Iron Component Is Active Material Patents (Class 429/221)
  • Publication number: 20140377659
    Abstract: Disclosed herein are cathode formulations comprising a lithium ion-based electroactive material having a D50 ranging from 1 ?m to 6 ?m; and carbon black having BET surface area ranging from 130 to 700 m2/g and an OAN ranging from 150 mL/100 g to 300 mL/100 g. Also disclosed are cathode formulations comprising a first lithium ion-based electroactive material having a particle size distribution of 1 ?m?D50?5 ?m, and a second lithium ion-based electroactive material having a particle size distribution of 5 ?m<D50?15 ?m. Cathodes comprising these active materials can exhibit a maximum pulse power in W/kg and W/L of the mixture higher than maximum pulse power of the first or second electroactive material individually, or an energy density in Wh/kg and Wh/L of the mixture higher than energy density of the first or second electroactive material individually. The cathode formulations can further comprise carbon black having BET surface area ranging from 130 to 700 m2/g.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 25, 2014
    Inventors: Miodrag Oljaca, Berislav Blizanac, Aurelien DuPasquier, Ryan C. Wall, Arek Suszko, Kenneth Koehlert
  • Publication number: 20140377656
    Abstract: Disclosed is a lithium secondary battery including an electrode assembly including a cathode, an anode, and a separator disposed between the cathode and the anode and an electrolyte, wherein the anode includes a lithium titanium oxide (LTO) as an anode active material, and the lithium secondary battery has a charge cut-off voltage of 3.3 to 4 V and, when the charge cut-off voltage is reached, the anode has a potential of 0.75 to 1.545 V within a range within which a potential of the cathode does not exceed 4.95 V.
    Type: Application
    Filed: September 5, 2014
    Publication date: December 25, 2014
    Inventors: Soo Hyun LIM, Jae Hyun LEE, Jihyun KIM
  • Publication number: 20140377655
    Abstract: A composite cathode active material, a method of preparing the composite cathode active material, a cathode including the composite cathode active material, and a lithium battery including the cathode. The composite cathode active material includes a lithium intercalatable material; and a garnet oxide, wherein an amount of the garnet oxide is about 1.9 wt % or less, based on a total weight of the composite cathode active material.
    Type: Application
    Filed: April 25, 2014
    Publication date: December 25, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Jun-young MUN, Jae-myung LEE, Gue-sung KIM, Yoon-sok KANG, Myung-hoon KIM, Jun-ho PARK, Jin-hwan PARK, Jae-gu YOON, Byung-jin CHOI
  • Publication number: 20140377657
    Abstract: Disclosed is a lithium secondary battery including: an electrode assembly including a cathode including a cathode mixture layer formed on a cathode current collector, an anode including an anode mixture layer formed on an anode current collector, and a separator disposed between the cathode and the anode; and an electrolyte, wherein the anode includes lithium titanium oxide (LTO) as an anode active material, and four planes of the cathode mixture layer have the same or greater length than four planes of the anode mixture layer and thus the cathode mixture layer has the same or greater area than the anode mixture layer.
    Type: Application
    Filed: September 10, 2014
    Publication date: December 25, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Soo Hyun Lim, Jae Hyun Lee, Jihyun Kim
  • Patent number: 8916296
    Abstract: The present application is directed to mesoporous carbon materials comprising bi-functional catalysts. The mesoporous carbon materials find utility in any number of electrical devices, for example, in lithium-air batteries. Methods for making the disclosed carbon materials, and devices comprising the same, are also disclosed.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: December 23, 2014
    Assignee: EnerG2 Technologies, Inc.
    Inventors: Aaron M. Feaver, Henry R. Costantino, Richard D. Varjian
  • Publication number: 20140370387
    Abstract: Composite silicon based materials are described that are effective active materials for lithium ion batteries. The composite materials comprise processed, e.g., high energy mechanically milled, silicon suboxide and graphitic carbon in which at least a portion of the graphitic carbon is exfoliated into graphene sheets. The composite materials have a relatively large surface area, a high specific capacity against lithium, and good cycling with lithium metal oxide cathode materials. The composite materials can be effectively formed with a two step high energy mechanical milling process. In the first milling process, silicon suboxide can be milled to form processed silicon suboxide, which may or may not exhibit crystalline silicon x-ray diffraction. In the second milling step, the processed silicon suboxide is milled with graphitic carbon. Composite materials with a high specific capacity and good cycling can be obtained in particular with balancing of the processing conditions.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 18, 2014
    Inventors: Yogesh Kumar Anguchamy, Haixia Deng, Yongbong Han, Charan Masarapu, Sujeet Kumar, Herman A. Lopez
  • Publication number: 20140370349
    Abstract: The present disclosure provides a sheet-form electrode for a secondary battery, comprising a current collector; an electrode active material layer formed on one surface of the current collector; and a first porous supporting layer formed on the electrode active material layer. The sheet-form electrode for a secondary battery according to the present disclosure has supporting layers on at least one surface thereof to exhibit surprisingly improved flexibility and prevent the release of the electrode active material layer from a current collector even if intense external forces are applied to the electrode, thereby preventing the decrease of battery capacity and improving the cycle life characteristic of the battery.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Applicant: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Hye-Ran Jung, Eun-Kyung Kim, Je-Young Kim, Hyo-Mi Kim
  • Publication number: 20140370337
    Abstract: A secondary battery includes a cathode, an anode, and a non-aqueous electrolytic solution. The cathode includes a cathode current collector, and a cathode active material layer provided on the cathode current collector. The cathode active material layer is configured of a single layer and includes a plurality of cathode active material particles. When the cathode active material layer is divided, at one or more arbitrary positions, into two or more layers, an average particle size of the cathode active material particles in an uppermost layer is smaller than an average particle size of the cathode active material particles in a lowermost layer in the two or more layers of the divided cathode active material layer.
    Type: Application
    Filed: June 5, 2014
    Publication date: December 18, 2014
    Inventors: Takaaki MATSUI, Takehiko ISHII
  • Publication number: 20140370388
    Abstract: The accurate determination of the state-of-charge (SOC) of batteries is an important element of battery management. One method to determine SOC is to measure the voltage of the cell and exploiting the correlation between voltage and SOC. For electrodes with sloped charge/discharge profiles, this is a good method. However, for batteries with lithium iron phosphate (LFP) cathodes the charge/discharge profile is flat. Now, by using the materials and methods disclosed herein, an amount of cathode active material that has a sloped charge/discharge profile is mixed with LFP in a cathode, which results in a charge/discharge profile with enough slope that the SOC of the battery can be determined by measuring the voltage alone.
    Type: Application
    Filed: June 18, 2013
    Publication date: December 18, 2014
    Inventors: Mohit Singh, Xiao-Liang Wang
  • Publication number: 20140370386
    Abstract: Disclosed is a Si-based alloy anode material for lithium ion secondary batteries, including an alloy phase with a Si principal phase including Si and a compound phase including two or more elements, which includes a first additional element A selected from Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb and Mg and a low-melting second additional element B selected from S, Se, Te, Sn, In, Ga, Pb, Bi, Zn, Al. This compound phase includes (i) a first compound phase including Si and the first additional element A; a second compound phase including the first additional element A and the second additional element B; and one or both of a third compound phase including two or more of the second additional elements B and a single phase of the second additional element B.
    Type: Application
    Filed: January 30, 2013
    Publication date: December 18, 2014
    Inventors: Tomoki Hirono, Tetsuro Kariya, Toshiyuki Sawada
  • Publication number: 20140370360
    Abstract: A secondary battery includes a first electrode, a second electrode, an ion transmission member in contact with the first electrode and the second electrode, and a hole transmission member in contact with the first electrode and the second electrode. Suitably, the first electrode contains a composite oxide. The composite oxide contains alkali metal or alkali earth metal. The composite oxide contains a p-type composite oxide as a p-type semiconductor.
    Type: Application
    Filed: June 25, 2013
    Publication date: December 18, 2014
    Inventors: Si MENGQUN, Zhou YING
  • Patent number: 8911901
    Abstract: The object of the present invention is to inhibit occurrence of structural collapse caused by volumetric change of primary particles of negative electrode active material and to improve adhesion between negative electrode active material and electrically conductive agent and between negative electrode mix layer and collector, whereby improvement of life is attained in negative electrode for non-aqueous secondary battery and non-aqueous secondary battery. In the negative electrode for non-aqueous secondary battery of the present invention, the negative electrode active material comprises silicon and/or tin, and at least one element selected from elements which do not react with lithium and has pores in both of the inner core portion and the outer peripheral portion of primary particles and a material which cures by a heat treatment is used as a binder.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: December 16, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Nakabayashi, Shin Takahashi
  • Publication number: 20140363736
    Abstract: A lithium secondary battery of the present invention may simultaneously improve high output and high capacity characteristics by including a first active material layer having high output characteristics and a second active material layer having high capacity characteristics respectively on a cathode collector and an anode collector.
    Type: Application
    Filed: August 26, 2014
    Publication date: December 11, 2014
    Applicant: LG CHEM, LTD.
    Inventors: Ji Sun Kim, Min Ho Youn, Dong Seok Shin, Hyo Seok Park
  • Publication number: 20140363737
    Abstract: A lithium ion secondary battery in which a high capacity, as well as a high level of safety, is achieved, by using an oxide material containing Li and Fe for a negative electrode active material. In the lithium ion secondary battery, the negative electrode active material is a mixed phase of LiFeO2 and LiFe5O8 and a material in which the value calculated as the ratio of the height of a diffraction peak belonging to LiFeO2 (200) plane and the height of a diffraction peak belonging to LiFe5O8 (311) plane, which are obtained by X-ray diffraction method, is 0.18 to 20.4.
    Type: Application
    Filed: December 5, 2012
    Publication date: December 11, 2014
    Applicant: Hitachi, Ltd.
    Inventor: Kazushige Kohno
  • Patent number: 8906552
    Abstract: Disclosed is lithium iron phosphate having an olivine crystal structure wherein carbon (C) is coated on particle surfaces of the lithium iron phosphate, wherein, when a powder of the lithium iron phosphate is dispersed in water, water is removed from the resulting dispersion and the resulting lithium iron phosphate residue is quantitatively analyzed, a ratio of the carbon-released lithium iron phosphate with respect to the total weight of the carbon-coated lithium iron phosphate is 0.005% by weight or less. Advantageously, the olivine-type lithium iron phosphate is not readily separated through uniform thin film coating on the surface of the lithium iron phosphate and exhibits superior conductivity and density, since carbon is coated on particle surfaces of lithium iron phosphate in a state in which the amount of carbon released in water is considerably small.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: December 9, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Hyun Kuk Noh, Hong Kyu Park, Su-min Park, Ji Eun Lee, Cheol-Hee Park
  • Publication number: 20140356716
    Abstract: Provided are an electrode material and an electrode which, when an electrode active material having a carbonaceous coat formed on the surface is used as an electrode material, have a small variation in an amount of the carbonaceous coat being supported and, furthermore, can improve electron conductivity, and a method of manufacturing the electrode material. The electrode material is made of an agglomerate formed by agglomerating particles of an electrode active material having a carbonaceous coat formed on a surface, the average particle diameter of the agglomerate is in a range of 1.0 ?m to 100 ?m, the volume density of the agglomerate is in a range of 50% by volume to 80% by volume of the volume density of a solid form of the agglomerate, the pore size distribution of pores in the agglomerate is mono-modal, and the average pore diameter in the pore size distribution is 0.3 ?m or less.
    Type: Application
    Filed: September 5, 2012
    Publication date: December 4, 2014
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Takao Kitagawa, Masaru Uehara
  • Publication number: 20140356712
    Abstract: Disclosed are a precursor for a rechargeable lithium battery, a positive active material including the same, a preparation method thereof, and a rechargeable lithium battery including the positive active material. More particularly, the present invention relates to a precursor including a sheet-shaped plate having a thickness of about 1 nm to about 30 nm and that is represented by the following Chemical Formula 1. NixCOyMn1-x-y-zMz(OH)2??[Chemical Formula 1] In the above Chemical Formula 1, 0<x<1, 0?y<1, 0.5?1?x?y?z, and 0?z<1, and M is at least one kind of metal selected from the group consisting of Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, and Zr.
    Type: Application
    Filed: September 18, 2012
    Publication date: December 4, 2014
    Inventors: Jun Ho Song, Young Jun Kim, Jeom-Soo Kim, Woo Suk Cho, Jae-Hun Kim, Jun Sung Lee, Jin Hwa Kim, Kyoung Joon Lee
  • Publication number: 20140356713
    Abstract: The present invention relates to an anode active material with whole particle concentration gradient for a lithium secondary battery, a method for preparing same, and a lithium secondary battery having same, and more specifically, to a composite anode active material, a method for manufacturing same, and a lithium secondary battery having same, the composite anode active material having excellent lifetime characteristics and charge/discharge characteristics through the stabilization of crystal structure as the concentration of a metal comprising the anode active material shows concentration gradient in the whole particle, and having thermostability even in high temperatures.
    Type: Application
    Filed: August 19, 2014
    Publication date: December 4, 2014
    Inventors: Yang-Kook SUN, Hyung Joo NOH
  • Publication number: 20140356695
    Abstract: There is provided a battery including a positive electrode, a negative electrode, a separator at least including a porous film, and an electrolyte. The positive electrode includes a positive electrode current collector having a pair of surfaces, and a positive electrode active material layer provided on each of the surfaces of the positive electrode current collector. The positive electrode active material layer contains a positive electrode active material. The positive electrode active material layer has an area density S [mg/cm2] more than or equal to 30 mg/cm2. The porous film included in the separator has a porosity ? [%] and an air permeability t [sec/100 cc] which satisfy a predetermined formula.
    Type: Application
    Filed: May 19, 2014
    Publication date: December 4, 2014
    Applicant: Sony Corporation
    Inventors: Tomohiro ABE, Motomi SUZUKI
  • Publication number: 20140356717
    Abstract: The present invention is directed to a lithium ion secondary battery positive electrode, a lithium ion secondary battery, a vehicle mounting the same, and an electric power storage system, which improve the electron conductivity even inside an active material formed into a secondary particle.
    Type: Application
    Filed: November 21, 2012
    Publication date: December 4, 2014
    Inventors: Akira Gunji, Shin Takahashi, Hiroaki Konishi, Xiaoliang Feng, Takuya Aoyagi
  • Publication number: 20140356715
    Abstract: Provided is a composite cathode active material including layered lithium manganese oxide and lithium-containing metal oxide. Also, the present invention provides a secondary battery, a battery module, and a battery pack which have improved power characteristics by including the composite cathode active material.
    Type: Application
    Filed: August 20, 2014
    Publication date: December 4, 2014
    Inventors: Min Hee Lee, Jung Hwan Park, Ki Young Kwon
  • Publication number: 20140349170
    Abstract: Disclosed are a method of manufacturing an electrode for secondary batteries that includes surface-treating a current collector so as to have a morphology wherein a surface roughness Ra of 0.001 ?m to 10 ?m is formed over the entire surface thereof to enhance adhesion between an electrode active material and the current collector and an electrode for secondary batteries that is manufactured using the method.
    Type: Application
    Filed: August 7, 2014
    Publication date: November 27, 2014
    Inventors: Daehong Kim, Jae Hyun Lee, Jihyun Kim
  • Publication number: 20140349187
    Abstract: A secondary battery capable of obtaining superior battery characteristics is provided. The secondary battery of the present technology includes a cathode, an anode including an active material, and an electrolytic solution. The active material includes a core section and covering section, the core section being capable of inserting and extracting lithium ions, and the covering section being provided in at least part of a surface of the core section and being a low-crystalline or a noncrystalline. The core section includes Si and O as constituent elements, and an atom ratio x (O/Si) of O with respect to Si satisfies O?x<0.5. The covering section includes Si and O as constituent elements, and an atom ratio y (O/Si) of O with respect to Si satisfies 0.5?y?1.8. The covering section has voids, and a carbon-containing material is provided in at least part of the voids.
    Type: Application
    Filed: December 5, 2012
    Publication date: November 27, 2014
    Inventors: Takakazu Hirose, Kenichi Kawase, Norihiro Shimoi, Shinji Tanaka
  • Publication number: 20140349162
    Abstract: A thermally managed Li-ion battery assembly including an anode and a cathode, wherein at least one of the anode and the cathode includes a thermocrystal metamaterial structure.
    Type: Application
    Filed: May 24, 2013
    Publication date: November 27, 2014
    Applicant: The Boeing Company
    Inventors: Nicholas Koumvakalis, Jeffrey H. Hunt
  • Patent number: 8895186
    Abstract: It is an objective of the present invention to provide a lithium-ion rechargeable battery anode which can control the volume change of a primary particle of a negative-electrode active material other than a carbon-based material and that can prevent cracks due to stress caused by the volume change from occurring and extending. There is provided an anode for a lithium-ion rechargeable battery including a primary particle of a negative-electrode active material, a conductive material, and a binder, the negative-electrode active material including at least one of silicon and tin, and at least one element selected from elements that do not chemically react with lithium, in which holes are present both in an inner core region in the central region of the primary particle of the negative-electrode active material and in a periphery region that covers the inner core region.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: November 25, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Nakabayashi, Shin Takahashi, Motoki Ohta, Yoshihito Yoshizawa
  • Patent number: 8895101
    Abstract: The present invention relates to a method for manufacturing a cable-type secondary battery comprising an electrode that extends longitudinally in a parallel arrangement and that includes a current collector having a horizontal cross section of a predetermined shape and an active material layer formed on the current collector, and the electrode is formed by putting an electrode slurry including an active material, a polymer binder, and a solvent into an extruder, by extrusion-coating the electrode slurry on the current collector while continuously providing the current collector to the extruder, and by drying the current collector coated with the electrode slurry to form an active material layer.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: November 25, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Yo-Han Kwon, Joo-Sung Lee, Je-Young Kim, Jong-Hun Kim
  • Publication number: 20140342228
    Abstract: The present invention is to provide a lithium titanate (LTO) material for a lithium ion battery. The LTO material has hierarchical micro/nano architecture, and comprises a plurality of micron-sized secondary LTO spheres, and a plurality of pores incorporated with metal formed by a metal dopant. Each of the micron-sized secondary LTO spheres comprises a plurality of nano-sized primary LTO particles. A plurality of the nano-sized primary LTO particles is encapsulated by a non-metal layer formed by a non-metal dopant. The LTO material of the present invention has high electrical conductivity for increasing the capacity at high charging/discharging rates, and energy storage capacity.
    Type: Application
    Filed: April 10, 2014
    Publication date: November 20, 2014
    Applicant: Nano and Advanced Materials Institute Limited
    Inventors: Chenmin LIU, Lifeng CAI, Shing Yan CHOI
  • Publication number: 20140342229
    Abstract: Disclosed are a cathode active material for a lithium secondary battery, and a lithium secondary battery including the same. The disclosed cathode active material includes a core including a compound represented by Formula 1; and a shell including a compound represented by Formula 2, in which the core and the shell have different material compositions.
    Type: Application
    Filed: December 12, 2012
    Publication date: November 20, 2014
    Inventors: Byung-Sung Leo Kwak, Joseph G. Gordon, II, Omkaram Nalamasu, Yangkook Sun, Wongi Kim, Seugmin Oh
  • Publication number: 20140342230
    Abstract: Disclosed is a positive electrode for a non-aqueous electrolyte secondary battery, including a current collector and a mixture layer attached thereto. The mixture layer includes an active material including particles of a first active material, i.e., a lithium-manganese composite oxide, and particles of a second active material, i.e., a lithium-nickel composite oxide. A proportion of the first active material particles in the active material is 51 vol % to 90 vol %. A volume-based particle size distribution of the first active material particles has a first peak on a larger particle side and a second peak on a smaller particle side. A first particle size D1 corresponding to the first peak is 2.5 to 5 times larger than a second particle size D2 corresponding to the second peak. A volume-based particle size distribution of the second active material particles has a third peak corresponding to a third particle size D3 satisfying D1>D3>D2.
    Type: Application
    Filed: September 28, 2012
    Publication date: November 20, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Kozo Watanabe, Junichi Sugaya
  • Publication number: 20140342194
    Abstract: A rechargeable battery that features two or more levels of internal resistance according to various temperature ranges is disclosed.
    Type: Application
    Filed: February 25, 2014
    Publication date: November 20, 2014
    Applicant: EC Power, LLC
    Inventors: Chao-Yang WANG, Wei ZHAO
  • Publication number: 20140342231
    Abstract: Provided is positive electrode material for a highly safe lithium-ion secondary battery that can charge and discharge a large current while having long service life. Disclosed are composite particles comprising: particles of lithium-containing phosphate; and carbon coating comprising at least one carbon material selected from the group consisting of (i) fibrous carbon material, (ii) chain-like carbon material, and (iii) carbon material produced by linking together fibrous carbon material and chain-like carbon material, wherein each particle is coated with the carbon coating. The fibrous carbon material is preferably a carbon nanotube with an average fiber size of 5 to 200 nm. The chain-like carbon material is preferably carbon black produced by linking, like a chain, primary particles with an average particle size of 10 to 100 nm. The lithium-containing phosphate is preferably LiFePO4, LiMnPO4, LiMnXFe(1-X)PO4, LiCoPO4, or Li3V2(PO4)3.
    Type: Application
    Filed: November 14, 2012
    Publication date: November 20, 2014
    Inventors: Takashi Kawasaki, Nobuyuki Yoshino, Hiroshi Murata, Takehiko Sawai, Shinji Saito, Kazunori Urao
  • Publication number: 20140335409
    Abstract: A method is provided for fabricating a transition metal hexacyanometallate (TMHCM) electrode with a water-soluble binder. The method initially forms an electrode mix slurry comprising TMHCF and a water-soluble binder. The electrode mix slurry is applied to a current collector, and then dehydrated to form an electrode. The electrode mix slurry may additionally comprise a carbon additive such as carbon black, carbon fiber, carbon nanotubes, graphite, or graphene. The electrode is typically formed with TMHCM greater than 50%, by weight, as compared to a combined weight of the TMHCM, carbon additive, and binder. Also provided are a TMHCM electrode made with a water-soluble binder and a battery having a TMHCM cathode that is made with a water-soluble binder.
    Type: Application
    Filed: July 24, 2014
    Publication date: November 13, 2014
    Inventors: Long Wang, Yuhao Lu, Sean Vail
  • Publication number: 20140335407
    Abstract: A method for configuring a non-lithium-intercalation electrode includes intercalating an insertion species between multiple layers of a stacked or layered electrode material. The method forms an electrode architecture with increased interlayer spacing for non-lithium metal ion migration. A laminate electrode material is constructed such that pillaring agents are intercalated between multiple layers of the stacked electrode material and installed in a battery.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 13, 2014
    Inventors: Yan YAO, Yanliang LIANG
  • Publication number: 20140335413
    Abstract: An electrode material includes Fe-containing olivine-structured LixAyDzPO4 (wherein A represents one or more elements selected from the group consisting of Co, Mn, Ni, Cu, and Cr; D represents one or more elements selected from the group consisting of Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y, and rare earth elements; 0<x?2; 0<y?1; and 0?z?1.5) particles that are coated with a carbon coating film, in which an abundance of Fe is 0.01 to 0.1 mol with respect to 1 mol of LixAyDzPO4, and an abundance ratio (Fe/(Fe+A+D)) of Fe on surfaces of the LixAyDzPO4 particles is 0.02 to 0.25.
    Type: Application
    Filed: April 28, 2014
    Publication date: November 13, 2014
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Kenta OOISHI, Takao KITAGAWA, Kouji OONO, Satoru OSHITARI
  • Publication number: 20140329144
    Abstract: An anode and battery including the anode capable of improving the cycle characteristics while securing the input and output characteristics is provided. The battery includes a cathode, an anode, and an electrolytic solution. The anode includes an anode active material layer on an anode current collector, wherein the anode active material layer includes an anode active material capable of intercalating and deintercalating an electrode reactant, wherein a thickness of the anode active material layer ranges from 60 ?m to 120 ?m, and wherein the anode active material includes a carbon material and at least part of a surface is covered by a covering, the covering including at least one of an alkali metal salt and an alkali earth metal salt.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 6, 2014
    Inventors: Shinya WAKITA, Izaya OKAE
  • Patent number: 8877379
    Abstract: Disclosed is a positive active material for a rechargeable lithium battery and a rechargeable lithium battery including the same, and the positive active material includes a carbon material having a structure with “n” polycyclic nano sheets, wherein “n” is an integer of 1 to 30 with hexagonal rings having six carbon atoms condensed and substantially aligned in a plane, the polycyclic nano sheets are laminated in a vertical direction to the plane; and a lithium-containing olivine-based compound attached to the surface of the carbon material is formed with a carbon-coating layer on its surface.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: November 4, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Woon-Suk Jang, Chae-Woong Cho, Bum-Jin Chang, Ki-Jun Kim, Kwi-Seok Choi
  • Patent number: 8877375
    Abstract: An aqueous active material composition, an electrode, and a rechargeable lithium battery including the same, the aqueous active material composition including an active material; a binder; and a water-soluble cellulose mixture, wherein the water-soluble cellulose mixture includes a first cellulose compound having a degree of substitution of about 0.5 to about 0.9 and a second cellulose compound having a degree of substitution of about 1.1 to about 1.5.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: November 4, 2014
    Assignees: Samsung SDI Co., Ltd., Robert Bosch GmbH
    Inventors: Kwang-Soo Kim, Su-Jin Yoon, Joong-Woo Nam
  • Publication number: 20140322605
    Abstract: Provided are a mixed cathode active material having improved power characteristics and a lithium secondary battery including the same. More particularly, the present invention relates to a mixed cathode active material which may reduce the difference in operating voltage with respect to layered-structure lithium transition metal oxide and may consequently minimize power reduction in a transient region by using LFP having a portion of iron (Fe) substituted with other elements, such as manganese (Mn), (LMFP), in order to prevent a rapid voltage drop in the transient region when layered-structure lithium transition metal oxide and olivine-structured lithium oxide (e.g., LFP) are blended, and a lithium secondary battery including the mixed cathode active material.
    Type: Application
    Filed: July 9, 2014
    Publication date: October 30, 2014
    Inventors: Song Taek Oh, Sang Uck Lee, Il Hong Kim
  • Publication number: 20140322598
    Abstract: The present invention provides one with a Ni—Fe battery exhibiting enhanced power characteristics. The battery uses a particular electrolyte. The resulting characteristics of specific power and power density are much improved over conventional Ni—Fe batteries.
    Type: Application
    Filed: February 6, 2014
    Publication date: October 30, 2014
    Applicant: Encell Technology, Inc.
    Inventor: Randy Ogg
  • Publication number: 20140322604
    Abstract: An electrode-active material includes sulfur or a sulfur compound in particles represented by LixAyDzPO4 (wherein A represents one or two or more elements selected from the group consisting of Co, Mn, Ni, Fe, Cu, and Cr; D represents one or two or more elements selected from the group consisting of Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y, and rare earth elements; 0<x<2; 0<y<1; and 0?z<1.5), in which a sulfur content in the particles is high in the centers of the particles and is low in the vicinity of surfaces of the particles.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 30, 2014
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Takao KITAGAWA, Akinori YAMAZAKI
  • Publication number: 20140322602
    Abstract: An electrode material includes surface-coated LixAyDzPO4 particles that contain Fe on surfaces of LixAyDzPO4 (wherein A represents one or two or more elements selected from the group consisting of Co, Mn, Ni, Cu, and Cr; D represents one or two or more elements selected from the group consisting of Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, Y, and rare earth elements; 0<x?2; 0<y?1; and 0?z?1.5) particles and include a carbon coating film with which the surfaces of the LixAyDzPO4 particles containing Fe are coated, in which the surface-coated LixAyDzPO4 particles have a Li elution amount of 200 ppm to 700 ppm and a P elution amount of 500 ppm to 2000 ppm when being dipped in a sulfuric acid solution (pH=4) for 24 hours.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 30, 2014
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Akinori YAMAZAKI, Ryuuta YAMAYA, Satoru OSHITARI, Hirofumi YASUMIISHI, Masataka OYAMA
  • Publication number: 20140322603
    Abstract: The disclosure is related to battery systems. More specifically, embodiments of the disclosure provide a nanostructured conversion material for use as the active material in battery cathodes. In an implementation, a nanostructured conversion material is a glassy material and includes a metal material, one or more oxidizing species, and a reducing cation species mixed at a scale of less than 1 nm. The glassy conversion material is substantially homogeneous within a volume of 1000 nm3.
    Type: Application
    Filed: June 29, 2014
    Publication date: October 30, 2014
    Inventors: Timothy Holme, Jagdeep Singh, Rainer Fasching, Weston Arthur Hermann, Cheng Chieh Chao, Bradley O. Stimson, Karl Brown
  • Patent number: 8871384
    Abstract: There is provided a non-aqueous electrolytic solution comprising an electrolyte salt, a specific fluorine-containing solvent and a fluorine-containing cyclic carbonate represented by the formula (A1): wherein X1 to X4 are the same or different and each is —H, —F, —CF3, —CHF2, —CH2F, —CF2CF3, —CH2CF3 or —CH2OCH2CF2CF3; at least one of X1 to X4 is —F, —CF3, —CF2CF3, —CH2CF3 or —CH2OCH2CF2CF3, and the non-aqueous electrolytic solution has further excellent noncombustibility and is suitable for lithium secondary batteries.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: October 28, 2014
    Assignee: Daikin Industries, Ltd.
    Inventors: Meiten Koh, Hideo Sakata, Hitomi Nakazawa, Michiru Tanaka, Akiyoshi Yamauchi
  • Patent number: 8871388
    Abstract: A negative electrode for a lithium battery and a lithium battery including the negative electrode, the negative electrode including: a matrix of a Sn grain and a metal M grain; and a carbon-based material grown on the matrix.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: October 28, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Beom-Kwon Kim, Jae-Myung Kim, Kyu-Nam Joo, Jong-Hee Lee, So-Ra Lee, Young-Su Kim, Deok-Hyun Kim, Gu-Hyun Chung
  • Patent number: 8871113
    Abstract: A positive active material includes first and second lithium nickel complex oxides. A positive electrode and lithium battery include the positive active material. The positive active material, and the lithium battery including the positive active material have increased filling density, are thermally stable, and have improved capacity.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: October 28, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Min-Han Kim, Do-Hyung Park, Ji-Hyun Kim, Jeong-Seop Lee, Chang-Hyuk Kim, Seon-Young Kwon, Yoon-Chang Kim
  • Publication number: 20140315086
    Abstract: This invention relates to a negative electrode material for lithium-ion batteries comprising silicon and having a chemically treated or coated surface influencing the zeta potential of the surface. The active material consists of particles or particles and wires comprising a core (11) comprising silicon, wherein the particles have a positive zeta potential in an interval between pH 3.5 and 9.5, and preferably between pH 4 and 9.5. The core is either chemically treated with an amino-functional metal oxide, or the core is at least partly covered with OySiHx groups, with 1<x<3, 1<y<3, and x>y, or is covered by adsorbed inorganic nanoparticles or cationic multivalent metal ions or oxides.
    Type: Application
    Filed: December 13, 2012
    Publication date: October 23, 2014
    Inventors: Stijn Put, Jan Gilleir, Kris Driesen, Jean-Sebastien Bridel, Nicolas Marx, Delphine Longrie, Dan V. Goia, John I. Njagi
  • Publication number: 20140315066
    Abstract: The invention relates to an electrolyte battery electrode component having a layer having a surface adjoined by electrolyte in the battery and provided with a fluid-conducting channel structure. In this context, it is envisaged that through the fluid-conducting structure has channels having channel depths in the range from 10 to 200 ?m and/or at least 50% of the thickness of the active layer.
    Type: Application
    Filed: April 12, 2012
    Publication date: October 23, 2014
    Applicant: KARLSRUHER INSTITUT FUR TECHNOLOGIE
    Inventors: Wilhelm Pfleging, Robert Kohler, Johannes Proll
  • Publication number: 20140315085
    Abstract: Several embodiments related to batteries having electrodes with nanostructures, compositions of such nanostructures, and associated methods of making such electrodes are disclosed herein. In one embodiment, a method for producing an anode suitable for a lithium-ion battery comprising preparing a surface of a substrate material and forming a plurality of conductive nanostructures on the surface of the substrate material via electrodeposition without using a template.
    Type: Application
    Filed: June 2, 2012
    Publication date: October 23, 2014
    Applicant: WASHINGTON STATE UNIVERSITY
    Inventors: M. Grant Norton, Uttara Sahaym
  • Publication number: 20140315083
    Abstract: The present invention provides a graphene coating-modified electrode plate for lithium secondary battery, characterized in that, the electrode plate comprises a current collector foil, graphene layers coated on both surfaces of the current collector foil, and electrode active material layers coated on the graphene layers. A graphene coating-modified electrode plate for lithium secondary battery according to the present invention comprises a current collector foil, graphene layers coated on both surfaces of the current collector foil, and electrode active material layers coated on the graphene layers. The graphene-modified electrode plate for lithium secondary battery thus obtained increases the electrical conductivity and dissipation functions of the electrode plate due to the better electrical conductivity and thermal conductivity of graphene. The present invention further provides a method for producing a graphene coating-modified electrode plate for lithium secondary battery.
    Type: Application
    Filed: November 2, 2011
    Publication date: October 23, 2014
    Applicant: NINGBO INSTITUTE OF MATERIAL TECHNOLOGY AND ENGINEERING, CHINESE ACADEMY OF SCIENCES
    Inventors: Zhaoping Liu, Changlin Tang, Jiangang Zhang, Xufeng Zhou, Huasheng Hu
  • Publication number: 20140315087
    Abstract: A method of preparing a positive active material for a rechargeable lithium battery includes dry-coating a surface of a material capable of doping and dedoping lithium with a carbon nanotube.
    Type: Application
    Filed: November 5, 2013
    Publication date: October 23, 2014
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Dong-Hwan YU, Young-Jin CHOI, Young-Soo JUNG, Ji-Yong LEE, Sung-Hoon KIM