation and C stands for a 4+ or a 5+ cation. The thermal barrier coating may be applied for gas turbine components.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: April 16, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Anand A. Kulkarni, Stefan Lampenscherf, Ashkan Naeini, Ramesh Subramanian
  • Patent number: 8415033
    Abstract: A cutting tool is disclosed. The cutting tool comprises a substrate and a coating layer on the substrate. The coating layer consists of nitride or carbonitride containing Ti and Al, and has a thickness of 3 to 9 ?m on a flank face. A first intensity ratio I(400)/I(311) of the coating layer on an outer surface is larger than the first intensity ratio of the coating layer on the substrate side.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: April 9, 2013
    Assignee: KYOCERA Corporation
    Inventor: Masahito Matsuzawa
  • Patent number: 8415019
    Abstract: A new composition and medical implant made there from comprises a thick diffusion hardened zone, and layered ceramic surface. Orthopedic implants comprising the new composition, methods of making the new composition, and methods of making orthopedic implants comprising the new composition are disclosed.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: April 9, 2013
    Assignee: Smith & Nephew, Inc.
    Inventors: Vivek Devidas Pawar, Shilesh C. Jani, Carolyn L. Weaver
  • Patent number: 8409732
    Abstract: A cutting tool insert includes a body of a hard alloy of cemented carbide, cermet, ceramics, cubic boron nitride based material or high speed steel and a hard and wear resistant coating, including one or several layers, at least one of which is an (Al,Cr)2O3 layer. The coating, with a total thickness of 2-20 ?m includes one or several layers, at least one of which is an (Al,Cr)2O3 layer with a thickness of 1-5 ?m having a corundum phase crystalline structure and a composition (Al1-yCry)2O3 with 0.5?y?0.7. The (Al,Cr)2O3 layer has a fiber texture with rotational symmetry in the direction of the coated surface normal with an inclination angle, ?, of the basal planes relative to the coated surface normal or the inclination angle, ?, for the highest peak in the pole plot with 20°<?<55°.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: April 2, 2013
    Assignee: Seco Tools AB
    Inventors: Mats Johansson, Tommy Larsson
  • Patent number: 8409734
    Abstract: Coated substrates having high wear resistant coatings are disclosed. The coatings include at least one layer of either titanium oxycarbonitride or titanium aluminum oxycarbonitride, such that the layer has an oxygen to titanium atomic percent ratio in the range of about 0.01 to about 0.09 and an aluminum to titanium atomic percent ratio in the range of about 0 to about 0.1. The coatings have a hardness to Young's modulus ratio of at least 0.06. The substrate may be a cutting insert. Methods of making such coated substrates are also disclosed in which layers comprising titanium oxycarbonitride or titanium aluminum oxycarbonitride are deposited by medium temperature chemical vapor deposition (MT-CVD) on substrates in the temperature range of about 750 to about 950° C. using a mixture of gases wherein the ratio of the hydrogen gas to the nitrogen gas is greater than 5.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: April 2, 2013
    Assignee: Kennametal Inc.
    Inventors: Zhigang Ban, Yixong Liu, Mark S. Greenfield
  • Patent number: 8409731
    Abstract: A cutting tool insert includes a body of a hard alloy of cemented carbide, cermet, ceramics, cubic boron nitride based material or high speed steel. A hard and wear resistant coating, having at least one layer, to which an (Al,Cr)2O3 layer is applied. This insert is particularly useful for machining of steel and stainless steel. The coating with a total thickness of 2-20 ?m has one or several layers, at least one of which is an (Al,Cr)2O3 layer with a thickness of 1-5 ?m having a corundum phase crystalline structure and a composition (Al1-yCry)2O3 with 0.4?y?0.6. The (Al,Cr)2O3 layer has a fiber texture with rotational symmetry in the direction of the coated surface normal to an inclination angle, ?, of the basal planes relative to the coated surface normal or the inclination angle, ?, for the highest peak in the pole plot with 70° <?<90° .
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: April 2, 2013
    Assignee: Seco Tools AB
    Inventors: Mats Johansson, Tommy Larsson
  • Patent number: 8409696
    Abstract: A cutting tool includes a body of a hard alloy of cemented carbide, cermet, ceramics, cubic boron nitride based material or high speed steel and on which at least one of the functioning parts of the surface thereof, a hard and wear resistant coating is applied. The coating includes a polycrystalline laminar, multilayered structure of metal nitride compounds, in a repetitive form . . . MeN/(Ti1-xAlx)N/MeN/(Ti1-xAlx)N/MeN/(Ti1-xAlx)N/MeN/(Ti1-xAlx)N . . . of cubic structured (Ti1-xAlx)N layers where 0.3<x<0.95 and cubic structured MeN layers where Me is one or more of the metal element Ti, Zr, Hf, V, Nb, Ta, Mo and Al. The laminated structure has a repeat period, ?, of 5 nm??<20 nm, a layer thickness relation of 1/10<(dMeN/d(Ti,Al)N)<1/3 and a thickness dMeN?1 nm that is essentially constant throughout its total thickness up to 20 ?m.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: April 2, 2013
    Assignee: Seco Tools AB
    Inventors: Mats Johansson, Jacob Sjölén, Magnus Odén, Axel Knutsson
  • Patent number: 8409702
    Abstract: Coated cutting tools are disclosed which have a hard coating that includes at least one aluminum titanium nitride layer having a single phase structure of B1 cubic phase and a composition of (AlxTi1-x)N, where x is in the range of about 0.46 to about 0.52 moles. The hard coatings also have a residual stress in the range of from about ?0.4 to about ?3 GPa as measured by the XRD Sin2 ? method, and a crystallographic orientation characterized by an x-ray diffraction (200) to (111) peak intensity ratio in the range of about 1 to about 14. Preferably the aluminum titanium nitride layer has an average crystallite size in the range of about 15 to about 50 nanometers. Methods of making such coated cutting tools are also disclosed.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: April 2, 2013
    Assignee: Kennametal Inc.
    Inventors: Wangyang Ni, Zhigang Ban, Ronald M. Penich, Yixiong Liu
  • Patent number: 8410029
    Abstract: The present invention provides a surface-oxide abrasion-resistant lubricant coating that can maintain high lubricity for a long time without wear of a base material and a coating or damage to an object to be contacted by a simpler method and with less expensive material. A mixed fluid of a compressed gas and fine-particle powders of two soft metals having lower hardness and lower melting point than the base material of a sliding contact portion is ejected onto a surface of the sliding contact portion. The fine-particle powders of the soft metals are made to react with oxygen in the compressed gas at the surface of the sliding contact portion to form a metal-oxide film with high melting point composed of metal oxides of the two soft metals, one of the metal oxides having higher hardness than the other. This metal-oxide film with high melting point includes a coating having a thickness of 0.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: April 2, 2013
    Assignee: Fuji Kihan Co., Ltd.
    Inventor: Yoshio Miyasaka
  • Patent number: 8409707
    Abstract: The invention relates to an iron-based soft magnetic powder for a dust core, wherein a film comprising Fe and Co, a phosphoric acid-based chemical conversion film and a silicone resin film are formed in this order on the surface of an iron-based soft magnetic powder, and to a dust core obtained by molding the iron-based soft magnetic powder for a dust core. The invention also relates to an iron-based soft magnetic powder for a dust core formed by coating the surface of an iron-based soft magnetic powder with an insulating film, wherein the powder has a particle diameter of from 45 ?m to 180 ?m, the insulating film is composed of two layers in which a lower layer composed of a phosphoric acid-based chemical conversion film and an upper layer composed of a silicone resin film, and each of the films has a thickness of from 100 nm to 280 nm, and to a dust core obtained by molding the iron-based soft magnetic powder for a dust core.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: April 2, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroyuki Mitani, Nobuaki Akagi, Hirofumi Houjou
  • Patent number: 8409695
    Abstract: A wear resistant multilayer nitride hard coating for substrates. The hard coating includes a first layer of titanium aluminum nitride and a second layer comprising a plurality of sublayer groups. Each sublayer group includes a first sublayer of titanium silicon nitride and a second sublayer of titanium aluminum nitride. The composition of the titanium aluminum nitride, both in the first layer and in the sublayer groups, is (TixAl1-x)N, wherein 0.4?x?0.6. The composition of the titanium silicon nitride sublayers is (TiySi1-y)N, wherein 0.85?y?0.98, and all of the silicon is in solid solution in the titanium silicon nitride such that no silicon phase or silicon nitride phase exists in this sublayer. The combined amount of aluminum and silicon present in the sublayer groups being narrowly controlled such that the sum of x and y is in the range of 1.38 to 1.46.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: April 2, 2013
    Assignee: Kennametal Inc.
    Inventors: Wangyang Ni, Yixiong Liu, Mark S. Greenfield, Ronald M. Penich
  • Publication number: 20130071689
    Abstract: A rare earth elements doping on yttrium oxide luminescent thin film containing conductive oxides and preparation methods thereof are provided. The said luminescent thin film is consisted of Y2O3:Re, Zn1-xAlxO, wherein 0<x?0.05, Re?Eu or Th. The said methods include the following steps: step 1, preparing colloid of Y and Eu or colloid of Y and Tb; step 2, preparing colloid of Zn1-xAlxO; step 3, mixing the colloid in step 1 and the colloid in step 2 to form complex colloid; step 4, coating the complex colloid in step 3 to form the luminescent thin film. The said luminescent thin film increases the conductivity and luminescent property of yttrium oxide luminescent thin film in the art.
    Type: Application
    Filed: May 31, 2010
    Publication date: March 21, 2013
    Inventors: Mingjie Zhou, Ting Lu, Wenbo Ma
  • Publication number: 20130071670
    Abstract: The invention provides for A method for producing pure phase strontium ruthenium oxide films, the method comprising solubilizing ruthenium-containing and strontium-containing compounds to create a mixture; subjecting the mixture to a first temperature above that necessary for forming RuO2 while simultaneously preventing formation of RuO2; maintaining the first temperature for a time to remove organic compounds from the mixture, thereby forming a substantially dry film; and subjecting the film to a second temperature for time sufficient to crystallize the film. Also provided is pure phase material comprising strontium ruthenium oxide wherein the material contains no RuO2.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 21, 2013
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Manoj Narayanan, Beihai Ma, Uthamalingam Balachandran, Stephen Dorris
  • Publication number: 20130071653
    Abstract: An information recording medium including three or more information layers, wherein: at least one information layer includes a recording layer and a nucleation layer; the recording layer contains a material that is represented by formula (1) [(Ge0.5Te0.5)x(In0.4Te0.6)1-x]ySb100-y (mol %) with x satisfying 0.8?x<1.0 and y satisfying 95?y<100; the nucleation layer contains a material that is represented by formula (2) (Ge0.5Te0.5)z(Bi0.4Te0.6)100-z (mol %) with z satisfying 10?z?71; and the nucleation layer is in contact with the recording layer. This information recording medium is capable of achieving sufficient signal amplitude even in cases where a small recording mark is formed, and is also capable of stably maintaining a small recording mark.
    Type: Application
    Filed: February 24, 2012
    Publication date: March 21, 2013
    Inventors: Rie Kojima, Akio Tsuchino, Hideo Kusada, Takashi Nishihara, Noboru Yamada
  • Publication number: 20130065048
    Abstract: A multilayer coating includes a bond coat layer, a first barrier layer applied on the bond coat layer, and a second barrier layer applied on the first barrier layer. The first barrier layer has a compositional gradient comprising a majority of a first rare earth stabilized zirconia material proximate the bond coat layer to a majority of a second rare earth stabilized zirconia material away from the bond coat layer. The first and second rare earth stabilized zirconia materials are different. The second barrier layer has a compositional gradient comprising a majority of the second rare earth stabilized zirconia material to 100 wt % of a third rare earth stabilized zirconia material away from the first barrier layer.
    Type: Application
    Filed: November 12, 2012
    Publication date: March 14, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventor: United Technologies Corporation
  • Patent number: 8394502
    Abstract: A highly durable, environmentally and thermally stable Silver coating for mirrors, Infrared thin-film filters, or other optical coatings having very high reflection values over a large spectral and angular range where the enhanced durability and thermal stability are achieved through the selection and layer sequence of materials, which provide good chemical and environmental protection to Silver. Of particular importance are the layers directly below the Silver, and directly above the Silver (nucleation layer and barrier layer).
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: March 12, 2013
    Assignee: Ocean Thin Films, Inc.
    Inventor: Grzegorz Stachowiak
  • Patent number: 8394484
    Abstract: This invention relates to thermally sprayed coatings of a high purity yttria or ytterbia stabilized zirconia powder, said high purity yttria or ytterbia stabilized zirconia powder comprising from about 0 to about 0.15 weight percent impurity oxides, from about 0 to about 2 weight percent hafnium oxide (hafnia), from about 6 to about 25 weight percent yttrium oxide (yttria) or from about 10 to about 36 weight percent ytterbium oxide (ytterbia), and the balance zirconium oxide (zirconia). Thermal barrier coatings for protecting a component such as blades, vanes and seal surfaces of gas turbine engines, made from the high purity yttria or ytterbia stabilized zirconia powders, have a density greater than 88% of the theoretical density with a plurality of vertical macrocracks homogeneously dispersed throughout the coating to improve its thermal fatigue resistance.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: March 12, 2013
    Assignee: Praxair Technology, Inc.
    Inventors: Thomas Alan Taylor, Danny Lee Appleby, Albert Feuerstein, Ann Bolcavage, Neil Hitchman
  • Patent number: 8394513
    Abstract: The invention relates to a body which is coated with hard material and has a plurality of layers applied by means of CVD, wherein the outer layer comprises Ti1-xAlxN, Ti1-xAlxC and/or Ti1-xAlxCN where 0.65?x?0.9, preferably 0.7?x?0.9, and this outer layer has compressive stresses in the range from 100 to 1100 MPa, preferably from 400 to 800 MPa, and a TiCN or Al2O3 layer is arranged under this outer layer.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: March 12, 2013
    Assignee: Kennametal Inc.
    Inventors: Hendrikus Van Den Berg, Hartmut Westphal, Volkmar Sottke
  • Patent number: 8389134
    Abstract: The invention relates to a body which is coated with hard material and has a plurality of layers applied by means of CVD, in which an Al2O3 layer is arranged as outer layer on a Ti1-xAlxN layer and/or Ti1-xAlxC layer and/or Ti1-xAlxCN layer.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: March 5, 2013
    Assignee: Kennametal Inc.
    Inventors: Hendrikus Van Den Berg, Hartmut Westphal, Volkmar Sottke
  • Patent number: 8389115
    Abstract: A cutting tool insert includes a body of cemented carbide, cermet, ceramics, cubic boron nitride based material or high speed steel and a hard and wear resistant coating including at least one metal nitride layer. The coating includes at least one layer of a thermally stabilized cubic structured (Ti1?x+z)SixMez)N phase with 0.04<x<0.20 and 0<z<0.10, with a constant elemental composition throughout the layer where Me is one or more of the metal elements Y, Hf, Nb, Ta, Mo, W, Mn, Fe and Zn with a thickness of 0.5 to 10 ?m. The layer is deposited using cathodic arc evaporation and is particularly useful for machining of stainless steel and super alloys.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: March 5, 2013
    Assignee: Seco Tools AB
    Inventors: Mats Johansson, Jon Andersson, Axel Flink, Lars Hultman
  • Patent number: 8389135
    Abstract: An oxide sintered body having zinc oxide as a main component and containing magnesium, and a transparent conductive substrate are provided, and an oxide sintered body having zinc oxide and magnesium, wherein content of magnesium is from 0.02 to 0.30 as atom number ratio of Mg/(Zn+Mg); an oxide sintered body having zinc oxide, magnesium, gallium and/or aluminum, wherein content of gallium and/or aluminum is over 0 and equal to or lower than 0.09 as atom number ratio of (Ga+Al)/(Zn+Ga+Al), and content of magnesium is from 0.02 to 0.30 as atom number ratio of Mg/(Zn+Ga+Al+Mg); a target obtained by processing these oxide sintered bodies; and a transparent conductive film formed on a substrate by a sputtering method or an ion plating method, by using this target.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: March 5, 2013
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Tokuyuki Nakayama, Yoshiyuki Abe
  • Publication number: 20130052437
    Abstract: Components with improved erosion resistance are disclosed. A surface of the component or a substrate of the component is modified by coating the substrate with an elastomer layer. The elastomer layer is then modified by embedding hard particles onto an outer side of the elastomer layer. The hard particles exhibit higher fractured toughness providing enhanced erosion protection. The elastic properties of the elastomer experience little reduction because the surface embedded particles are located only at the outer side or outer surface of the elastomer layer. Therefore, the bond between the inner side of the elastomer layer and the substrate or component surface is not interfered with and the potential for electro-chemical corrosion and poor adhesion are not increased by the presence of the hard particles as the hard particles are located away from the inner face between the elastomer layer and the substrate.
    Type: Application
    Filed: August 24, 2011
    Publication date: February 28, 2013
    Inventors: Robert A. Barth, Wayde R. Schmidt
  • Patent number: 8377560
    Abstract: A glaze composition which makes it possible that a base material for an inorganic calcined substance containing a lot of vitreous material is glazed without having corrosion. The glaze composition comprises a plastic material, a non-plastic material, and a solvent material, wherein the plastic material comprises at least one material selected from the group consisting of Gairome clay, Kibushi clay, kaolin and talc; the non-plastic material comprises at least one material selected from the group consisting of silica, calcined kaolin, pottery stone, pyrophyllite, pottery shards, chamotte and zircon; and the solvent material comprises at least one material selected from the group consisting of feldspar, lime stone, dolomite, zinc oxide and lithium carbonate.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: February 19, 2013
    Assignee: Nichiha Corporation
    Inventor: Takashige Akie
  • Patent number: 8377567
    Abstract: A porous metal member composed of an alloy at least containing nickel and tungsten is provided. The alloy may contain 50 to 80 wt % of nickel and 20 to 50 wt % of tungsten and may further contain 10 wt % or less of phosphorus and/or 10 wt % or less of boron. Such a porous metal member can be produced by, for example, making a porous base such as a urethane foam be electrically conductive, forming an alloy film containing nickel and tungsten, then removing the porous base from the alloy film, and subsequently reducing the alloy.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: February 19, 2013
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Kazuki Okuno, Masahiro Kato, Tomoyuki Awazu, Masatoshi Majima, Hidetoshi Saito, Keiji Shiraishi, Hitoshi Tsuchida, Junichi Nishimura
  • Publication number: 20130037090
    Abstract: Techniques for fabrication of kesterite Cu—Zn—Sn—(Se,S) films and improved photovoltaic devices based on these films are provided. In one aspect, a method of fabricating a kesterite film having a formula Cu2?xZn1+ySn(S1?zSez)4+q, wherein 0?x?1; 0?y?1; 0?z?1; and ?1?q?1 is provided. The method includes the following steps. A substrate is provided. A bulk precursor layer is formed on the substrate, the bulk precursor layer comprising Cu, Zn, Sn and at least one of S and Se. A capping layer is formed on the bulk precursor layer, the capping layer comprising at least one of Sn, S and Se. The bulk precursor layer and the capping layer are annealed under conditions sufficient to produce the kesterite film having values of x, y, z and q for any given part of the film that deviate from average values of x, y, z and q throughout the film by less than 20 percent.
    Type: Application
    Filed: August 10, 2011
    Publication date: February 14, 2013
    Applicant: International Business Machines Corporation
    Inventors: Santanu Bag, David Aaron Randolph Barkhouse, David Brian Mitzi, Teodor Krassimirov Todorov
  • Patent number: 8367225
    Abstract: A coating includes a deposited layer. The deposited layer is a nickel-titanium carbonitride layer.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: February 5, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huan-Wu Chiang, Cheng-Shi Chen, Chuang Ma
  • Patent number: 8367227
    Abstract: Specialty ceramic materials which resist corrosion/erosion under semiconductor processing conditions which employ a corrosive/erosive plasma. The corrosive plasma may be a halogen-containing plasma. The specialty ceramic materials have been modified to provide a controlled electrical resistivity which suppresses plasma arcing potential.
    Type: Grant
    Filed: August 2, 2007
    Date of Patent: February 5, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Jennifer Y. Sun, Kenneth S. Collins, Ren-Guan Duan, Senh Thach, Thomas Graves, Xiaoming He, Jie Yuan