Organic Component Is Active Material Patents (Class 429/213)
  • Patent number: 11152639
    Abstract: Provided is an alkali metal-sulfur battery, comprising: (a) an anode; (b) a cathode having (i) a cathode active material slurry comprising a cathode active material dispersed in an electrolyte and (ii) a conductive porous structure acting as a 3D cathode current collector having at least 70% by volume of pores and wherein cathode active material slurry is disposed in pores of the conductive porous structure, wherein the cathode active material is selected from sulfur, lithium polysulfide, sodium polysulfide, sulfur-polymer composite, sulfur-carbon composite, sulfur-graphene composite, or a combination thereof; and (c) a separator disposed between the anode and the cathode; wherein the cathode thickness-to-cathode current collector thickness ratio is from 0.8/1 to 1/0.8, and/or the cathode active material constitutes an electrode active material loading greater than 15 mg/cm2, and the 3D porous cathode current collector has a thickness no less than 200 ?m (preferably thicker than 500 ?m).
    Type: Grant
    Filed: January 15, 2016
    Date of Patent: October 19, 2021
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z Jang
  • Patent number: 11152645
    Abstract: A lithium ion secondary battery includes at least a positive electrode, a separator, a first intermediate layer, a second intermediate layer, and a negative electrode. The separator is arranged between the positive electrode and the negative electrode. The first intermediate layer is arranged between the separator and the negative electrode. The second intermediate layer is arranged between the first intermediate layer and the negative electrode. The first intermediate layer and the second intermediate layer are each a porous layer. The first intermediate layer contains at least a metal organic framework. The second intermediate layer is electrically insulating.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: October 19, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Kazuhisa Takeda
  • Patent number: 11145857
    Abstract: The invention features a rechargeable cathode and a battery comprising the cathode. The cathode includes a solid, ionically conducting polymer material and electroactive sulfur. The battery contains a lithium anode; the cathode; and an electrolyte; wherein at least one of anode, the cathode and the electrolyte, include the solid, ionically conducting polymer material.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: October 12, 2021
    Assignee: IONIC MATERIALS, INC.
    Inventors: Michael A. Zimmerman, Randy Leising, Alexei B. Gavrilov, Keith Smith, Andy Teoli
  • Patent number: 11139464
    Abstract: A first silicon oxide material and a second silicon oxide material are prepared. A dispersion is prepared by dispersing the first silicon oxide material in an aqueous carboxymethylcellulose solution. A negative electrode composite material slurry is prepared by dispersing the second silicon oxide material and a binder in the dispersion. A negative electrode is produced by applying the negative electrode composite material slurry to a surface of a negative electrode current collector and then performing drying. The binder includes no carboxymethylcellulose. The first silicon oxide material has not been pre-doped with lithium. The second silicon oxide material has been pre-doped with lithium.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: October 5, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryosuke Ohsawa, Akira Tsujiko, Kaoru Inoue
  • Patent number: 11127943
    Abstract: A device for extending the life of a battery, including an electrode having a metal portion, wherein the metal portion is selected from the group including lithium, calcium, magnesium, sodium, potassium and combinations thereof, an electrolyte permeable membrane, and a metal dendrite seeding material disposed between the electrode and the membrane. The electrode, the membrane and the metal dendrite seeding material are positioned in an electrolyte matrix. At least one dendrite extends from the electrode toward the electrolyte permeable membrane combines with at least one dendrite extending from the dendrite seeding material.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: September 21, 2021
    Assignee: Indiana University Research and Technology Corporation
    Inventor: Jian Xie
  • Patent number: 11121373
    Abstract: A method for manufacturing an electrochemical device includes the following steps: a step of preparing a positive electrode, the positive electrode including a first current collector and a positive electrode layer containing a conductive polymer; a step of preparing a negative electrode, the negative electrode including a second current collector and a negative electrode layer; and a step of sealing the positive electrode, the negative electrode, and an electrolytic solution in an exterior body. The step of preparing the positive electrode includes a step of holding the positive electrode in depressurized atmosphere and then introducing gas containing CO2 as a primary component into the depressurized atmosphere.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: September 14, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kiyohiro Isii, Takuma Asari, Chiho Nobumori, Yasuyuki Ito, Nao Matsumura
  • Patent number: 11094938
    Abstract: The object of the present invention is to provide an electric power storage device using an aqueous electrolytic solution that is safe even if the device is damaged while being used and the electrolytic solution leaks out from the battery housing. Specifically, the object of the present invention is to provide a secondary battery having both excellent safety and excellent cycle characteristics. The present invention is an aqueous secondary battery, wherein at least either of the positive electrode or the negative electrode comprises a compound (I) having a naphthalenediimide structure or a perylenediimide structure as an active material.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: August 17, 2021
    Assignees: MITANI BATTERY CO., LTD., UNIVERSITY PUBLIC CORPORATION OSAKA
    Inventors: Yuki Kanzaki, Kazunobu Sato, Takeji Takui, Daisuke Shiomi, Satoshi Mitani
  • Patent number: 11071485
    Abstract: The present invention provides a bio-electrode composition including a polymer compound having both an ionic repeating unit A and a (meth)acrylate repeating unit B, wherein the ionic repeating unit A is a repeating unit selected from the group consisting of sodium salt, potassium salt, and ammonium salt having either or both partial structures shown by the following general formulae (1-1) and (1-2), and the (meth)acrylate repeating unit B is a repeating unit shown by the following general formula (2). This can form a living body contact layer for a bio-electrode with excellent electric conductivity, biocompatibility, and light weight, which can be manufactured at low cost and does not cause large lowering of the electric conductivity even when it is wetted with water or dried.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: July 27, 2021
    Assignee: SHIN-ETSU CHEMICAL CO., LTD.
    Inventors: Jun Hatakeyama, Koji Hasegawa, Osamu Watanabe, Motoaki Iwabuchi
  • Patent number: 11063265
    Abstract: The disclosed technology generally relates to energy storage devices, and more particularly to energy storage devices comprising frustules. According to an aspect, a supercapacitor comprises a pair of electrodes and an electrolyte, wherein at least one of the electrodes comprises a plurality of frustules having formed thereon a surface active material. The surface active material can include nanostructures. The surface active material can include one or more of a zinc oxide, a manganese oxide and a carbon nanotube.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: July 13, 2021
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera N. Lockett, Yasser Salah, John G. Gustafson, William J. Ray, Sri Harsha Kolli
  • Patent number: 11033859
    Abstract: A method of eluting biomolecules, such as nucleic acids from a biological sample by electroelution is provided. An example of a method includes various steps, such as loading the biological sample to a device comprising a housing, at least two conductive redox polymer electrodes operationally coupled to the housing and a biomolecule impermeable layer disposed on at least one of the electrodes. The loading of sample is followed by initiating an electrical connection to generate an electric field strength sufficient to elute biomolecules from the biological sample; and eluting the biomolecules from the biological sample.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: June 15, 2021
    Assignee: Global Life Sciences Solutions Operations UK Ltd
    Inventors: Christopher Michael Puleo, John Richard Nelson, Patrick McCoy Spooner, Ralf Lenigk, Nicole Lea Wood, Li Zhu, Craig Patrick Galligan
  • Patent number: 11038176
    Abstract: Systems and methods for water based phenolic binders for silicon-dominant anodes may include an electrode coating layer on a current collector, where the electrode coating layer is formed from silicon and a pyrolyzed water-based phenolic binder. The water-based phenolic binder may include phenolic/resol type polymers crosslinked with poly(methyl vinyl ether-alt-maleic anhydride), poly(methyl vinyl ether-alt-maleic acid), and/or Poly(acrylamide-co-diallyldimethylammonium chloride) (PDADAM). The electrode coating layer may further include conductive additives. The current collector may comprise one or more of a copper, tungsten, stainless steel, and nickel foil in electrical contact with the electrode coating layer. The electrode coating layer may include more than 70% silicon. The electrode may be in electrical and physical contact with an electrolyte, where the electrolyte includes a liquid, solid, or gel. The battery electrode may be in a lithium ion battery.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: June 15, 2021
    Assignee: Enevate Corporation
    Inventors: Sanjaya D. Perera, Liwen Ji, Younes Ansari, Benjamin Park
  • Patent number: 11005103
    Abstract: A composition for forming a porous insulating layer according to the present disclosure includes a solvent including an organic solvent, and an insulating inorganic particle. According to the present disclosure, a porous insulating layer prepared using the composition is positioned on an active material layer being on a main surface of a current collector, wherein the active material layer includes at least an active material capable of electrochemically intercalating and deintercalating lithium ions and an active material layer binder. A distance between Hansen solubility parameters of the active material layer binder and the organic solvent is greater than or equal to about 8.0 (MPa)1/2.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: May 11, 2021
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Tomoyuki Fukatani, Koji Hoshiba
  • Patent number: 10978701
    Abstract: A porous silicon composite including: a porous silicon composite cluster comprising a porous silicon composite secondary particle and a second carbon flake on at least one surface of the porous silicon composite secondary particle; and a carbonaceous layer on the porous silicon composite cluster, the carbonaceous layer comprising amorphous carbon, wherein the porous silicon composite secondary particle comprises an aggregate of two or more silicon primary particles, the two or more silicon primary particles comprise silicon, a silicon suboxide of the formula SiOx, wherein 0<x<2 on a surface of the silicon, and a first carbon flake on at least one surface of the silicon suboxide, the silicon suboxide is in a form of a film, a matrix, or a combination thereof, and the first carbon flake and the second carbon flake are each independently present in a form of a film, particles, a matrix, or a combination thereof.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: April 13, 2021
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SAMSUNG SDI CO., LTD.
    Inventors: Jongseok Moon, Mijong Kim, Sewon Kim, Kyueun Shim, Sungsoo Han, Inhyuk Son, Jumyeung Lee
  • Patent number: 10974965
    Abstract: A silicon-containing structure including: a silicon composite including a porous silicon secondary particle and a first carbon flake on a surface of the porous silicon secondary particle; a carbonaceous coating layer on the porous silicon composite, the carbonaceous coating layer comprising a first amorphous carbon; and the silicon composite comprises a second amorphous carbon and has a density that is equal to or less than a density of the carbonaceous coating layer, wherein the porous silicon secondary particle includes an aggregate of silicon composite primary particles, each including silicon, a silicon suboxide on a surface of the silicon, and a second carbon flake on a surface of the silicon suboxide.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: April 13, 2021
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SAMSUNG SDI CO., LTD.
    Inventors: Jongseok Moon, Mijong Kim, Sewon Kim, Kyueun Shim, Sungsoo Han, Inhyuk Son, Jumyeung Lee, Minwoo Lim
  • Patent number: 10978692
    Abstract: A lithium secondary battery includes an electrode group and a nonaqueous electrolyte having lithium ion conductivity. A negative electrode includes a negative electrode current collector. The negative electrode current collector has a first surface facing an outward direction of winding of the electrode group and a second surface facing an inward direction of the winding of the electrode group. Lithium metal is deposited on the first surface and the second surface by charge. The negative electrode further includes first protrusions protruding from the first surface and second protrusions protruding from the second surface. A ratio A1X/A1 is less than a ratio A2X/A2. A1X is a sum of projected areas of the first protrusions on the first surface. A1 is an area of the first surface. A2X is a sum of projected areas of the second protrusions on the second surface. A2 is an area of the second surface.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: April 13, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Akira Kano, Ryohei Miyamae, Kiyohiro Isii, Kensuke Nakura
  • Patent number: 10964935
    Abstract: Compositions, anodes, and batteries are described herein and incorporate particulates that feature carbon matrices having embedded therein a plurality of amorphous silicon nanoparticles. One embodiment includes a particulate composed of a porous carbon matrix and a plurality of amorphous silicon nanoparticles affixed to an interior surface of the porous carbon matrix and adjacent to an open volume that defines specific pores. Yet another embodiment is an anode active particulate that features a plurality of amorphous silicon nanoparticles affixed to interior surfaces of a porous carbon matrix, where the anode active particulate has a “Standard-FCE” value that is about 5% greater than a “Standard-FCE” value of an analogous anode active particle having crystalline silicon nanocrystals.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: March 30, 2021
    Assignee: Nanostar, Inc.
    Inventors: Shiva Adireddy, Jonathan Goodman, Sai Abhishek Palaparty
  • Patent number: 10957907
    Abstract: The present invention relates to polymers and to the use thereof in the form of active electrode material or in an electrode slurry as electrical charge storage means, the electrical charge storage means especially being secondary batteries. These secondary batteries are especially notable for high cell voltages, and simple and scalable processing and production methods (for example by means of screen printing).
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: March 23, 2021
    Assignee: Evonik Operations GmbH
    Inventors: Ulrich Schubert, Andreas Wild, Bernhard Haeupler
  • Patent number: 10930926
    Abstract: The invention provides a cathode sheet for use in a nonaqueous electrolyte secondary battery, including a composite material comprising a collector and a layer of a cathode active material provided thereon. The layer of a cathode active material includes: (a) a conductive polymer and (b) at least one selected from a polycarboxylic acid and a metal salt of a polycarboxylic acid; and the conductive polymer is a polymer in a dedoped state or in a dedoped and reduced state. The polymer constituting the conductive polymer is at least one selected from polyaniline, a polyaniline derivative, polypyrrole, a polypyrrole derivative, and polythiophene; and the polycarboxylic acid is at least one selected from polyacrylic acid, polymethacrylic acid, polyvinylbenzoic acid, polyallylbenzoic acid, polymethallylbenzoic acid, polymaleic acid, polyfumaric acid, polyglutaminic acid, polyaspartic acid, alginic acid, carboxymethylcellulose, and a copolymer including repeating units of at least two of the polymers listed herein.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: February 23, 2021
    Assignee: NITTO DENKO CORPORATION
    Inventors: Masao Abe, Akira Otani, Yujiro Kawashima, Yoshihiro Uetani, Hiroyoshi Take, Yutaka Kishii, Aimi Matsuura, Yuki Kajisa, Yohei Ando
  • Patent number: 10923731
    Abstract: A lithium secondary battery comprises an electrode group and a nonaqueous electrolyte having lithium-ion conductivity. A negative electrode current collector has a first surface facing outward of winding of the electrode group and a second surface facing inward of the winding of the electrode group. At least the first surface or the second surface includes a first region and a second region that is closer to an innermost circumference of the winding of the electrode group than the first region. Protrusions include outer-circumference-side protrusions disposed on the first region and inner-circumference-side protrusions disposed on the second region. A first average height of the outer-circumference-side protrusions is smaller than a second average height of the inner-circumference-side protrusions.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: February 16, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Akira Kano, Ryohei Miyamae, Kiyohiro Isii, Kensuke Nakura
  • Patent number: 10923726
    Abstract: An artificial solid electrolyte interphase (ASEI) of an anode for a secondary battery includes a first film composed of amino-functionalized, reduced graphene oxide (rGO) that is amino-functionalized by binding with polyethyleneimine present in an amount of from 1 to 50% by weight, based on total weight of the amino-functionalized, reduced graphene oxide (rGO) and that is disposed in contact with an anode material to protect the anode material; and a second film comprised of amino-functionalized, multi-walled carbon nanotubes that is amino-functionalized by binding with polyethyleneimine and that is stacked on the first film. An anode of a secondary battery including the ASEI enables rapid diffusion and stable deposition of lithium to inhibit the formation of dendrites. In a secondary battery including the anode, the ASEI prevents side reactions between a lithium metal anode and the electrolyte, achieving good electrochemical stability and high Coulombic efficiency.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: February 16, 2021
    Assignee: Korea Institute of Science and Technology
    Inventors: Won Il Cho, Mun Sek Kim, Seung Hun Lee, Min Seop Kim, Van Dung Do, In Wook Nah, In Hwan Oh
  • Patent number: 10923711
    Abstract: A lithium secondary battery comprises an electrode group and a nonaqueous electrolyte having lithium-ion conductivity. A negative electrode current collector has a first surface facing outward of winding of the electrode group and a second surface facing inward of the winding of the electrode group. At least the first surface or the second surface includes a first region and a second region that is closer to an innermost circumference of the winding of the electrode group than the first region. Protrusions include outer-circumference-side protrusions disposed on the first region and inner-circumference-side protrusions disposed on the second region. In at least the first surface or the second surface, a first area rate is smaller than a second area rate.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: February 16, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Akira Kano, Ryohei Miyamae, Kiyohiro Isii, Kensuke Nakura
  • Patent number: 10920314
    Abstract: A method for manufacturing a steel sheet or steel strip for a battery case including the steps of providing a Ni-plated steel sheet or strip, and applying a graphene based coating layer on the Ni-plated steel sheet or strip, wherein the graphene based coating layer is applied by chemical vapour deposition.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: February 16, 2021
    Assignee: TATA STEEL UK LIMITED
    Inventors: Sai Shivareddy, Sivasambu Böhm, Samson Patole, Digvijay Bhagwan Thakur, Dammes Hans Van Der Weijde
  • Patent number: 10916803
    Abstract: A lithium-sulfur battery cathode including conductive porous carbon particles vacuum infused with sulfur and a conductive collector substrate to which the sulfur infused porous carbon particles are deposited. The sulfur infused carbon particles are encapsulated by an encapsulation polymer, the encapsulation polymer having ionic conductivity, electronic conductivity, polysulfide affinity, or combinations thereof. A lithium-sulfur battery including the lithium-sulfur battery cathode, a lithium anode and an electrolyte disposed between the sulfur cathode and the lithium anode is also provided. Methods of producing the sulfur cathode for use in a lithium-sulfur battery by a hybrid vacuum-and-melt method are also provided.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: February 9, 2021
    Assignee: Cornerstone Research Group, Inc.
    Inventors: Brian E. Henslee, Joel P. Brubaker, Frank M. Zalar
  • Patent number: 10916810
    Abstract: A lithium secondary battery comprises an electrode group and a nonaqueous electrolyte having lithium-ion conductivity. A negative electrode current collector has a first surface facing outward of winding of the electrode group and a second surface facing inward of the winding of the electrode group. At least the first surface or the second surface includes a first region and a second region that is closer to an innermost circumference of the winding of the electrode group than the first region. Protrusions include outer-circumference-side protrusions disposed on the first region and inner-circumference-side protrusions disposed on the second region. A first average height of the outer-circumference-side protrusions is larger than a second average height of the inner-circumference-side protrusions.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: February 9, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Akira Kano, Kiyohiro Isii, Ryohei Miyamae, Kensuke Nakura
  • Patent number: 10906869
    Abstract: An organic sulfur material comprising carbon, hydrogen, oxygen, and sulfur as constituent elements, and having peaks in the vicinity of 482 cm?1, 846 cm?1, 1066 cm?1, 1279 cm?1, and 1442 cm?1 in a Raman spectrum detected by Raman spectroscopy, the peak in the vicinity of 1442 cm?1 being most intense, has a high capacity and high heat resistance, although a liquid organic starting material is used.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: February 2, 2021
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hiroshi Senoh, Toshikatsu Kojima, Nobuhiko Takeichi, Hisanori Ando
  • Patent number: 10894863
    Abstract: Compositions and methods of producing composite materials for use as a cathode in electrochemical cells. Elemental sulfur is mixed with tungsten sulfide (WS2) to form a composite mixture. Organic comonomers may be added to the composite mixture. The composite mixture is reacted to form the composite material. Electrochemical cells with cathodes containing the composite material demonstrated improved battery performance.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: January 19, 2021
    Assignee: ARIZONA BOARD OF REGENTS ON BEHALF OF THE UNIVERSITY OF ARIZONA
    Inventors: Dong-Chul Pyun, Nicholas George Pavlopoulos
  • Patent number: 10886450
    Abstract: Disclosed is a thermoelectric composite material includes a thermoelectric material including crystal grains; and a MXene inserted at boundaries of the crystal grains consisting of the thermoelectric material. Accordingly, the thermoelectric composite material may have a reduced thermal conductivity and an increased electrical conductivity. Furthermore, mechanical properties of the thermoelectric composite material may be improved. Thus, the thermoelectric composite material may improve the thermoelectric ability of a thermoelectric module including the same. A method of manufacturing the thermoelectric composite material includes coating MXene on a surface of a thermoelectric material powder including crystal grains; and sintering the thermoelectric material powder coated with the MXene to form a sintered body including the MXene inserted at boundaries of the crystal grains consisting of the thermoelectric material.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: January 5, 2021
    Assignee: Korea Institute of Science and Technology
    Inventors: Jin-Sang Kim, Chong-Min Koo, Seung-Hyub Baek, Seong-Keun Kim, Chong-Yun Kang, Soon-Man Hong, Seung-Sang Hwang, Ji-Won Choi, Seok-Jin Yoon, Kwang-Chon Kim, Kyung-Youl Baek, Sang-Ho Cho
  • Patent number: 10873101
    Abstract: A flow battery includes a first liquid containing a first electrode mediator dissolved therein, a first electrode immersed in the first liquid, a first active material immersed in the first liquid, and a first circulation mechanism that circulates the first liquid between the first electrode and the first active material, wherein the first electrode mediator includes a tetrathiafulvalene derivative, and the tetrathiafulvalene derivative has a chain-forming substituent at positions 4,4? and 5,5? of a tetrathiafulvalene skeleton thereof.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: December 22, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Honami Nariyama, Yu Otsuka
  • Patent number: 10854921
    Abstract: An electrochemical cell including at least one nitrogen-containing compound is disclosed. The at least one nitrogen-containing compound may form part of or be included in: an anode structure, a cathode structure, an electrolyte and/or a separator of the electrochemical cell. Also disclosed is a battery including the electrochemical cell.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: December 1, 2020
    Assignee: Sion Power Corporation
    Inventors: Chariclea Scordilis-Kelley, Joseph Kubicki, Shuguang Cao, Yuriy V. Mikhaylik
  • Patent number: 10840538
    Abstract: A lithium metal secondary battery includes a positive electrode, a negative electrode, a solid electrolyte, and a soft electrolyte. The negative electrode includes a negative electrode current collector having at least one hole, in which lithium metal is deposited in a charged state. The solid electrolyte is disposed on the surface, which face negative electrode current collector, of the positive electrode. The soft electrolyte fills the space between the negative electrode current collector and solid electrolyte and entering into the at least one hole. The solid and soft electrolytes have lithium ion conductivity.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: November 17, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Junichi Sakamoto, Akira Kano, Tooru Matsui, Kazuko Asano, Kiyoshi Kanamura
  • Patent number: 10833365
    Abstract: The present application relates to the technical field of lithium-ion batteries and, specifically, relates to an electrolyte and a lithium-ion battery containing the electrolyte. The electrolyte of the present application includes a lithium salt, an organic solvent and additives, the additives include a fluorinated ether compound and an ester dimer compound, the ester dimer compound includes carbonate dimers, carboxylate dimers and sultone dimers. The lithium battery adopting the electrolyte of the present application can realize the object of high voltage, of which the highest normal working voltage can be improved to 4.4˜5.0V, and the lithium battery has good cycle performance, such as higher capacity retention rate at charge or discharge and improved service life.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: November 10, 2020
    Assignee: NINGDE AMPEREX TECHNOLOGY LIMITED
    Inventor: Kefei Wang
  • Patent number: 10833320
    Abstract: The present invention provides for a composition of matter comprising: poly(9,9-dioctylfluorene-co-fluorenone-co-methylbenzoic ester)(PFM), carbon nanotubes (CNT), and sulfur particles nanocomposite, wherein the nanocomposite is porous. The present invention also provides for an electrode comprising: poly(9,9-dioctylfluorene-co-fluorenone-co-methylbenzoic ester)(PFM), carbon nanotubes (CNT), and sulfur particles nanocomposite, wherein the nanocomposite is porous. The present invention also provides for a lithium sulfur (Li—S) battery comprising: an electrode comprising poly(9,9-dioctylfluorene-co-fluorenone-co-methylbenzoic ester)(PFM), carbon nanotubes (CNT), and sulfur particles nanocomposite, wherein the nanocomposite is porous.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: November 10, 2020
    Assignee: The Regents of the University of California
    Inventors: Gao Liu, Guo Ai, Hui Zhao
  • Patent number: 10818913
    Abstract: A negative electrode for a metal battery, the negative electrode a metal substrate; and a protective layer disposed directly on at least a portion of the metal substrate, wherein the protective layer comprises an ion-conductive oligomer, wherein the ion-conductive oligomer comprises an ion-conductive structural unit in at least one of a main chain and a side chain of the an ion-conductive oligomer, and at least two hydrogen-bond-forming functional groups at different ends of the ion-conductive oligomer, and wherein the protective layer has a thickness of 5 micrometers or less.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: October 27, 2020
    Assignees: SAMSUNG ELECTRONICS CO, LTD., SAMSUNG SDI CO, LTD.
    Inventors: Yonggun Lee, Saebom Ryu, Toshinori Sugimoto, Dongmin Im, Wonseok Chang
  • Patent number: 10818962
    Abstract: A negative electrode contains at least composite particles. The composite particles each contain a negative electrode active material particle and a coating. The coating is formed on a surface of the negative electrode active material particle. The coating contains at least a metal organic framework. The metal organic framework is formed by alternately stacking a first layer and a second layer. The first layer is formed by stacking an aromatic compound in a direction intersecting with a direction of stack of the first layer and the second layer. The aromatic compound contains two carboxylate anions. The two carboxylate anions satisfy para-positional relation. The second layer is formed of lithium ions coordinated to the carboxylate anion.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: October 27, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Kazuhisa Takeda
  • Patent number: 10804576
    Abstract: The present invention relates to an electrolyte solution for a lithium-sulfur battery and a lithium-sulfur battery including the same. The electrolyte solution for a lithium-sulfur battery according to the present invention exhibits excellent stability, and may improve a swelling phenomenon by suppressing gas generation during lithium-sulfur battery operation.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: October 13, 2020
    Assignee: LG CHEM, LTD.
    Inventors: In Tae Park, Sung Won Hong, Charles Kiseok Song, Chang Hoon Lee, Doo Kyung Yang
  • Patent number: 10797303
    Abstract: The present invention relates to a silicon-based anode active material and a method of fabricating the same. The silicon-based anode active material according to an embodiment of the present invention comprises: particles comprising silicon and oxygen combined with the silicon, wherein a carbon-based conductive layer is coated with on outermost surface of the particles; and phosphorus doped in the particles, wherein a content of the phosphorus with respect to a total weight of the particles and the phosphorus doped in the particles have a range of 0.01 wt % to 15 wt %, and a content of the oxygen has a range of 9.5 wt % to 25 wt %.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: October 6, 2020
    Assignee: Nexeon Ltd
    Inventors: Young Tai Cho, Yong Gil Choi, Seung Chul Park, Seon Park, Hee Young Seo, Jee Hye Park, Yong Eui Lee, Chul Hwan Kim
  • Patent number: 10784481
    Abstract: With a nonaqueous electrolyte secondary battery separator having a radical concentration of 5000×1012 spins/mg to 90000×1012 spins/mg, wherein the concentration is calculated from a peak at a g-value of not less than 2.010 in an electron spin resonance spectrum obtained through electron spin resonance analysis using a microwave having a frequency of 9.4 GHz, it is possible to provide a nonaqueous electrolyte secondary battery having a high battery resistance decreasing rate before and after battery formation.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: September 22, 2020
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Eiko Kashiwazaki, Chikara Murakami
  • Patent number: 10756333
    Abstract: The present invention relates to a positive electrode active material for a lithium-sulfur battery containing polyimide, more specifically, a positive electrode active material formed by complexing the composite of polyimide and carbon-based secondary particles with sulfur particles, a preparation method thereof and a lithium-sulfur battery comprising the same. If the positive electrode active material formed by including and complexing the polyimide according to the present invention is applied to the lithium-sulfur battery, the elution of the polysulfide is suppressed, and thus lifetime characteristics and energy efficiency are improved.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: August 25, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Eunkyung Cho, Taek Gyoung Kim, Doo Kyung Yang
  • Patent number: 10756348
    Abstract: The present invention relates to polymers and to the use thereof in the form of active electrode material or in an electrode slurry as electrical charge storage means, the electrical charge storage means especially being secondary batteries. The secondary batteries are especially notable for high cell voltages, a small drop in capacity even on undergoing several charging and discharging cycles, and simple and scalable processing and production methods (for example by means of screen printing).
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: August 25, 2020
    Assignee: Evonik Operations GmbH
    Inventors: Ulrich Schubert, Andreas Wild, Bernhard Haeupler
  • Patent number: 10680267
    Abstract: A flow battery includes a first liquid containing a first nonaqueous solvent; a first electrode immersed in the first liquid; a second electrode which is a counter electrode to the first electrode; and a separator separating the first electrode from the second electrode. The separator includes a solid electrolyte containing: a metal compound and a nonionic polymer which includes a poly(alkylene oxide) and cross-linking points. At least one of alkylene oxide units forming the poly(alkylene oxide) is composed of a tetramethylene oxide unit.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: June 9, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventor: Yuka Okada
  • Patent number: 10680290
    Abstract: The present specification relates to an anode, a lithium secondary battery including the same, a battery module including the lithium secondary battery, and a method for manufacturing an anode.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: June 9, 2020
    Assignee: LG CHEM, LTD.
    Inventors: Minchul Jang, Byoungkuk Son, Seong Ho Lee, Junghun Choi
  • Patent number: 10665864
    Abstract: The present disclosure is directed to preventing generation of side reactions at a negative electrode, inhibiting an increase in resistance, and improving productivity. An electrode assembly is provided including: a negative electrode including a negative electrode current collector having a negative electrode tab at one end, and a negative electrode active material layer formed on a surface thereof; a positive electrode including a positive electrode current collector having a positive electrode tab at one end, and a positive electrode active material layer formed on a surface thereof; and a separator interposed between the positive and negative electrodes, and including a coating layer containing a conductive material and a polymer binder on the top surface of the negative electrode active material layer, wherein the coating layer is spaced apart from the top end, where the negative electrode tab is formed, and the bottom end by a predetermined distance.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: May 26, 2020
    Assignee: LG Chem, Ltd.
    Inventor: Hyuk-Su Kim
  • Patent number: 10658699
    Abstract: An electrolyte for a lithium secondary battery, the electrolyte including: a lithium salt, an organic solvent, and an organic fluorinated ether compound represented by Formula 1: CH3—CH2—O—CF2—CHF—R1??Formula 1 wherein, in Formula 1, R1 is a C1-C10 alkyl group, a C3-C10 cycloalkyl group, a C1-C10 fluorinated alkyl group, or a C3-C10 fluorinated cycloalkyl group.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: May 19, 2020
    Assignees: SAMSUNG ELECTRONICS CO., LTD., SAMSUNG SDI CO., LTD.
    Inventors: Jinah Seo, Dongyoung Kim, Hosang Park, Yoonsok Kang, Jungjoo Cho
  • Patent number: 10629914
    Abstract: The present disclosure is directed to preventing generation of side reactions at a negative electrode, inhibiting an increase in resistance, and improving productivity. An electrode assembly is provided including: a negative electrode including a negative electrode current collector having a negative electrode tab at one end, and a negative electrode active material layer formed on a surface thereof; a positive electrode including a positive electrode current collector having a positive electrode tab at one end, and a positive electrode active material layer formed on a surface thereof; and a separator interposed between the positive and negative electrodes, and including a coating layer containing a conductive material and a polymer binder on the top surface of the negative electrode active material layer, wherein the coating layer is spaced apart from the top end, where the negative electrode tab is formed, and the bottom end by a predetermined distance.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: April 21, 2020
    Inventor: Hyuk-Su Kim
  • Patent number: 10619070
    Abstract: There is provided a coating liquid capable of forming a coating film that is excellent in adhesiveness to the surface of a base material such as a metal, glass, or a resin even though the coating film contains PVDF which exhibits a remarkable non-tackiness and that can exhibit various desired functionalities such as non-tackiness, an antifouling property, chemical resistance, a sliding property, water repellency, electrical conductivity, an antifungal/antimicrobial property, and a deodorizing property. The coating liquid contains a polar solvent such as N,N-dimethylformamide or N-methyl-2-pyrrolidone, a hydrophilic polymer such as a chitosan derivative or a cellulose derivative, and polyvinylidene fluoride.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: April 14, 2020
    Assignee: DAINICHISEIKA COLOR & CHEMICALS MFG. CO., LTD.
    Inventors: Nobuyuki Kobayashi, Takanori Sannan
  • Patent number: 10586986
    Abstract: Organic lithium batteries are provided having high energy and power densities with a positive electrode based on redox organic compounds and an electrolyte having a high concentration of lithium salt.
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: March 10, 2020
    Assignees: BLUE SOLUTIONS, UNIVERSITE DE NANTES, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIC
    Inventors: Margaud Lecuyer, Marc Deschamps, Joël Gaubicher, Philippe Poizot, Dominique Guyomard, Bernard Lestriez
  • Patent number: 10573468
    Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: February 25, 2020
    Assignee: Printed Energy Pty Ltd
    Inventors: Vera Nicholaevna Lockett, Mark David Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
  • Patent number: 10553899
    Abstract: A battery has a cathode, an anode, and a first solid electrolyte. The cathode contains a particle of a cathode active material, and the anode contains a particle of an anode active material. The first solid electrolyte is disposed between the cathode and the anode. At least one of the surface of the particle of the cathode active material and the surface of the particle of the anode active material is coated with a polyether-based organic solid electrolyte. The polyether-based organic solid electrolyte is in contact with the first solid electrolyte. The polyether-based organic solid electrolyte is a compound of a polymer having an ether bond and an electrolytic salt.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: February 4, 2020
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Izuru Sasaki, Kensuke Nakura
  • Patent number: 10522824
    Abstract: The present invention relates to a method for preparing silicon-based active material particles for a secondary battery and silicon-based active material particles. The method for preparing silicon-based active material particles according to an embodiment of the present invention comprises the steps of: providing silicon powder; dispersing the silicon powder into an oxidant solvent to provide a mixture prior to grinding; fine-graining the silicon powder by applying mechanical compression and shear stress to the silicon powder in the mixture prior to grinding to produce silicon particles; producing a layer of chemical oxidation on the fine-grained silicon particles with the oxidant solvent while applying mechanical compression and shear stress to produce silicon-based active material particles; and drying the resulting product comprising the silicon-based active material particles to yield silicon-based active material particles.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: December 31, 2019
    Assignee: Nexeon Ltd
    Inventors: Young Tai Cho, Yong Gil Choi, Seung Chul Park, Seon Park, Hee Young Seo, Jee Hye Park, Yong Eui Lee, Chul Hwan Kim
  • Patent number: 10522825
    Abstract: The present disclosure relates to a positive electrode active material and a positive electrode comprising metal nano particles, and a lithium-sulfur battery comprising the same, and in particular, to a positive electrode for a lithium-sulfur battery comprising a positive electrode active material of a sulfur-metal catalyst-carbon composite, and a lithium-sulfur battery comprising the same. The lithium-sulfur battery using a positive electrode comprising metal nano particles according to the present disclosure increases reactivity of sulfur, a positive electrode active material, and increases electrical conductivity of an electrode by the dispersion of the metal nano particles in the electrode so as to increase reactivity and electric capacity of the positive electrode. In addition, battery reaction products such as lithium sulfide (Li2S) are readily decomposed by a catalyst reaction, and therefore, lifespan characteristics can be improved.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: December 31, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Yun Kyoung Kim, Doo Kyung Yang, Dong Wook Lee