Carbide-, Nitride-, Or Sulfide-containing Layer Patents (Class 428/698)
  • Patent number: 8459380
    Abstract: An article of manufacture includes a cemented carbide piece, and a joining phase that binds the cemented carbide piece into the article. The joining phase comprises a eutectic alloy material. The article of manufacture further includes a non-cemented carbide piece bound into the article of manufacture by the joining phase. An article of manufacture includes a fixed-cutter earth-boring bit body, a roller cone, and a part for an earth-boring bit.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: June 11, 2013
    Assignee: TDY Industries, LLC
    Inventors: Prakash K. Mirchandani, Michale E. Waller, Morris E. Chandler, Heath C. Coleman
  • Patent number: 8460803
    Abstract: Disclosed is a crystalline hard coating layer having no cracks, which exhibits both high hardness and excellent wear resistance at the same time. A method for forming the hard coating layer is also disclosed. A crystalline hard coating layer (3) coating a substrate (2) is formed by a PVD method, and contains Si and C as essential components, while containing an element M (which is one or more elements selected from among group 3A elements, group 4A elements, group 5A elements, group 6A elements, B, Al and Ru) and N as optional components. The crystalline hard coating layer (3) has the following composition: SixC1-x-y-zNyMz (where 0.4?x?0.6, 0?y?0.1, and 0?z?0.2).
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: June 11, 2013
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, Iscar Ltd.
    Inventors: Kenji Yamamoto, Albir A. Layyous
  • Patent number: 8455091
    Abstract: A product made by the method comprising forming a porous body of a first material, forming a plurality of recesses in a surface of such body, inserting wicks into such recesses and infusing a molten second material into the interior of the first material by injecting the second material into and through such wicks.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: June 4, 2013
    Assignee: Audi AG
    Inventors: Adam Drozny, Juergen Joos, Gregor Stuehler
  • Patent number: 8455116
    Abstract: The present invention relates to PVD coated cemented carbide cutting tool inserts semifinishing and finishing metal cutting operations. The cemented carbide cutting tool insert comprises a substrate and a wear resistant coating. The substrate comprises in addition to WC, from about 5.5 to about 8.5 wt-% Co and Cr such that the Cr/Co weight ratio is from about 0.08 to about 0.12 and also small amounts of Ti and Ta. The wear resistant coating is a homogeneous AlxTi1?xN-layer with x equals from about 0.6 to about 0.67. The thickness of this layer is from about 1 to about 3.8 ?m.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: June 4, 2013
    Assignee: Sandvik Intellectual Property AB
    Inventors: Pierre Donnadieu, Susanne Norgren
  • Patent number: 8455095
    Abstract: An article includes a substrate; and a color layer deposited on the substrate, wherein the color layer has an L* value between about 28 to about 32, an a* value between about ?1 to about 1, and a b* value between about ?1 to about 1 in the CIE L*a*b* color space.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: June 4, 2013
    Assignees: Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd., Hon Hai Precision Industry Co., Ltd.
    Inventors: Hsin-Pei Chang, Wen-Rong Chen, Huann-Wu Chiang, Cheng-Shi Chen, Juan Zhang
  • Publication number: 20130136907
    Abstract: A coated tool has a substrate and a coating film coated on the surface thereof. The coating film includes an intermediate film coated on the surface of the substrate, and an oxide film coated on the surface of the intermediate film. A crack coefficient R obtained by measuring a crack length dc (?m) which is generated on the surface of the coated tool by pushing a Vickers indenter into the surface of the coating film with an applied load P=196(N), and a fracture toughness KIC (MPa·m0.5) of the substrate, and by calculating from the following numerical formula: R=P/(dc·KIC), is 0.07 to 0.12 m0.5.
    Type: Application
    Filed: August 4, 2011
    Publication date: May 30, 2013
    Applicant: TUNGALOY CORPORATION
    Inventor: Lu Chen
  • Patent number: 8449992
    Abstract: Disclosed is a surface coated member having excellent adhesion resistance and fracture resistance. A surface coated member (1) comprises a coating layer (3) on the surface of a base (2). The coating layer (3) is composed of a multilayer body wherein a titanium carbonitride (TiCN) layer (4), a continuously existing intermediate layer (5) containing titanium, aluminum, carbon and oxygen and having an average film thickness of 5-30 nm, and an ?-aluminum oxide (Al2O3) layer (9) composed of aluminum oxide (Al2O3) having an ? crystal structure are sequentially formed by deposition.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: May 28, 2013
    Assignee: KYOCERA Corporation
    Inventors: Takahito Tanibuchi, Yoshikazu Kodama, Tsuyoshi Fukano
  • Publication number: 20130130044
    Abstract: A decorative coating and a method for forming a decorative coating on a gemstone to change the natural visual appearance of the gemstone. The decorative coating comprises an optically absorbing film. Depositing the absorbing film on the substrate comprises the alternating steps of introducing a first precursor to the reaction space such that at least a portion of the first precursor gets adsorbed onto the surface of the substrate, and subsequently purging the reaction space, and introducing a second precursor to the reaction space such that at least a portion of the second precursor reacts with the portion of the first precursor adsorbed onto the surface of the substrate to form a conformal absorbing film on the substrate comprising the gemstone, and subsequently purging the reaction space. The material of the absorbing film is selected from the group of oxides, carbides, noble metals or a mixture thereof.
    Type: Application
    Filed: November 19, 2010
    Publication date: May 23, 2013
    Applicant: Beneq Oy
    Inventors: Jarmo Maula, Matti Putkonen
  • Publication number: 20130130011
    Abstract: THE PRESENT INVENTION PROVIDES A METHOD FOR PREPARING GRAPHENE BY PROVIDING A REACTION GAS INCLUDING A CARBON SOURCE AND HEAT ONTO A SUBSTRATE, AND REACTING THE SAME TO FORM A GRAPHENE ON THE SUBSTRATE, A GRAPHENE SHEET FORMED BY THE METHOD, AND A DEVICE USING THE SAME.
    Type: Application
    Filed: July 29, 2011
    Publication date: May 23, 2013
    Applicant: SUNGKYUNKWAN UNIVERSITY FPUNDATION FOR CORPORATE COLLABORATION
    Inventors: Byung Hee Hong, Jong-Hyun Ahn, Su Kang Bae, Myung Hee Jung, Hye Ri Kim, Sang Jin Kim
  • Patent number: 8445098
    Abstract: A reflective article, such as a solar mirror, includes a highly transparent substrate having a first major surface and a second major surface. At least one reflective coating is formed over at least a portion of one of the surfaces, e.g., the second major surface (or, alternatively, the first major surface). The reflective coating includes at least one metallic layer. An encapsulation structure can be formed over at least a portion of the second reflective coating.
    Type: Grant
    Filed: December 9, 2008
    Date of Patent: May 21, 2013
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Paul A. Medwick, Andrew V. Wagner, Gary J. Marietti
  • Patent number: 8445112
    Abstract: The present invention relates to essentially transparent glazings comprising a system of films deposited under vacuum by magnetron, and having antisun and/or low-emission properties, comprising as protective surface layer a layer based on titanium oxide and on at least one other metal oxide of high hardness from the group comprising: ZrO2, SiO2, Cr2O3. The glazings according to the invention are of “matchable” type.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: May 21, 2013
    Assignee: AGC Glass Europe
    Inventor: Gaetan Di Stefano
  • Patent number: 8445083
    Abstract: Certain example embodiments of this invention relate to articles including anticondensation coatings that are exposed to an external environment, and/or methods of making the same. In certain example embodiments, the anticondensation coatings may be survivable in an outside environment. The coatings also may have a sufficiently low sheet resistance and hemispherical emissivity such that the glass surface is more likely to retain heat from the interior area, thereby reducing (and sometimes completely eliminating) the presence condensation thereon. The articles of certain example embodiments may be, for example, skylights, vehicle windows or windshields, IG units, VIG units, refrigerator/freezer doors, and/or the like.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: May 21, 2013
    Assignee: Guardian Industries Corp.
    Inventors: Jean-Marc Lemmer, Nestor P. Murphy
  • Patent number: 8440310
    Abstract: A coated article is provided which may be heat treated (e.g., thermally tempered) and/or heat bent in certain example instances. In certain example embodiments, a zinc stannate based layer is provided between a tin oxide based layer and a silicon nitride based layer, and this has been found to significantly reduce undesirable mottling damage upon heat treatment/bending. This results in significantly improved bendability of the coated article in applications such as vehicle windshields and the like.
    Type: Grant
    Filed: September 20, 2012
    Date of Patent: May 14, 2013
    Assignees: Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C), Guardian Industries Corp.
    Inventors: Jose Ferreira, Pierrot Pallotta, Richard Blacker, Muhammad Imran
  • Patent number: 8440328
    Abstract: In one aspect, coated cutting tools are described herein which, in some embodiments, can demonstrate improved wear resistance in one or more cutting applications. In some embodiments, a coated cutting tool described herein comprises a substrate and a coating adhered to the substrate, the coating comprising an inner layer deposited by physical vapor deposition and an outer deposited by physical vapor deposition over the inner layer.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: May 14, 2013
    Assignee: Kennametal Inc.
    Inventors: Aharon Inspektor, Nicholas F Waggle, Jr., Michael F Beblo, Mark J Rowe, Zhigang Ban
  • Patent number: 8440329
    Abstract: A glazing for thermal control and heating is provided. The glazing includes a transparent substrate including glass and provided with a thin-film stack including a plurality of functional layers. The thin-film stack includes at least three silver-based functional layers. The thin-film stack has a resistance R<1.5? per square.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: May 14, 2013
    Assignee: Saint-Gobain Glass France
    Inventors: Carinne Fleury, Nicolas Nadaud, Sylvain Belliot
  • Patent number: 8440301
    Abstract: The invention is directed toward a method and apparatus which can be used to allow the sputter deposition of material onto at least one article to form a coating on the same. The new form of magnetron described herein allows an increase in sputter deposition rates to be achieved at higher powers and without causing damage to the coating being created. This can be achieved by improved cooling and use of a relatively high magnetic field in the magnetron while at the same time increasing the power to the magnetron by increasing the current at a rate faster than the voltage.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: May 14, 2013
    Assignee: Teer Coatings Limited
    Inventors: Dennis Teer, Alex Goruppa
  • Patent number: 8440327
    Abstract: A method of producing hard wear resistant layer with improved wear resistance. The method is a reactive arc-evaporation based process using a cathode including as main constituent at least one phase of a refractory compound Mn+1AXn (n=1, 2 or 3), wherein M is one or more metals selected from the groups IIIB, IVB, VB, VIB and VIIB of the periodic table of elements, A is one or more elements selected from the groups IIIA, IVA, VA and VIA of the periodic table of elements, and wherein X is carbon and/or nitrogen.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: May 14, 2013
    Assignee: Seco Tools AB
    Inventors: Jens-Petter Palmqvist, Jacob Sjolen, Lennart Karlsson
  • Patent number: 8440314
    Abstract: The present disclosure is directed to cutting tools. The disclosed cutting tools may have a wear resistant coating on a substrate. The substrate may have hard particles cemented in a binder phase. The binder may have a near-surface concentration gradient of at least one platinum group element and/or rhenium. Processes for producing cutting tools are also disclosed.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: May 14, 2013
    Assignee: TDY Industries, LLC
    Inventors: Craig W. Morton, Dewitt Dortch, John Bost, David J. Wills
  • Patent number: 8440303
    Abstract: In an embodiment, a polycrystalline diamond compact (“PDC”) comprises a cemented carbide substrate including a first cemented carbide portion and a second cemented carbide portion bonded to the first cemented carbide portion and exhibiting an erosion resistance that is greater than the first cemented carbide portion. The PDC further comprises a polycrystalline diamond (“PCD”) table bonded to the first cemented carbide portion. The PCD table includes a plurality of bonded diamond grains exhibiting diamond-to-diamond bonding therebetween, with the plurality of bonded diamond grains defining a plurality of interstitial regions.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: May 14, 2013
    Assignee: US Synthetic Corporation
    Inventors: Debkumar Mukhopadhyay, Kenneth E. Bertagnolli, Jair J. Gonzalez
  • Patent number: 8435637
    Abstract: A scratch resistant coated article is provided which is also resistant to attacks by at least some fluoride-based etchant(s) for at least a period of time. In certain example embodiments, an anti-etch layer(s) is provided on a glass substrate in order to protect the glass substrate from attacks by fluoride-based etchant(s). In certain example embodiments, the anti-etch layer(s) is substantially transparent to visible light. In certain embodiments, a DLC layer(s) may be provided over the anti-etch layer. An underlayer may be provided under the anti-etch layer(s) in certain example embodiments. In certain example embodiments, the anti-etch layer(s) may be of or include a carbide and/or oxycarbide of Zr, Sn or the like.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: May 7, 2013
    Assignee: Guardian Industries Corp.
    Inventors: Nestor P. Murphy, Rudolph Hugo Petrmichl, Vijayan S. Veerasamy
  • Patent number: 8435626
    Abstract: A WC—Co material or polycrystalline diamond-Co material that has a gradient in the grain size of the particles. Specifically, the material may have a top layer that has coarse grains that is designed to dissipate the heat caused by friction (and thus prevent thermal cracking). The material will then have a bulk substrate that is made up of finer grains and provide adequate hardness for the material. The top layer is positioned on top of the bulk substrate.
    Type: Grant
    Filed: March 6, 2009
    Date of Patent: May 7, 2013
    Assignee: University of Utah Research Foundation
    Inventor: Zhigang Zak Fang
  • Patent number: 8435633
    Abstract: To provide a laminate excellent in weather resistance, moisture-proof property, adhesion between layers and its long-term stability, and a process for its production. A laminate comprising a substrate sheet containing a fluororesin, an adhesive layer, and a moisture-proof layer containing, as the main component, at least one inorganic compound selected from the group consisting of an inorganic oxide, an inorganic nitride and an inorganic oxynitride, laminated in this order, wherein the adhesive layer contains, as the main component, at least one metal oxide selected from the group consisting of zirconium oxide, tantalum oxide and hafnium oxide.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: May 7, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Naoto Kihara, Takuya Nakao, Hiroshi Aruga, Eiji Shidoji
  • Patent number: 8435651
    Abstract: Provided is a wood cutting tool with improved wear resistance and corrosion resistance. A hard fundamental layer (18) of chromium nitride (CrN) is subjected to PVD to be coated on a rake face (16) of a substrate (12) formed of a cemented carbide alloy or a tool steel. The hard fundamental layer (18) has a five-layer structure having a first layer (18a) to a fifth layer (18e) disposed in order from the substrate (12) side. A hard main layer (20) of chromium oxide (Cr2O3) is coated on the outer surface of the fifth layer (18e) of the hard fundamental layer (18). The hard main layer (20), like the hard fundamental layer (18), is formed by PVD. The hard fundamental layer (18) is coated with the hard main layer (20) to suppress corrosion, thereby improving the wear resistance and corrosion resistance of a cemented carbide replaceable knife (10).
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: May 7, 2013
    Assignee: Kanefusa Kabushiki Kaisha
    Inventors: Toru Minami, Satoru Nishio
  • Patent number: 8435649
    Abstract: A white film structure includes a combining layer and a color layer. The combining layer is formed on a surface of a substrate and is made of chromium nitride. The color layer is formed on the combining layer and is made of a mixture of alumina and titanium oxide. A weight percent of the aluminum in the color layer is more than that of the titanium in the color layer.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: May 7, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Hsin-Chin Hung
  • Patent number: 8435650
    Abstract: In order to provide a thermostable and highly effective barrier coating on a substrate, and to protect the substrate against the effect of harmful gas components even at high temperatures, the invention provides a coated substrate comprising a barrier coating having a multiplicity of consecutive individual layers respectively of a kind differing from or similar to a neighboring individual layer, the individual layers exhibiting a layer thickness of respectively at most 50 nanometers.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: May 7, 2013
    Assignee: Schott AG
    Inventors: Andree Mehrtens, Thomas Küpper, Margareta Hamel, Christoph Moelle
  • Publication number: 20130104461
    Abstract: A coating material is used for coating a substrate by means of laser ablation. The coating material contains graphitic carbon nitride and a dopant in order to alter the properties of the coating produced as compared to a coating of pure carbon nitride.
    Type: Application
    Filed: September 17, 2012
    Publication date: May 2, 2013
    Applicants: CARBODEON LTD OY, PICODEON LTD OY
    Inventors: PICODEON LTD OY, CARBODEON LTD OY
  • Patent number: 8431254
    Abstract: The invention relates to a composite material element (1), the composite material comprising a microfissured matrix (7) in the form of a three-dimensional interconnected network (4) of microfissures exposed on the surface of the ceramic matrix, an additive material (6) consisting of a flux or glass being dispersed in the matrix, the additive material (6) being a material which, when the composite material is brought to a predetermined temperature, softens and migrates by capillarity in the network (4) of microfissures (4) to said surface of the element. The quantity of additive material dispersed initially in the matrix is in a sufficient proportion compared to the matrix intended to coat a surface (5) of the composite material element left exposed so as to create a gas-tight barrier.
    Type: Grant
    Filed: October 9, 2006
    Date of Patent: April 30, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Luc Bianchi, Joel Toulc'Hoat, Charles Bories
  • Patent number: 8431253
    Abstract: A polymer-assisted deposition process for deposition of epitaxial cubic metal nitride films and the like is presented. The process includes solutions of one or more metal precursor and soluble polymers having binding properties for the one or more metal precursor. After a coating operation, the resultant coating is heated at high temperatures under a suitable atmosphere to yield metal nitride films and the like. Such films can be used as templates for the development of high quality cubic GaN based electronic devices.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: April 30, 2013
    Assignee: Los Alamos National Security, LLC
    Inventors: Anthony K. Burrell, Thomas Mark McCleskey, Quanxi Jia, Alexander H. Mueller, Hongmei Luo
  • Patent number: 8431931
    Abstract: To avoid a phenomenon of deterioration which is characteristic to an organic EL display device, such as a dark spot, without forming a pin hole in an organic material used for forming an organic EL layer. A reflective anode for an organic EL display device includes: an Ag-based alloy film (6) containing 0.01 to 1.5 atomic % of Nd and formed on a substrate (1); and an oxide conductive film (7) formed on the Ag-based alloy film (6) and in direct contact with the film (6).
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: April 30, 2013
    Assignee: Kobe Steel, Ltd.
    Inventors: Yuuki Tauchi, Mototaka Ochi, Toshiki Sato
  • Publication number: 20130099187
    Abstract: A multilayer structure is disclosed that includes a conductive layer, a layer of a negative differential resistance (NDR) material disposed above the conductive layer, a layer M2 disposed above the NDR material, a second layer of NDR material disposed above layer M2, and a conductive layer disposed above the second NDR layer. Layer M2 can include a conductive material interspersed with regions of a dielectric material or a layer of the dielectric material and regions of the conductive material disposed above and below the dielectric material.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Inventors: Matthew D. Pickett, R. Stanley Williams, Gilberto M. Ribeiro, Warren Jackson
  • Patent number: 8419814
    Abstract: A method of manufacturing polycrystalline abrasive elements consisting of micron, sub-micron or nano-sized ultrahard abrasives dispersed in micron, sub-micron or nano-sized matrix materials. A plurality of ultrahard abrasive particles having vitreophilic surfaces are coated with a matrix precursor material in a refined colloidal process and then treated to render them suitable for sintering. The matrix precursor material can be converted to an oxide, nitride, carbide, oxynitride, oxycarbide, or carbonitride, or an elemental form thereof. The coated ultrahard abrasive particles are consolidated and sintered at a pressure and temperature at which they are crystallographically or thermodynamically stable.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: April 16, 2013
    Inventors: Antionette Can, Anna Emela Mochubele, Geoffrey John Davies, Johannes Lodewikus Myburgh
  • Patent number: 8420237
    Abstract: An adherent coating for carbide and ceramic substrates employs a thin layer of hafnium nitride (HfN) between the substrate and a subsequent layer or layers. The thin layer may be employed without thermal cracking due to heat during use, such as for the insert of a cutting tool, because the upper layer or layers provide a gradual transition of material properties to a harder, less thermally conductive material on the outermost layer. A particular arrangement of layers on the carbide or ceramic substrate and hafnium nitride layer may be, from innermost to outermost layer, titanium carbide, aluminum oxide, and titanium nitride.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: April 16, 2013
    Inventors: Wenping Jiang, Mike Kimmel, Ajay P. Malshe, Brett McAfee
  • Patent number: 8415033
    Abstract: A cutting tool is disclosed. The cutting tool comprises a substrate and a coating layer on the substrate. The coating layer consists of nitride or carbonitride containing Ti and Al, and has a thickness of 3 to 9 ?m on a flank face. A first intensity ratio I(400)/I(311) of the coating layer on an outer surface is larger than the first intensity ratio of the coating layer on the substrate side.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: April 9, 2013
    Assignee: KYOCERA Corporation
    Inventor: Masahito Matsuzawa
  • Patent number: 8415034
    Abstract: A composite wear-resistant member and a method of manufacturing the same. The method includes setting an appropriate sintering temperature from 900° C. to 1080° C. by adjusting a ratio of phosphor in a material, wherein the material contains hard particles including diamond particles and WC particles, a binder of an iron group metal containing phosphor (P), and copper, which is distributed and is present alone; and performing hot press sintering or electric discharge sintering on the material. The composite wear-resistant member includes a material including hard particles including diamond particles and WC particles, a binder of an iron group metal containing phosphor, and copper. The phosphor content is from 0.01 to 1.0 wt % with respect to the sum total of the WC particles and the binder.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: April 9, 2013
    Assignee: TIX Corporation
    Inventor: Nobuhiro Kuribayashi
  • Patent number: 8414229
    Abstract: The invention provides a tool component comprising a first layer of polycrystalline cBN material which has a rake (working) surface and a flank surface and comprises less than 70 vol % cBN; and a secondary layer across the rake surface or at least partially across the rake surface and comprising a refractory material and optionally a binder phase and optionally cBN, wherein the secondary layer has a higher resistance to crater formation than the first layer of cBN material and has a lower affinity towards iron than cBN.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: April 9, 2013
    Assignee: Element Six Abrasives S.A.
    Inventors: Nedret Can, Guven Akdogan, Peter Michael Harden, Cornelius Johannes Pretorius
  • Patent number: 8415019
    Abstract: A new composition and medical implant made there from comprises a thick diffusion hardened zone, and layered ceramic surface. Orthopedic implants comprising the new composition, methods of making the new composition, and methods of making orthopedic implants comprising the new composition are disclosed.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: April 9, 2013
    Assignee: Smith & Nephew, Inc.
    Inventors: Vivek Devidas Pawar, Shilesh C. Jani, Carolyn L. Weaver
  • Patent number: 8409731
    Abstract: A cutting tool insert includes a body of a hard alloy of cemented carbide, cermet, ceramics, cubic boron nitride based material or high speed steel. A hard and wear resistant coating, having at least one layer, to which an (Al,Cr)2O3 layer is applied. This insert is particularly useful for machining of steel and stainless steel. The coating with a total thickness of 2-20 ?m has one or several layers, at least one of which is an (Al,Cr)2O3 layer with a thickness of 1-5 ?m having a corundum phase crystalline structure and a composition (Al1-yCry)2O3 with 0.4?y?0.6. The (Al,Cr)2O3 layer has a fiber texture with rotational symmetry in the direction of the coated surface normal to an inclination angle, ?, of the basal planes relative to the coated surface normal or the inclination angle, ?, for the highest peak in the pole plot with 70° <?<90° .
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: April 2, 2013
    Assignee: Seco Tools AB
    Inventors: Mats Johansson, Tommy Larsson
  • Patent number: 8409696
    Abstract: A cutting tool includes a body of a hard alloy of cemented carbide, cermet, ceramics, cubic boron nitride based material or high speed steel and on which at least one of the functioning parts of the surface thereof, a hard and wear resistant coating is applied. The coating includes a polycrystalline laminar, multilayered structure of metal nitride compounds, in a repetitive form . . . MeN/(Ti1-xAlx)N/MeN/(Ti1-xAlx)N/MeN/(Ti1-xAlx)N/MeN/(Ti1-xAlx)N . . . of cubic structured (Ti1-xAlx)N layers where 0.3<x<0.95 and cubic structured MeN layers where Me is one or more of the metal element Ti, Zr, Hf, V, Nb, Ta, Mo and Al. The laminated structure has a repeat period, ?, of 5 nm??<20 nm, a layer thickness relation of 1/10<(dMeN/d(Ti,Al)N)<1/3 and a thickness dMeN?1 nm that is essentially constant throughout its total thickness up to 20 ?m.
    Type: Grant
    Filed: February 19, 2009
    Date of Patent: April 2, 2013
    Assignee: Seco Tools AB
    Inventors: Mats Johansson, Jacob Sjölén, Magnus Odén, Axel Knutsson
  • Patent number: 8409733
    Abstract: The invention relates to a method of producing a cutting tool at least partly coated with an inner CVD coating and an outer PVD coating comprising the manufacturing steps of depositing the CVD coating, subjecting the CVD coating at least partly to an intensive wet-blasting operation, followed by depositing the PVD coating. The invention also relates to a coated cutting tool comprising a cemented carbide substrate of 5-14 wt-% Co, 0-8 wt-% cubic carbides of Ti, Ta or Nb or a combination thereof, and balance WC, said substrate being at least partly coated with a 4-14 ?m thick coating comprising an inner CVD coating and an outer PVD coating wherein the CVD coating has compressive stresses.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: April 2, 2013
    Assignee: Sandvik Intellectual Property AB
    Inventor: Björn Ljungberg
  • Patent number: 8409734
    Abstract: Coated substrates having high wear resistant coatings are disclosed. The coatings include at least one layer of either titanium oxycarbonitride or titanium aluminum oxycarbonitride, such that the layer has an oxygen to titanium atomic percent ratio in the range of about 0.01 to about 0.09 and an aluminum to titanium atomic percent ratio in the range of about 0 to about 0.1. The coatings have a hardness to Young's modulus ratio of at least 0.06. The substrate may be a cutting insert. Methods of making such coated substrates are also disclosed in which layers comprising titanium oxycarbonitride or titanium aluminum oxycarbonitride are deposited by medium temperature chemical vapor deposition (MT-CVD) on substrates in the temperature range of about 750 to about 950° C. using a mixture of gases wherein the ratio of the hydrogen gas to the nitrogen gas is greater than 5.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: April 2, 2013
    Assignee: Kennametal Inc.
    Inventors: Zhigang Ban, Yixong Liu, Mark S. Greenfield
  • Patent number: 8409702
    Abstract: Coated cutting tools are disclosed which have a hard coating that includes at least one aluminum titanium nitride layer having a single phase structure of B1 cubic phase and a composition of (AlxTi1-x)N, where x is in the range of about 0.46 to about 0.52 moles. The hard coatings also have a residual stress in the range of from about ?0.4 to about ?3 GPa as measured by the XRD Sin2 ? method, and a crystallographic orientation characterized by an x-ray diffraction (200) to (111) peak intensity ratio in the range of about 1 to about 14. Preferably the aluminum titanium nitride layer has an average crystallite size in the range of about 15 to about 50 nanometers. Methods of making such coated cutting tools are also disclosed.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: April 2, 2013
    Assignee: Kennametal Inc.
    Inventors: Wangyang Ni, Zhigang Ban, Ronald M. Penich, Yixiong Liu
  • Patent number: 8409732
    Abstract: A cutting tool insert includes a body of a hard alloy of cemented carbide, cermet, ceramics, cubic boron nitride based material or high speed steel and a hard and wear resistant coating, including one or several layers, at least one of which is an (Al,Cr)2O3 layer. The coating, with a total thickness of 2-20 ?m includes one or several layers, at least one of which is an (Al,Cr)2O3 layer with a thickness of 1-5 ?m having a corundum phase crystalline structure and a composition (Al1-yCry)2O3 with 0.5?y?0.7. The (Al,Cr)2O3 layer has a fiber texture with rotational symmetry in the direction of the coated surface normal with an inclination angle, ?, of the basal planes relative to the coated surface normal or the inclination angle, ?, for the highest peak in the pole plot with 20°<?<55°.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: April 2, 2013
    Assignee: Seco Tools AB
    Inventors: Mats Johansson, Tommy Larsson
  • Patent number: 8409716
    Abstract: The invention in general relates to glass or glass-ceramic products. In order to protect the surface of such products against scratching, a silicon oxynitride coating with special composition is provided.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: April 2, 2013
    Assignee: Schott AG
    Inventors: Niko Schultz, Christian Henn, Falk Gabel, Andreas Hahn
  • Patent number: 8409491
    Abstract: A tough ultra-high temperature ceramic (UHTC) composite comprises grains of UHTC matrix material, such as HfB2, ZrB2 or other metal boride, carbide, nitride, etc., surrounded by a uniform distribution of acicular high aspect ratio reinforcement ceramic rods or whiskers, such as of SiC, is formed from uniformly mixing a powder of the UHTC material and a pre-ceramic polymer selected to form the desired reinforcement species, then thermally consolidating the mixture by hot pressing. The acicular reinforcement rods may make up from 5 to 30 vol % of the resulting microstructure.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: April 2, 2013
    Assignee: The United States of America as Represented by the Administrator of the National Aeronautics & Space Administration (NASA)
    Inventors: Margaret M Stackpoole, Matthew J Gasch, Michael W Olson, Ian W. Hamby, Sylvia M Johnson
  • Patent number: 8409695
    Abstract: A wear resistant multilayer nitride hard coating for substrates. The hard coating includes a first layer of titanium aluminum nitride and a second layer comprising a plurality of sublayer groups. Each sublayer group includes a first sublayer of titanium silicon nitride and a second sublayer of titanium aluminum nitride. The composition of the titanium aluminum nitride, both in the first layer and in the sublayer groups, is (TixAl1-x)N, wherein 0.4?x?0.6. The composition of the titanium silicon nitride sublayers is (TiySi1-y)N, wherein 0.85?y?0.98, and all of the silicon is in solid solution in the titanium silicon nitride such that no silicon phase or silicon nitride phase exists in this sublayer. The combined amount of aluminum and silicon present in the sublayer groups being narrowly controlled such that the sum of x and y is in the range of 1.38 to 1.46.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: April 2, 2013
    Assignee: Kennametal Inc.
    Inventors: Wangyang Ni, Yixiong Liu, Mark S. Greenfield, Ronald M. Penich
  • Patent number: 8404366
    Abstract: In a cutting tool, if the outermost ceramic coating layer is a ?-Al2O3 coating layer, then certain microns of the ?-Al2O3 layer will be transformed into an ?-Al2O3 by instantaneous melting, vaporization and solidification. Further, if the outermost coating layer of the ceramic coating layers is an ?-Al2O3 coating layer, then the surface roughness will be enhanced since at least a portion of it will be melted, wherein the melted surface will be solidified with its surface flattened by the surface tension provided in a melted state.
    Type: Grant
    Filed: January 2, 2007
    Date of Patent: March 26, 2013
    Assignee: TaeguTec, Ltd.
    Inventors: Dong Gil Ahn, Joo Wan Lee
  • Publication number: 20130061800
    Abstract: A high heat-resistant member includes a graphite substrate including isotropic graphite and a carbide coating film including a carbide, such as tantalum carbide, and covering a surface of the graphite substrate, the carbide coating film having a randomly oriented isotropic grain structure in which crystallites having a size indexed by a full width at half maximum of a diffraction peak of an X-ray diffraction spectrum of not more than 0.2° from (111) planes are accumulated at substantially random. The orientation of the carbide coating film is determined by whether degree of orientation (F) in any Miller plane calculated based on an XRD spectrum using the Lotgering method is within a range from ?0.2 to 0.2.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 14, 2013
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventors: Daisuke NAKAMURA, Akitoshi SUZUMURA, Keisuke SHIGETOH
  • Patent number: 8394513
    Abstract: The invention relates to a body which is coated with hard material and has a plurality of layers applied by means of CVD, wherein the outer layer comprises Ti1-xAlxN, Ti1-xAlxC and/or Ti1-xAlxCN where 0.65?x?0.9, preferably 0.7?x?0.9, and this outer layer has compressive stresses in the range from 100 to 1100 MPa, preferably from 400 to 800 MPa, and a TiCN or Al2O3 layer is arranged under this outer layer.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: March 12, 2013
    Assignee: Kennametal Inc.
    Inventors: Hendrikus Van Den Berg, Hartmut Westphal, Volkmar Sottke
  • Patent number: 8389134
    Abstract: The invention relates to a body which is coated with hard material and has a plurality of layers applied by means of CVD, in which an Al2O3 layer is arranged as outer layer on a Ti1-xAlxN layer and/or Ti1-xAlxC layer and/or Ti1-xAlxCN layer.
    Type: Grant
    Filed: January 20, 2009
    Date of Patent: March 5, 2013
    Assignee: Kennametal Inc.
    Inventors: Hendrikus Van Den Berg, Hartmut Westphal, Volkmar Sottke
  • Patent number: 8389115
    Abstract: A cutting tool insert includes a body of cemented carbide, cermet, ceramics, cubic boron nitride based material or high speed steel and a hard and wear resistant coating including at least one metal nitride layer. The coating includes at least one layer of a thermally stabilized cubic structured (Ti1?x+z)SixMez)N phase with 0.04<x<0.20 and 0<z<0.10, with a constant elemental composition throughout the layer where Me is one or more of the metal elements Y, Hf, Nb, Ta, Mo, W, Mn, Fe and Zn with a thickness of 0.5 to 10 ?m. The layer is deposited using cathodic arc evaporation and is particularly useful for machining of stainless steel and super alloys.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: March 5, 2013
    Assignee: Seco Tools AB
    Inventors: Mats Johansson, Jon Andersson, Axel Flink, Lars Hultman