Hydrogen Containing Patents (Class 429/200)
  • Publication number: 20150104692
    Abstract: A secondary battery includes: a cathode; an anode; and an electrolyte layer containing a nonaqueous electrolytic solution and a polymer compound, wherein the polymer compound contains a block copolymer, and the block copolymer contains vinylidene fluoride, hexafluoro propylene, and one or more of monomethyl maleate, trifluoroethylene, and chlorotrifluoroethylene as polymerization units.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 16, 2015
    Inventors: Aiko NAKAMURA, Tadahiko KUBOTA, Kazumasa TAKESHI, Shuhei SUGITA
  • Publication number: 20150104691
    Abstract: A secondary battery includes a cathode, an anode, and an electrolyte layer including non-aqueous electrolytic solution and a polymer compound. The polymer compound includes a graft copolymer. The graft copolymer includes a block copolymer as a main chain, and includes one or both of a homopolymer and a copolymer as one or more side chains. The block copolymer includes, as polymerization units, vinylidene fluoride and hexafluoropropylene. The homopolymer includes, as a polymerization unit, one selected from the group consisting of vinylidene fluoride, hexafluoropropylene, monomethyl maleate, trifluoroethylene, chlorotrifluoroethylene, acrylic acid, and methacrylic acid. The copolymer includes, as polymerization units, two or more selected from the group consisting of vinylidene fluoride, hexafluoropropylene, monomethyl maleate, trifluoroethylene, chlorotrifluoroethylene, acrylic acid, and methacrylic acid.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 16, 2015
    Inventors: Aiko NAKAMURA, Tadahiko KUBOTA, Kazumasa TAKESHI, Shuhei SUGITA
  • Patent number: 9005821
    Abstract: A nonaqueous electrolyte secondary battery includes: a positive electrode; a negative electrode; and a nonaqueous electrolyte, wherein an open circuit voltage in a completely charged state per pair of a positive electrode and a negative electrode is from 4.25 to 6.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: April 14, 2015
    Assignee: Sony Corporation
    Inventors: Toru Odani, Tadahiko Kubota
  • Publication number: 20150099192
    Abstract: A non-aqueous liquid electrolyte for a secondary battery, containing, in an aprotic solvent: an electrolyte; a particular nitrile compound; and a flame retardant composed of a particular phosphate compound or a phosphazene compound, in which the nitrile compound is contained in an amount of 0.1 parts by mass to 10 parts by mass with respect to 100 parts by mass of the flame retardant.
    Type: Application
    Filed: December 10, 2014
    Publication date: April 9, 2015
    Applicant: FUJIFILM Corporation
    Inventors: Toshihiko YAWATA, Ikuo KINOSHITA
  • Publication number: 20150099193
    Abstract: A lithium ion secondary battery that operates at a high voltage, has a high cycle life, and generates less gas, and an electrolytic solution for such a lithium ion secondary battery. An electrolytic solution for a non-aqueous energy storage device, comprising: a non-aqueous solvent; a lithium salt (A) having no boron atom; a predetermined lithium salt (B) containing a boron atom; and a compound (C) in which at least one of hydrogen atoms in an acid selected from the group consisting of proton acids having a phosphorus atom and/or a boron atom, sulfonic acids, and carboxylic acids is replaced with a substituent represented by formula (3): wherein R3, R4, and R5 each independently represent an organic group which has 1 to 10 carbon atoms and which may have a substituent.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: ASAHI KASEI KABUSHIKI KAISHA
    Inventors: Shinya Hamasaki, Aya Inaba, Keiko Sumino, Yusuke Shigemori, Gang Cheng, Steven S. Kaye, Bin Li
  • Publication number: 20150093602
    Abstract: An electrolyte for a rechargeable lithium battery includes a non-aqueous organic solvent; a lithium salt; and an additive including vinylene carbonate, fluoroethylene carbonate, and a nitrile-based compound represented by Formula 1: wherein n ranges from 1 to 12 and R1 and R2 are independently a halogen, a hydrogen, or an alkyl group. Further, the alkyl group can be CmH(2m+1), in which m ranges from 1 to 10. The electrolyte for a rechargeable lithium battery improves storage stability of the rechargeable lithium battery at a high temperature. And, a rechargeable lithium battery including the electrolyte has improved storage stability.
    Type: Application
    Filed: December 4, 2014
    Publication date: April 2, 2015
    Inventors: Euy-Young Jung, Duck-Chul Hwang, Jong-Hwa Lee, In-Tae Mun, Sae-Weon Roh, So-Hyun Hur, Yong-Chul Park, Jeom-Soo Kim, Jae-Yul Ryu
  • Publication number: 20150093636
    Abstract: A rechargeable battery comprising a positive electrode, a negative electrode and an electrolyte, wherein: —the electrolyte comprises a SEI film-forming agent, and—the negative electrode comprises a micrometric Si based active material, a polymeric binder material and a conductive agent, wherein at least part of the surface of the Si based active material consists of Si—OCO—R groups, Si being part of the active material, and R being the polymeric chain of the binder material.
    Type: Application
    Filed: April 4, 2013
    Publication date: April 2, 2015
    Inventors: Nathalie Delpuech, Driss Mazouzi, Bernard Lestriez, Dominique Guyomard, Lionel Roue
  • Patent number: 8993157
    Abstract: PVDF-g-PAN has been synthesized by grafting polyacrylonitrile onto polyvinylidene fluoride using an ATRP/AGET method. The novel polymer is ionically conducive and has much more flexibility than PVDF alone, making it especially useful either as a binder in battery cell electrodes or as a polymer electrolyte in a battery cell.
    Type: Grant
    Filed: January 20, 2013
    Date of Patent: March 31, 2015
    Assignee: Seeo, Inc.
    Inventors: Jin Yang, Hany Basam Eitouni, Yan Li
  • Patent number: 8993175
    Abstract: A polymer electrolyte including: a lithium salt; an organic solvent; a fluorine compound; and a polymer of a monomer represented by Formula 1 below. H2C?C—(OR)n—OCH?CH2??Formula 1 In Formula 1, R is a C2-C10 alkylene group, and n is in a range of about 1 to about 1000.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: March 31, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-sik Hwang, Han-su Kim, Jae-man Choi, Moon-seok Kwon
  • Publication number: 20150086862
    Abstract: A nonaqueous electrolyte secondary battery of an embodiment includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. The electrolyte contains an organic solvent with a lithium salt dissolved therein and an additive. An active material of the negative electrode contains at least one metal selected from Si and Sn, at least one or more selected from an oxide of the metal and an alloy containing the metal, and a carbonaceous matter. A fluorine concentration of a film A formed on the metal, the oxide of the metal, or the alloy containing the metal in the negative electrode active material is higher than a fluorine concentration of a film B formed on the carbonaceous matter, the additive includes at least one compound containing fluorine and at least one compound containing no fluorine, or an electrolyte after initial charge contains at least one fluorine-containing additive.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 26, 2015
    Inventors: Norikazu OSADA, Shinsuke MATSUNO, Keiko OKAMOTO, Takayuki FUKASAWA, Takashi KUBOKI
  • Publication number: 20150086861
    Abstract: An additive for an electrolyte of a lithium battery including a disultone-based compound represented by Formula 1 below, an organic electrolyte solution including the additive, and a lithium battery including the organic electrolyte solution are provided: wherein, in Formula 1, A1, A2, A3, and A4 are each independently a substituted or unsubstituted C1-C5 alkylene group; a carbonyl group; or a sulfinyl group.
    Type: Application
    Filed: January 9, 2014
    Publication date: March 26, 2015
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Khasanov Makhmut, Sang-Hoon Kim, Ha-Rim Lee, Pavel Alexandrovich Shatunov, In-Haeng Cho, Woo-Cheol Shin
  • Patent number: 8986880
    Abstract: A nonaqueous electrolyte battery includes: an electrode group including a positive electrode and a negative electrode; and a nonaqueous electrolyte including an electrolytic solution, the electrode group including an insulating layer, the insulating layer containing a ceramic, the electrolytic solution including an electrolyte salt and an additive, the electrolyte salt including the compound of formula (1), and the additive being at least one of the compounds of formulae (2) to (14), and the compound of formula (1) being contained in 0.001 mol/L to 2.5 mol/L with respect to the electrolytic solution.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: March 24, 2015
    Assignee: Sony Corporation
    Inventors: Toru Odani, Tadahiko Kubota
  • Publication number: 20150079484
    Abstract: The present disclosure relates to additives for electrolytes and preparation of aluminum-based, silicon-based, and bismuth-based additive compounds that can be used as additives or solutes in electrolytes and test results in various electrochemical devices. The inclusion of these aluminum, silicon, and bismuth compounds in electrolyte systems can enable rechargeable chemistries at high voltages that are otherwise unsuitable with current electrolyte technologies. These compounds are so chosen because of their beneficial effect on the interphasial chemistries formed at high potentials, such as 5.0 V class cathodes for Li-ion chemistries. The application of these compounds goes beyond Li-ion battery technology and covers any electrochemical device that employs electrolytes for the benefit of high energy density resultant from high operating voltages.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 19, 2015
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Arthur von Wald Cresce, Kang Conrad Xu
  • Publication number: 20150079480
    Abstract: Disclosed is a secondary battery including an electrode assembly, which includes a cathode, an anode and a separator interposed therebetween, and an electrolyte, wherein the anode includes lithium titanium oxide (LTO) as an anode active material and the electrolyte contains a phosphate-based compound as an additive.
    Type: Application
    Filed: November 26, 2014
    Publication date: March 19, 2015
    Applicant: LG CHEM, LTD.
    Inventors: Kyoung-Ho Ahn, Chul-Haeng Lee, Doo-Kyung Yang, Jong-Ho Jeon, Yoo-Seok Kim, Min-Jung Kim, Jung-Hoon Lee, Yi-Jin Jung
  • Publication number: 20150079483
    Abstract: The present disclosure relates to several families of commercially available oxirane compounds that can be used as electrolyte co-solvents, solutes, or additives in non-aqueous electrolyte and their test results in various electrochemical devices. The presence of these compounds can enable rechargeable chemistries at high voltages. These compounds were chosen for their beneficial effect on the interphasial chemistries that occur at high potentials on the classes of 5.0V cathodes used in experimental Li-ion systems.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Applicant: U.S. Government as represented by the Secretary of the Army
    Inventors: Arthur von Wald Cresce, Kang Conrad Xu
  • Publication number: 20150079466
    Abstract: The battery includes an electrolyte activating a positive electrode and a negative electrode. The electrolyte includes a plurality of salts in a solvent, one or more passivation salts in the solvent, and one or more passivation additives in the solvent. At least one of the passivation salts forms a passivation layer on the negative electrode during discharge of the battery and includes both lithium and boron. At least one of the salts is an inorganic lithium salt that excludes boron. The solvent includes one or more organic solvents. At least one of the passivation additives forms a passivation layer on the negative electrode during discharge of the battery and is not a salt. The positive electrode has one or more positive active materials that each include a lithium transition-metal oxide and the negative electrodes includes a negative active material selected from a group consisting of lithium metal and graphite.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Applicant: Quallion LLC
    Inventor: Sang Young Yoon
  • Patent number: 8980483
    Abstract: An electrolyte contains a solvent and an electrolyte salt. The solvent contains an organic acid and a sulfone compound in combination. The organic acid has a moiety containing an electron-withdrawing group such as a carbonyl group (—C(?O)—) or a sulfonyl group (—S(?O)2—) in the center and hydroxyl groups (—OH) at both ends. The sulfone compound is a cyclic compound having a disulfonic anhydride group (—(O?)2S—O—S(?O)2—) or a carboxylic-sulfonic anhydride group (—(O?)2S—O—C(?O)—).
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: March 17, 2015
    Assignee: Sony Corporation
    Inventors: Masayuki Ihara, Shinya Wakita, Tadahiko Kubota
  • Publication number: 20150072249
    Abstract: According to one embodiment, there is provided a nonaqueous electrolyte battery. The nonaqueous electrolyte battery includes a positive electrode, a negative electrode and a nonaqueous electrolyte. The negative electrode includes a negative electrode material layer. The negative electrode material layer includes a negative electrode active material capable of absorbing and releasing lithium at a potential of 0.78 V (vs. Li/Li+) or more. A film containing a compound having a propylene glycol backbone is formed on at least a part of a surface of the negative electrode material layer. A content of the compound having the propylene glycol backbone in the film is 2 ?mol to 40 ?mol per g of a weight of the negative electrode material layer.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 12, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Dai Yamamoto, Yuki Watanabe, Hidesato Saruwatari, Kazuya Kuriyama, Hideki Satake
  • Publication number: 20150072225
    Abstract: A non-aqueous secondary battery containing: a positive electrode containing a transition metal oxide as an active material thereof; a negative electrode; and a non-aqueous liquid electrolyte containing an electrolyte, an organic solvent, and less than 0.1 mol/L of an organometallic compound containing a transition element or a rare-earth element as a central metal thereof.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Applicant: FUJIFILM CORPORATION
    Inventors: Yohei ISHIJI, Michio ONO
  • Publication number: 20150072248
    Abstract: An alkali metal-sulfur-based secondary battery, in which coulombic efficiency is improved by suppressing a side reaction during charge, and a reduction in discharge capacity by repetition of charge and discharge is suppressed and which has a long battery life and an improved input/output density, includes a positive electrode or a negative electrode containing a sulfur-based electrode active material; an electrolyte solution containing an ether compound such as THF and glyme and a solvent such as a fluorine-based solvent, wherein at least a part of the ether compound and the alkali metal salt forms a complex; and a counter electrode.
    Type: Application
    Filed: March 18, 2013
    Publication date: March 12, 2015
    Applicant: NATIONAL UNIVERSITY CORPORATION YOKOHAMA NATIONAL UNIVERSITY
    Inventors: Masayoshi Watanabe, Kaoru Dokko, Naoki Tachikawa, Mizuho Tsuchiya, Kazuhide Ueno, Azusa Yamazaki, Kazuki Yoshida, Ryuji Harimoto, Risa Nozawa, Toshihiko Mandai, Ce Zhang, Jun-Woo Park, Yu Onozaki, Masao Iwaya
  • Publication number: 20150064578
    Abstract: An electrolyte for a lithium secondary battery, the electrolyte including: a lithium salt; a non-aqueous organic solvent; and a piperazine derivative represented by Formula 1 having an oxidation potential lower than an oxidation potential of the non-aqueous organic solvent by about 2 V to about 4 V: wherein, in Formula 1, X, Y, and R1 to R4 are defined in the specification.
    Type: Application
    Filed: July 9, 2014
    Publication date: March 5, 2015
    Inventors: Yoon-sok KANG, Jun-young MUN, Min-sik PARK, Jae-gu YOON
  • Patent number: 8968938
    Abstract: Disclosed are a non-aqueous electrolyte comprising a lithium salt and a solvent, the electrolyte containing, based on the weight of the electrolyte, 10-40 wt % of a compound of Formula 1 or its decomposition product, and 1-40 wt % of an aliphatic nitrile compound, as well as an electrochemical device comprising the non-aqueous electrolyte. Also disclosed is an electrochemical device comprising: a cathode having a complex formed between the surface of a cathode active material and an aliphatic nitrile compound; and an anode having formed thereon a coating layer containing a decomposition product of the compound of Formula 1. Moreover, disclosed is an electrochemical device comprising: a cathode having a complex formed between the surface of a cathode active material and an aliphatic nitrile compound; and a non-aqueous electrolyte containing the compound of Formula 1 or its decomposition product.
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: March 3, 2015
    Assignee: LG Chem, Ltd.
    Inventors: Young Soo Kim, Soon Ho Ahn, Joon Sung Bae, Cha Hun Ku, Soo Hyun Ha, Duk Hyun Ryu, Sei Lin Yoon
  • Publication number: 20150056523
    Abstract: This invention provides a system and a method for safe production of electrolyte at required concentration on site on demand where occasionally only water is needed to be filled up. The system includes two main units: a saturated electrolyte unit and a diluted electrolyte unit.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 26, 2015
    Inventors: Dekel Tzidon, Avraham Melman
  • Publication number: 20150056503
    Abstract: A non-aqueous liquid electrolyte suitable for use in a non-aqueous liquid electrolyte secondary battery comprising a negative electrode and a positive electrode, capable of intercalating and deintercalating lithium ions, and the non-aqueous liquid electrolyte, the negative electrode containing a negative-electrode active material having at least one kind of atom selected from the group consisting of Si atom, Sn atom and Pb atom, in which the non-aqueous liquid electrolyte comprises a carbonate having at least either an unsaturated bond or a halogen atom.
    Type: Application
    Filed: October 31, 2014
    Publication date: February 26, 2015
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Takashi FUJII, Noriko SHIMA, Youichi OHASHI, Shinichi KINOSHITA
  • Publication number: 20150056501
    Abstract: A secondary battery includes a cathode, an anode, and an electrolytic solution. The electrolytic solution contains an electrolytic solution material together with a nonaqueous solvent and an electrolyte salt. The electrolytic solution material includes one or more of first unsaturated compounds and second unsaturated compounds represented, and one or more of phenol-type compounds, phosphorus-containing compounds, and sulfur-containing compounds.
    Type: Application
    Filed: August 7, 2014
    Publication date: February 26, 2015
    Inventors: Masayuki IHARA, Shigeru FUJITA
  • Publication number: 20150056499
    Abstract: Alkoxide magnesium halide compounds having the formula: RO—Mg—X??(1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Inventors: Sheng Dai, Xiao-Guang Sun, Chen Liao, Bingkun Guo
  • Publication number: 20150056502
    Abstract: Disclosed is an electrolyte solution used for a lithium secondary battery having high capacity, less undergoing aging deterioration of capacity, and also excellent in life characteristic. The electrolyte solution used for a lithium secondary battery contains a compound having a trivalent or higher boron formed by incorporation of a boroxine compound represented by (RO)3(BO)3 in which R(s) each represent independently an organic group of 1 to 6 carbon atoms and LiPF6, and a non-aqueous solvent.
    Type: Application
    Filed: August 12, 2014
    Publication date: February 26, 2015
    Applicant: Hitachi, Ltd.
    Inventors: Hiroshi HARUNA, Shin TAKAHASHI, Kazushige KOHNO, Yasutaka TANAKA
  • Publication number: 20150056500
    Abstract: A lithium ion battery electrolyte, comprises lithium salt, a non-aqueous organic solvent and additives. The additives comprise an SEI film forming additive and furil and derivatives thereof, and the SEI film forming additive is at least one of vinylene carbonate, fluoroethylene carbonate and vinyl ethylene carbonate. Compared with the prior art, furil and derivatives thereof are added to the electrolyte as electrolyte additives in the present invention, to enhance the permeability for separator and the wettability for positive/negative electrode materials, facilitate the film forming reaction of the SEI film forming additive, and further improve the cycling performance of the lithium ion battery using the electrolyte. Furthermore, the furil and derivatives thereof have good chemical and electrochemical stability and free from decomposition reaction within the operating voltage range of the lithium ion battery, thereby imparting no negative effect upon battery performances.
    Type: Application
    Filed: March 19, 2014
    Publication date: February 26, 2015
    Applicant: NingDe Contemporary Amperex Technology Limited
    Inventors: Shilin HUANG, Kefei WANG, Chenghua FU
  • Patent number: 8962192
    Abstract: A nonaqueous electrolytic solution that can provide a battery that is low in gas generation, has a large capacity, and is excellent in storage characteristics and cycle characteristics contains an electrolyte and a nonaqueous solvent dissolving the electrolyte and further contains 0.001 vol % or more and less than 1 vol % of a compound represented by Formula (1) in the nonaqueous solvent. Alternatively, the nonaqueous electrolytic solution contains 0.001 vol % or more and less than 5 vol % of a compound represented by Formula (1) in the nonaqueous solvent and further contains at least one compound selected from the group consisting of cyclic carbonate compounds having carbon-carbon unsaturated bonds, cyclic carbonate compounds having fluorine atoms, monofluorophosphates, and difluorophosphates. In Formula (1), R1 to R3 each independently represent an alkyl group of 1 to 12 carbon atoms, which may be substituted by a halogen atom; and n represents an integer of 0 to 6.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: February 24, 2015
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Minoru Kotato, Shinichi Kinoshita
  • Publication number: 20150050550
    Abstract: The present invention provides an organic electrolyte comprising a compound represented by formula (1) as a compound that can be used in organic electrolyte storage batteries with a high charge voltage of 4.7 V or higher (in formula 1, R3 to R16 are each independently hydrogen, a straight-chain or branched alkyl group having one to four carbon atoms, a halogen-containing straight-chain or branched alkyl group having one to four carbon atoms, halogen, a phenyl group having no substituent or having a substituent bonded thereto or a cyclohexyl group having no substituent or having a substituent bonded thereto, R1 and R2 are each independently hydrogen, a straight-chain or branched alkyl group having one to four carbon atoms or a halogen-containing straight-chain or branched alkyl group having one to four carbon atoms and R3 to R16 may bond to those next to each other to form a ring).
    Type: Application
    Filed: April 3, 2013
    Publication date: February 19, 2015
    Inventors: Takeshi Nishizawa, Atsuo Omaru
  • Publication number: 20150050562
    Abstract: The present invention is to provide a nonaqueous electrolytic solution prepared by dissolving an electrolyte salt in a nonaqueous solvent and an energy storage device, wherein the nonaqueous electrolytic solution includes LiPF2(—OC(?O)—C(?O)O—)2 and at least one kind of a compound having a carbon-carbon triple bond represented by the following general formula (I): (wherein R1 and R2 each independently represent a hydrogen atom or an alkyl group having from 1 to 6 carbon atoms and optionally substituted with a halogen atom; and R3 represents a methyl group or an ethyl group. X represents a hydrogen atom or —CR1R2—OS(?O)2—R3.
    Type: Application
    Filed: March 22, 2013
    Publication date: February 19, 2015
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Koji Abe, Masahide Kondo
  • Publication number: 20150050535
    Abstract: Battery designs are provided that exhibit commercially suitable cycling properties for consumer electronics with silicon based active materials in the electrodes. The batteries can have stacked or wound electrodes and suitable electrode designs.
    Type: Application
    Filed: August 15, 2014
    Publication date: February 19, 2015
    Inventors: Shabab Amiruddin, Bing Li, Swapnil J. Dalavi, Sujeet Kumar
  • Publication number: 20150044554
    Abstract: Provided are a nonaqueous electrolyte battery having improved durability properties such as cycle and storage properties, and improved load characteristic, and a nonaqueous electrolyte solution that is appropriate for the nonaqueous electrolyte battery. The nonaqueous electrolyte solution contains a lithium salt and a nonaqueous solvent that dissolves the lithium salt. The nonaqueous electrolyte solution also contains a compound represented by formula (1) and a specific compound that acts in conjunction with the aforementioned compound.
    Type: Application
    Filed: October 24, 2014
    Publication date: February 12, 2015
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Hiroyuki TOKUDA, Akemi HOSOKAWA, Shuhei SAWA, Youichi OHASHI, Koji FUKAMIZU, Minoru KOTATO, Daisuke KAWAKAMI
  • Publication number: 20150044553
    Abstract: A cathode for a magnesium battery that includes a current collector and an active material disposed on the current collector. The active material includes a metal organic framework with a cubic structure having iron or a transition metal on corners of the cubic structure. The corners are linked by a cyano group. The active material may have the formula: (MgA)xMFe(CN)6 wherein A=K, Na, M=Fe, Cu, Ni, Co, Mn, Zn and 0?×?0.67.
    Type: Application
    Filed: August 7, 2013
    Publication date: February 12, 2015
    Applicant: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Jiajun Chen
  • Publication number: 20150044573
    Abstract: The invention relates to lithium 1-trifluoromethoxy-1,2,2,2-tetra-fluoroethanesulphonate, the use of lithium 1-trifluoromethoxy-1,2,2,2-tetra-fluoroethanesulphonate as electrolyte salt in lithium-based energy stores and also ionic liquids comprising 1-trifluoro-methoxy-1,2,2,2-tetrafluoro-ethanesulphonate as anion.
    Type: Application
    Filed: February 27, 2013
    Publication date: February 12, 2015
    Inventors: Gerd-Volker Röschenthaler, Martin Winter, Stefano Passerini, Katja Vlasov, Nataliya Kalinovich, Christian Schreiner Schreiner, Raphael Wilhelm Schmitz, Ansgar Romek Müller, Rene Schmitz, Tanja Schedlbauer, Alexandra Lex-Balducci, Miriam Kunze
  • Publication number: 20150044577
    Abstract: A magnesium ion-containing electrolyte used for a magnesium cell includes magnesium, halogen, one of boron, aluminum, and phosphorous, and an organic group including OCXHY. The magnesium ion-containing electrolyte has low reactivity with oxygen. Even when oxygen exists in the magnesium ion-containing electrolyte, a deterioration of the magnesium-ion containing electrolyte is restricted, and magnesium ions stably move.
    Type: Application
    Filed: August 5, 2014
    Publication date: February 12, 2015
    Inventors: Norikazu ADACHI, Kenichirou KAMI, Sergiy M. MALOVANYY, Leonid M. USHKALOV
  • Patent number: 8951664
    Abstract: An ionic liquid having high electrochemical stability and a low melting point. An ionic liquid represented by the following general formula (G0) is provided. In the general formula (G0), R0 to R5 are individually any of an alkyl group having 1 to 20 carbon atoms, a methoxy group, a methoxymethyl group, a methoxyethyl group, and a hydrogen atom, and A? is a univalent imide-based anion, a univalent methide-based anion, a perfluoroalkyl sulfonic acid anion, tetrafluoroborate, or hexafluorophosphate.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: February 10, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kyosuke Ito, Toru Itakura
  • Publication number: 20150037686
    Abstract: Described are electrolyte compositions having at least one salt and at least one compound selected from the group consisting of: wherein “a” is from 1 to 3; “b” is 1 or 2; 4?“a”+“b”?2; X is a halogen; R can be alkoxy or substituted alkoxy, among other moieties, and R1 is alkyl, substituted alkyl, aryl, substituted aryl, alkoxy, or substituted alkoxy. Also described are electrochemical devices that use the electrolyte composition.
    Type: Application
    Filed: February 4, 2013
    Publication date: February 5, 2015
    Inventors: José Adrián Peña Hueso, Jian Dong, Michael L. Pollina, Monica L. Usrey, Robert J. Hamers, Robert C. West, David Osmalov
  • Publication number: 20150037668
    Abstract: The object is to provide a non-aqueous electrolyte solution for secondary batteries, which has sufficient ion conductivity and which is provided also with excellent high voltage cycle properties and high voltage high temperature preserving properties, and a lithium ion secondary battery employing such a non-aqueous electrolyte solution. A non-aqueous electrolyte solution for secondary batteries, comprising a lithium salt and a liquid composition, wherein the liquid composition comprises from 5 to 50 vol % of a specific fluorinated ether compound, from 5 to 70 vol % of a specific fluorinated cyclic carbonate compound, and from 1 to 35 vol % of a specific sultone compound, and a lithium ion secondary battery employing such a non-aqueous electrolyte solution.
    Type: Application
    Filed: October 6, 2014
    Publication date: February 5, 2015
    Applicant: Asahi Glass Company, Limited
    Inventors: Masao Iwaya, Yu Onozaki
  • Publication number: 20150037691
    Abstract: An electrolyte may include compounds of general Formula IVA or IVB. where, R8, R9, R10, and R11 are each independently selected from H, F, Cl, Br, CN, NO2, alkyl, haloalkyl, and alkoxy groups; X and Y are each independently O, S, N, or P; and Z? is a linkage between X and Y, and at least one of R8, R9, R10, and R11 is other than H.
    Type: Application
    Filed: October 21, 2014
    Publication date: February 5, 2015
    Inventors: Wei Weng, Zhengcheng Zhang, Khalil Amine
  • Publication number: 20150037667
    Abstract: Disclosed is a nonaqueous electrolyte solution containing a nonaqueous solvent, an electrolyte salt dissolved in the nonaqueous solvent, and a conjugated carbonyl compound represented by the following formula (1). A secondary battery using this nonaqueous electrolyte solution shows an excellent cycle characteristic under a high-temperature environment even if a negative electrode active material containing silicon is used. wherein R1 represents R2a or —CO—R2a, R2a having a meaning given to R2, and R2 represents a hydrogen atom, an acyl group, an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group, a substituted or unsubstituted aromatic group, an oxyalkylene group, an alkoxy group, a cycloalkyloxy group, an alkenyloxy group, an alkynyloxy group, an aromatic oxy group, an oxyalkyleneoxy group or the like.
    Type: Application
    Filed: January 23, 2013
    Publication date: February 5, 2015
    Inventors: Masahiro Suguro, Midori Shimura
  • Patent number: 8945776
    Abstract: An electrolyte for a rechargeable lithium battery and a rechargeable lithium battery including the same, the electrolyte including a lithium salt, a silylborate-based compound, an anhydride component, and a non-aqueous organic solvent.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: February 3, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Tae-Ahn Kim, Mi-Hyeun Oh, Na-Rae Won, Sung-Hoon Kim
  • Patent number: 8945781
    Abstract: The present invention provides a non-aqueous electrolyte secondary battery wherein a reaction between a non-aqueous electrolyte and an electrode is suppressed and decrease in battery capacity under high temperature is restricted, so that long time excellent battery characteristics can be obtained. A non-aqueous solvent of the non-aqueous electrolyte contains: chain fluorinated carboxylic acid ester represented by the formula R1-CH2—COO—R2 where R1 represents hydrogen or alkyl group and R2 represents alkyl group and the sum of the carbon numbers of R1 and R2 is 3 or less, and in the case that R1 is hydrogen, at least one part of hydrogen in R2 is replaced with fluorine, and, in the case that R1 is alkyl group, at least one part of hydrogen in R1 and/or R2 is replaced with fluorine; and a film forming chemical compound decomposed in the range of +1.0 to 3.0 V based on an equilibrium potential between metal lithium and lithium ion.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: February 3, 2015
    Assignees: SANYO Electric Co., Ltd., Kanto Denka Kogyo Co., Ltd.
    Inventors: Takanobu Chiga, Keiji Saisho, Ryo Mogi, Osamu Omae
  • Patent number: 8940444
    Abstract: Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: January 27, 2015
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Thomas Gennett, David S. Ginley, Wade Braunecker, Chunmei Ban, Zbyslaw Owczarczyk
  • Patent number: 8940434
    Abstract: Disclosed are an additive for a rechargeable lithium battery electrolyte including an aromatic compound having an isothiocyanate group (—NCS), and an electrolyte and rechargeable lithium battery including the same.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 27, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Makhmut Khasanov, Woo-Cheol Shin, Denis Chernyshov, Alexey Tereshchenko, Vladimir Egorov, Pavel Shatunov
  • Publication number: 20150024267
    Abstract: The present invention relates to an electrolyte having improved high-rate charge and discharge property, and a capacitor comprising the same, and more particularly to an electrolyte having improved high-rate charge and discharge property comprising an aromatic compound, which comprises at least one compound of the following Chemical Formula 1 to Chemical Formula 11 that can induce resonance effect of electron movement, and which is a substituted organic compound in which a functional group is present at a location that can structurally prevent local polarization effect, and the boiling point of which is 80° C. or higher, wherein R in the Chemical Formula 1 to Chemical Formula 11 is at least one functional group selected from the alkyl group consisting of methyl, ethyl, propyl and butyl, and a capacitor comprising the same.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 22, 2015
    Inventor: Cheol Soo JUNG
  • Publication number: 20150024284
    Abstract: The present invention is to provide: a nonaqueous-electrolyte battery excellent in terms of safety during overcharge and high-temperature storability; and a nonaqueous electrolytic solution which gives the battery. The present invention relates to a nonaqueous electrolytic solution comprising an electrolyte and a nonaqueous solvent, wherein the nonaqueous electrolytic solution comprises at least one of specific compounds.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 22, 2015
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Kanako TAKIGUCHI, Masamichi Onuki, Minoru Kotato, Ryo Yamaguchi, Takeshi Nakamura, Takayuki Aoshima
  • Publication number: 20150024282
    Abstract: In an aspect, a lithium secondary battery including a compound as disclosed and described herein; and an electrolyte for a lithium secondary battery including a non-aqueous organic solvent and a lithium salt is provided.
    Type: Application
    Filed: June 24, 2014
    Publication date: January 22, 2015
    Inventors: Ha-Rim Lee, Sang-Hoon Kim, In-Haeng Cho
  • Patent number: 8936881
    Abstract: A rechargeable lithium battery including a negative electrode, a positive electrode, the positive electrode including a lithium manganese oxide represented by the following Chemical Formula 1a or 1b, and an electrolyte, the electrolyte including an alkylsilyl phosphate represented by the following Chemical Formula 2:
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: January 20, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Su-Hee Han
  • Publication number: 20150017551
    Abstract: Lithium salt mixtures, for example a mixture including at least two lithium salts chosen from two of the three following groups of salts: X: LiPF6, LiBF4, CH3COOLi, CH3SO3Li, CF3SO3Li, CF3COOLi, Li2B12F12, LiBC4O8; R1—SO2—NLi—SO2—R2, where R1 and R2 independently represent F, CF3, CHF2, CH2F, C2HF4, C2H2F3, C2H3F2, C2F5, C3F7, C3H2F5, C3H4F3, C4F9, C4H2F7, C4H4F5, C5F11, C3F5OCF3, C2F4OCF3, C2H2F2OCF3 or CF2OCF3; or Formula (I), where Rf represents F, CF3, CHF2, CH2F, C2HF4, C2H2F3, C2H3F2, C2F5, C3F7, C3H2F5, C3H4F3, C4F9, C4H2F7, C4H4F5, C5F11, C3F5OCF3, C2F4OCF3, C2H2F2OCF3 or CF2OCF3. Also, said salt mixtures dissolved in solvents, suitable for being used as electrolytes for Li-ion batteries.
    Type: Application
    Filed: November 21, 2012
    Publication date: January 15, 2015
    Applicant: ARKEMA FRANCE
    Inventor: Grégory Schmidt